Page 1

Bakt. Abt,. II,

Bc1. 130, S.

211 2i8


Chemistrv Deparlnent , -\llahabacl Universitl.. Allahabarl, Indial

Photochernical Fornaation of Self-Sustaining Coacervates Krishna Bahadur \{ith I figures Summary The problem of the origin of lifc y'as investigatetl. 'Ihc plecursors of the present-ila-v cells and probable evolution-q wcrc considered ancl proceclures usecL clescribed.

Zusammenfassung Das Problem des tTrsprungs cles Lebens rrurcle untersucht. Die Vorltiufer der heutigen Zellen uncl ri.-ahrscheinliche Evolutionen l'urclen in Betracht gezogen und die angervencleten Prozeduren unter*rrcht.

The present approacli to the problem of origin of life started from the postulate of Hlr-naNn and OpARrN, commonly knorvn as the Molecular or Chemical Evolution Theory (Har,o,lNr 1929, OpanrN 1938). The term "molecular evolution" has been used in a restricted sense' It only means the ultimate formation of molecules rvhich formed the earliest cells on earth by chemical transformations (BeuenuR 1967). The term "evolution" has not been qsecl in the strict bioiogical sense where it is believed that evolution can follow only r,vhen u'e have a replicating s;,'stem which, even on modification by natural reasons, can duplicate in this motlified form. Actually the main purpose of the investigation on origin of life is to search the natural conditions which formed such replicating selfsustaining systems in the beginning (Br-um 1961, Bauanun and RaNeaN'lvaKr 1966)The se,concl reservation in the theory of molecular evolution is that it, is taken for granted that the earliest cells were made of the same materials which are found in the plesent-dav cells. It is a big assumption, for it is equally probable that the chemicals rvhich are plesen.t in today's cells might not have been there in the beginning and r,vere formeii as the product of some evolutionary metabolism, operating in the cells lB,tHeot'n I 967).

It is quite probable that the precursors of the present-day cells were made of at least amino acids and the abiogenesis of natural amino acids in nature 'was greatly sought. With the same process of logic the abiogenesis of almost all the chemicals, present in the present-day cells, was searched during the last two decades, and this yielded some very encouraging results. Photo-chemical formation of amino acids in steriiizecl mixtures, containing formalclehyde, ammoniacal or nitric nitrogen, and iron or molybdenum as inorganic catalysts, was observed by B*raoLrR, (BAHADUR, 1954, BarraouR and RaNelrqavexr 1955, Barraorrn et al. 1958). Pavr,ovsnave and


K. lJrtt.rot


Pesvssxtr (I957) obtained aming acids by exposing similar-mixtures to ultra violet r,:r}'S'Man}lothersourcesofâ‚Źnergywel]eusedfoi:amjnoacidsynthesis. "hi 195i, BauAnun observecl ih:;t, on exposure to sunlight, pept,ides_of lou' lnol' as r.vt. ale lbrmed i1 sterilizecl aqueous niixtures, coltaining amino acids, sugal 1958, cnerg-fr sorlrce. ancl iron ot -nlltbd.num as inorganic cata11'sts (Benanun fgOl,'fgOZ, tOOly. furmation of peptides i' aqueous medium rvas also studied trncl b.v iar-rrrx.and STETNMAN. using clicr.anamicte as condelsilg agent (SrnrxuaN L"puuox I964, 1965; Srlrxrrai utt,,l Kp*toN 1965). Sever':rl detailed reviews on tr,biogenesis aro now available (Srnrxrrex 1969, Oi:anrx 1963)' molecules TTre important point in the origin o1 Ufe is to inr-estigate hou' these tire solving in pertinent becomes abiogenesis ,orlion The earliesf,cells. th-e formecl thcse using are s-Ynthesized, p.obt"- of life synttresis only if self-sustaining s,\'s'1grns molecules. Backr,vard exploitation of the cliversity of the phvlology in_abiogcnic tirnes sugx-ork gests that, in thd beginning, there must have been icr.v species (Prnrl 1954). The the is not cell of a of organclles origin of problem if Drr"o* (1962) sh'ows tiiat the

of'origin of life, but thit of er-olutionary cytology,-anrl the earliest cells loss or har-e hacl very simpie internal structures. Ltl'ortl"S (1943) work on the tha.t suggests time evolutio' ciuring cells gain of the properiies of incliviclual _'vith cell. individual the of tlie properties in gain anil not i*lo** ihe evolution jn Putting the rvork of Drr,r-oN ancl Lu'orl together, it alrpears that the beginning \rery simple \Yere s.vstems thele weri felr,er species, anil the earliest cellulut living and these. 1964), (Baueoun order biological of in str:ucture antl u,ere fuli of properties "of ot investigation thc is of life origin the stucly life. cellulir of the precrusors u,ere the natur-al formation of these preculrsors of cellular iife' According to Banaoun, -ott.t has the inherent propertV of duplication uncler suitablc conclitions, arrd a system of matter in equiliblium has an inliercnt propelt:\r of atlapi:abiiitv (Bauanr--n ancl RaN1+ANAYAI(I 1964, Bauanun 1967, Baneorln 1964)' The nucleic acicl assisted cluplicatiorl of protein molecules; this is common in all the living up to the present clay. Dicl livirrg forms originate lrom a protein rrucleic acid. s-Vstem oI \rrere they -u,1"-of some simplernolecules of low moleculal ri'eight' procluct' ancl the living forms of high molecular u,eight molecules are the evolutionar-v at lirst that ploha6le mo'e It appears qo"*iiott. .f the earlier forms? Thai is an opell lir-ing made acicl-protein the nucleic and moleculcs, smali of made rvere living forms l9ti4' Beneoun l96l' f.orms resulted as the evolutionary pi'ocluct allerlr-ards (Blnxer' quantum llp b1r cluplicate can rnolecules Beuloun et al. lg66). If so, thl .smallel rnechanical resonance jnteraction specitrl stability force considerations onl;t (Jonlox 1938, 1g3g, lg40). The molecules oi such lir-ing ibrms could dupiicate by themselvcs rvithout needing the help of nucleic acjd. Ii any mild change in the duplic:rtiny,molecule was biought about by the physico-chemical conditions of the environrnent' the slightly moclif[d form coulcl alsio iuplicate, ancl this system' if in equiiibrium x,ilh its environment, could aclapt, and iuch a svstem rvoulcl have been capable of

;;;il 'must

evolution. Though it appears to be easlr to clifferentiate a li\'ing from a non-living svstern. it is l'erv dittl..,tt ?o define life iri scientific language. Har,nexn_(1954) defined a system as a self-perpetuating system. Accorcling to Brnxal (1957), the embodiment' of the sel1"p"'p"f,t'ofi"g sIstlm '-ithin a boundar)'was the occasion of origin o{ li-fe Honou'rrzltO'SZ; aeflned living system as a monomolecuiar s-vstem in polymole-cular

of mu-ltiplication ancl hetero-catalysis' KoNrxova" (1957) is'a molecule or a complex which, by the process of svstem ii.-lng a that suggested and chemical reactions *iti iti" molecules of its environment, accomplishes grorvth

enrrironment, capabie

Photochernical Formation of Self-sustaining Coacervates 213

of death n]gltiplication. It remains to itself, rvhile yet changing not in the direction and multjgror'vth of the limitation prnrl to agree diil not hor,vever, (1957), o. a".'uy. for the definition of a living system' nlic:ation t'rl,rgoi,thephysicistJ.D.Bonxer-gayeade{initionoflifejnelectroniclanguage' him, life is a continuous, partial, multifor:m, and conditionally interof the potentialities of the atomic eiectron state' seli-realization ':rctir,-e of demarca'tion between It thus appears that it iJ very difficult to clrarv a line job. Horver-er, it became .ea hopeless is life trnil defining li'irigs ancl idn-1ir-ings, mrrst har-e before it a system ulhich fe.iproperties a eriumcrrrte iera,st to:r,t ."uuur-t an attempt in Beuaoun-made svstems. .or. t includecl in the categorv of 1-iviig multigrolvth' of " capable is a system lf to hlm, Accoirling thi,* ciir:cction in 1963. sYstem can be included in the categorv of the act'ivitj', metabolic ancl ;ii"^i;;", bli;.-"r;, wh"re grn\,,th stands {br tte inct:ease in the sizc of the system from u-ithin svstem, the Insicle is_made. s1'stem the u,hich u,ith material ,r"t"ii syntheiis of the come in rnlltiplication mealls the sVstem increases in number, and the newel units series of an)' denotes activitl' through the parlnt units, ancl metabolic of r'vhich is that at ""i.t,lrr.. chemical rea,ctions taking place rvithin a bounclar\" the lesrilt is converted i'to system, the ente'i'g irolec'les, cnvirJn'me'tal the of i;; " pa't chemical thcse ih" ,Iuf"riul rvith which the svsteur is n:rcle. ancl fol' peribrmingtransformations tliese functions Dlor-ide the r-arious elleIgY recluilemelts of the sr-stern


19ti7)' iBnnn"oto ancl RarcasAr-{Kr ll)64' Bln-urn sv-qtem Prnra (1957) holds that proteins tirc 1ir-ing of natr,rre chenical the ^\bout and catallrze man-\' :lte llecessitl1, for the plesent-dav ce1l. because tlie1. arg enz-ynres enzYme-lihe activitl', and shorv also ions rnetallic many But r.eactio'sl bioch.eniical protein ItTT"*it i- rr"rrlrrr" that trt {irst thesc might ha'e performed the rvork of rvhich.had' organisms been ha''e therJmight t-lhat B;;i;; (1957) is of the opinion inihe pla,cc of proteins and s'ch organisms might hri,ve been the functions of life. According to ""i;-,;;r*""ic'catall,sls -ilrigiJ"'but coulcl hu.." .ertu,in]1. performecl -substancesall ph-vsical. properties commonll-. have Srrrnxor.,{ (f 9SZ) man-v inorganic, con"eive organisms- ma'de of io possible is cluite it and *obrlun".r, fouricl in organic desired to push tir.,r" ir"rg-i,'ic s'bstances on11,. Blnn-q.l (i9-61) rvrites "unless it is (there co-enzymes and o{enzymes cleation to the the doctrine of special .r'",rtiou the polymerised in coenzymes the these, n;lrnelY of one takcr is a school that u-oulil we are prepared. to take fo,-rn as n'cleic u"iai- u. in" beginning of life, unless then lvcre ellzymes to ,9*.,'there befcxe that, srich .,' â&#x201A;Źrasy way oot, ..,. o.t.*e agents that did it' other some rvere there in metabolism, out ihe catalvtic reactions These cvolved of tife'i' not so u,ell, but *.rtfi"i"r]tt-v r.r-ell for the slorv time of the origin earth Berrethe on observe now tonroclrrcc nrot"ir,rt,l.l"lc a"icl cellular lifervhichl\-e Ra**ANAYAKT and (Benenun life of forms these for iocale p."rrrrrle ;H;;;.i"J ^ 1964, B"iiran.". i964, 1967 and Ban'rnun-et a1' 1966)' isto study the ph}-sicoone of the important-u*1.".ts o{tlle problem of origin of life formed tlie earliest which molecules the togeiher chemical factors *,hi"fr b-.rght some specific pattern that co'ld ce1ls. kept them toge1h"r. urii urru'ngecl them in ,*how the properties of biological order"particles rvhichhe In 1963, -gerraot* fttotZ-.n,t-ica11v s-vnthesized a t-vpe.of 1964; Rarqclrvev'lxr and Beueotrn fgO+; ui. clesignatecl u* J"ur"u..r'lBaulotrn "t mixture aq*eous sterilized In,the Tl-q.saoun 1964, 196;; bn,''ootu' et a1 1964) c<rntainin'gorgarric",''lrrorganicnitrogen.antlminerals.,commonlt-founclin a clefinite boundarl' u-all a.d ce,lls. small .pir"ri.oi lr"o"l;"t"* o# formed. ,u"hi"h hurr. ver\i .*i-il"]intricate intern:r,l *tt'ri.t.tro* (l icrograilh 1)' These-particles are -t-:,-tll: micro-oLga'rsms common t'hc from differ ancl pr.;i-a"1,- ceii in chemicnl comp.,sition,



li. B iH.rt'r H

a,blc to be grol,rl on an\r linou,n l.r:rcterii'i1 cu.ltuire nledium (BarreDt'R b)- 1nt, beilg .-tgOZ; Bonnpin ancl liescen-crlaxr i970). Thcse particles multiplv bv lgO+, tgOO, b'clding (l,Iiclograph 2), and. thc srua,ll bucls grol',- to maturitv size:rncl bud (Miclogr.aph3l. BaHenui emphasizecl that in rvater. rvhere organic ma,terials:rrrd neccssar--v inoigur,,i. substalces r.vJle presc-.nt, sun- light s.vrthesized aminoacicls. pcpticles. sugilr'sa'cl'othei, biochemicals, ui.d th.*. olganized in the folni of miclostluctules arrcl folirrecl Jeeu,anu. lfhese Jeeu-allu \\relre capable ol a,da.pta,bilitv. and thus evolr--'d into the present-cla_v cellular lile (Beuau-n et al. 1963.Benaot,n 1967).'lhe rvork on,Iee..,o1ir.n'u.* soon. repeated b.v Bnrcc+s. arrd his confirurations oJ rvotk tvits l'eaal ill the 4th Iritc-.rnational S1-mposium otr Photobjoiogr-, helcl a,t Oxford in If')64 H"" furthet' irepeatecl sorne experime,ntJot B,tulor-n and publislied. anothel co:rfirrnatiorr in Spirce Fhght in 1965. Ii 19711, the work orr Jeer-anu rvas furthcr confilmed by Mrnr-rln ,.1j Rr.rrr. A complete revien of the l'ork on J eeu'anu r.a s a lso published (Rauao l'n r966" 1967).

)licrograph L The particles sho$.ing a bountlary rrall anil. internal structures ( x 2,000, negatir-e magnifiecl).



A big particle on the l(rft sicle has a bud coming out on thc left sicle ( x 2,000' negative


llicrograph 3, Particles shorving trro generat,ions of burltling. llhe boundary rvall is


2,000, negative magnified).

c1earl-v secn

Photochemical Ilolrnation of Self-sustainirrg Cloacorvates 215

d*ru rywF :]:





magnified)' llicrograph 4. A big par'ticle shorvirrg intricate internal str:uctures ( x 2'000, llegative in the lo$'er lcft particle big A microscope. contrast llicrograph 5. Particles seen uniler a phase (x f ,5000, negative magnifiecl)' siil.e his is boundary wall ancl internaistructures clearlv exposed llicrograph 6. Part,icles shot'ing buclclirrg (x 2,000, negative magnifiecl)' (x2,0{-}0, lhcrograph 7. Three particles sho$,ing interrral stmctures, bounclary wall, and buds

r''gati\ e magrrif Mrcrograph 8. magnifiecl).


A particle

shorvirlg interrral structure, boundary

}'all, antl bud (r2'000,


structure Micrograph 9. T$.o part,icles. The bountlary rrall of the left particle is broken belorv. Internal ancl budtling secn (x 2,000, negative magnified)'

B,qneor.n and. RANGANAYAKT photochemicall;r produced self-sustaining coacerb). the inter:rction of alllmoltium mol;ibclate, diammonium hydrogen phosphate, (1970)' 'ates minerais, commonly lound in cells, ancl fbrmalclehyde in aqueous mixtures The experiments are so simple that they can begiYen as a class exelcise


for graduate

\: 21it

Ti. IJ'rrr-rorrn

In the Jeetvanu the pi'opert-r, of grolr-th. multipiication, and metaboiic :ictir'.itv is chemicals observed in a natural *ou, ou." th"e experiments are set, arrcl no specific 1966). Rlscaxevenr and (Boulnun p'opert-r. specifi'c for: a'y are .-- neeclecl fn"u" particles hu.-e u ,.i^*ir", of amino acids in free form and in combi'ed folm

Thet- have a as pepticl'es and sugars as ribose, cleoxvribose, fructose, and glucose' stmctures internal Thc structure. internal intricatl an ancl ii,a1l dist'in-ct boundar_v of the Ilicrographs 4). (Micrograph ;;;, b" clear,ly vieovecl uncler high mtrg.ification interthe a.d rva1l boundary the microscope 1r*ti.i"- u.cler a phase contr',rsiclearlj- (Micrograph 'c'eal 5). Therse p:r'rticles multipl.v by the of nal struct're farticles budcling (l icrograPhs 6, 7, 8 and 9). The'particles, or1 *.purution from the mixtule, if extractecl r'r'ith chloroform a. etliylmethanol: 80 : 20 i. a sJxhlet, yielcl a, r-iscous yellorv liquicl. This contains phospholipids for test the gives alcohol-soluble compound u.hicL on chromatograph.v These particles, orr h-r,-clrol-1'sis rvith perchloric a'cicL or: lfli"^o..o and Srxln l9T3).give tlie-tests for nqcleic acid bases as adenine' guaninc' tube, a sealed in formic acid hydroxidc 1ol cvtosine, th-vmine, und oro"il If the particles ale kept in 1 N sodium precipitate a rvhite acid, acetic rlil'te i.vith acict-ifled, Z+ 6oor*, filiered, ancl the filtrate nucleic of desox.r'.ribose testthe gir-ers h1'clroi-rrsis, subsequent on is obtained. $,hich, 1972). al. et u.ia '- 1n^u,oorTri and ReNeexeyexr 1970, Raxc,tx,tvar<r rvith gcntian' +i. particles can be fixecl rvitli chrornic ircicL ancl subsecluentlr- stainecl are structures lrlrtc clit'omatitre-lihc poltion centlal In the r-iolet then eosin. likcr eosin' rvith |ec1 sttrin gets a obt,a.inecl, ancl the portion outsicle the cent|al zone (B'r.ue.oun and Gurr-r 1972)' c\rtoplasm -' r'r'ith hycL'ochlolic it ,,,u* rlportecl that the natelials o1 the partjcles on cligestion1970). R-txcrLxevexr and (Bau.r.oun acti'itroptical ,irong shor.r, acitl rvjtli a The factors rvhich:tre responsible fol the natural forrnation of objects 1967)' (1964' B'luaDUR b5r djstussecl dcfinite morphology $'ere fii'st held brThe molecules ot' clilferent chemjcals al,e brought together and are factors. If this stlucture contains iom" mo.tomolecules rvhich jntermolec'1ar forces' as "oo"*r.,otu-forming har.e a number oimoleculcs attachcil to them bl, r'arious boncling' van iler, \vaals forces. hrl'dlogen bonclhig, hyclrophobic bonding, molecular

ancl held together',b1r and others, a,nd also t r." -u'o-t -ul".r.i"* obsu,,Letl, absorbecl it forins a highly crvstallize, to tries niacromolecule this electrostatic tbrces, u-he1 jn :r, moiecult'' mt-'sh, ha\-ing thing lr'hole the anci crvsta,l cleformecl ''ide 'esults

ha'e specific gaps and passa,ges it rorrgn rvhich -sirall enr-iron'rental molccules c'r''stal deformed this in helcl rnolecules, of glop, _difl'erent".rfrifitl.. Th? variou* is structurt-' u'hole st''cture. r,ema,rn active ciemicall---v ancl trlso c:rtal--vtica,11y. The state of minimurn the r'epreqe'r]ting un utt"rrrpt to acquire a spatio-energetic.pattertr, tlriotogicalll.oking

struct'i'c. T.he gujcr materiai forms a energ\r :r'cL rcsults i' u inter'al st^rct*re' iruof.tory *.a11. ancl thc a,ggi'eg:rtc altpetrtr! t., an i'tricate contnining enr''ironment'. If this structure is p'es:eni--i'- an ,tpfrropriate a source of energ.v', ma;r belnolecules of some nhich can form its iloaf -utu,,i,rl arii iflt has transfolchemical nhvsical nature n,. ot iiir..a bv ilra'cliatjon or evoh'ed' b-v some irJri"l*, i;;;g.i,l;." in the mixture, the eu'ironmental molec'lcs eiitcr the agg'-egate

rvall ancl in the outer i'aterial of n;;t"- in the_bounclar.v u'ith u-hich the agg-regate material the in r:esult fiiull--v Jncl the aggregate, interaJ, is formed (Beulnun et al. J965)' fus unable to shou- the properties A11 such :rbiogenic morphological stlucturcs rralr jn the enr-ironmeilt' airprop|i:rtcr to be happenccl tn" tttos" uf t,iotu--i.*t orcl-el, but innunierabie particles fo' thern. coulcl showlir"^ptop"tti"s.,l filologi"tri olcler" of suchin the mixt'ule -' say' formecl coirtinuousllt materials

through the appropri;l;

inu*" totiittt




Photochemical Fornation of Self-sustainingCoacervates 217

bv ithotochemical process - contjnued their living activityl the rest ceased its functions sool] after the supply of the necessary molecules was finished up (BAHADITR' 1967 ancl B-rn-r.nre et al. 1967). l{trn1- such rlicrostructuLes are obserr-ed in ores and rocks and are reported as silicate paltic.les. found in sedinentarv rocks. They are described as microfossils, and are obser-r-ecl in carbonac.ious chondrites and mentioned as Organized Elements. Man-1- of these are nodels of the earliest structures in 'which life was expressed.


Berrlnln, K.: \ature f73 (f954),


- Zbl. Bakt. TI r17 (1964), 585 602. - ZbI. Bakt. II II8 (1964), 67i. Zbl. Bakt. II r2r (r967),29r-319. -- "Jees-anu, The Protocell". R,amnarainlal Beri Prasacl. Allahabacl 1966. et aI.: Zt:\. Bakt. II f 17 (1964), 575-584. - arrrl GriprA, J.L.: ZhI. Bakt. (Under prini 1972). - artl P-r--;oo,It. S.: J. Ind. Chem. Soc.42 (f965), 75-85. Penrr, O. N., and Plru.tx, II. P.: Proc. Nat. Acacl. Sci. India 30A (1961), 206


Ibrd.: Lrcl. J. Appl. Chem.25 (1961),90-96. -[bid.; Biochernistry J. U.S.S.R., Bb T, 4T (27) (1962), 708 iL4. - Plnrr, P. N., P,s.rH.A.r., H. D., and PaNon, R. S.: Agra Uni. J. Ites. (Sci.) 13 (1965,) 1-27. arrcl Rexe.rx,q.verr, S.: Compt. rend. France 240 (1955), 216-248. Proc. Nat. Acad. Sci. Inclia 27A (f958), 292 295. ancl S.q.xt-q.n,lnr.r, L.: Nature 182 (1958), 1668. -{eRA\\.-{L, I{. l[. L., Pa.Nor, R. S., Puerr, O. N., and P-A'rHAK, H. D.: Vijnana Parisad -\lusandhan Patril<a 6 (I963), 63- 117. ZbI. Bakt. II rr7 (1964), 575-584. Zb|. Bakt. II lr7 (r964), 567 574.

Parisad Anusandhan Patrika I (I966), 171-182. \-ijnana Parisacl Anusa:rdhan Patrika I (1966), ff7 127. arrrl Snrr.-tsr.q,v'r, P.: Vijnana Parisacl Anusandhan Patrika f0 (1967), 51 J. Brit. Interplanetary Soc. 23 (1970),8f3-829.


IinnH. -{.,

ancl Sntv.rsr.l,t"r., P.z ZbL

alLl Sr\.rrr. Y. P.: LTnpublished



120 (1966), 740-752.


Bonrs. J. D.: Ocealographv. Amer. Association for the Aclvancement of Scierrce (1961), 95-f i8. Br-L'rr. IL F.; -\lner. Scientist 49 (1961), 471-501. Bnrc+cs. lI. H.: Sliac:flight 7 (1965), 129. Drr.r,or. L. S.: Er-olutior l6 (1962). f 02- 117. Ilonos rrz. \. H.: Proc. First Int. Symposium "'l'he Origin of Life on the Earth", I'Ioscol-, 19-24 -{ugust 1957. Pergarlo:r Plis:. Lordor, p. 106-f07, (1959). Il-tlr,rsr, J. B. ,S.: Ratioralists ,\1r., t48 (1929). Jonrox, P.: Phr-siol. Z. 39 (1938). 1lI; Z. Phv.rio1. 1f3 (1939), 431; Furdam. radiol. 5 (1939), 43; Z. Immunit. fcirsch. 97 (191U). 330. Kxrr<ovl, A. S.: Proc. Flst Ilt. Sr-mpoiium 'The Origin of Life on the Earth", Moscol-, I9 . :4 Au-

gusi 1957. Pergamon Press, Lurclol, p. 116-f 17 (1959). Lrr'olr, A.: L'6volutiol Phv.riologique: 6tucles cles pertcs des fonctions chez les micloorganismes" Paris 1943.

Nunlr-nn,P., ancl Rriors, D. O.: Carre:ri Topics in Bioenergct'ics 3 (1970), I57. Or-4nrx,A I.: "Proi:i<a:rza:l:ria Zizu, Izd., l{orkovakii". R,abochii, }Ioscorv 1924. "The /lrigin of Life", The lfacmillan Company, Nerv York 1938. - "Life. Its Nature, Origin, and Development". Acad.emic Press, Nerv York I963. P.lrr,ovsnl"v,t,T.E., antl P,lsv:-sxrr,A. G.: Proc. First Int. Symposium "The Origin of Life on the Earth". Moscow, 19-24 August 1957. Pergamon Press, London, p. I5t-157.


Zbl. Bakt.


.Abt., Bd. 180


218 I{. Blrrloun,

Photochemical Formation of Self'Sustaining Coacervates

Prnro, N. W.: New Biol. 16 (1954), 4r. Origin of Life on the Earth", lloscow, 19-24 August 1957. - Proo. First Int. Symposium "The(1959). t Pergamon Press, London, 76-83 RrNe6N-rver<r, S., RATNA, V., and?BaulDl-rn, I{.: J. Brit. Interplanetary Soc. 25 (I972)' 279-286.

Snrnxove,A. Y,s..: Proc. First Int. Symposium "The Origin of Life on the Earth", Moscor', 1924 August 1957. Pergamon Press, London, 184-185 (1959)'


SrrtNrtaN, G., LnuuoN, R. M., ancl,vrN, M.: Proc. Nat. Acad' Sci. 52 (1964), 27. (1965), 707. - I{rxvox, D. H., and Ca.r,vrr+, NI.: Nature 206 I47 (1565),1574. - LeuuoN, R. M., and C.r.r,vrll, II.: Science Book Company, New York - and KnnvoN, D. H.: "Biochemical Predestinat,ion". McGraw-Hill r 969.

Author's address:

Dr. I{nlsrrNe. Bert-tnun, Chemistry Dept,., Allabahad University, Ailahabad (India).

il :i l l j




Bahadur 1975  

Photochernical Fornaation of Self-Sustaining Coacervates

Bahadur 1975  

Photochernical Fornaation of Self-Sustaining Coacervates