hugoarmandoaguirre

Page 7

E =

w μ0 n I max r sen wt para r < R 2

Esto muestra que la amplitud del campo eléctrico inducido dentro de la solenoide por el flujo magnético variable a través del solenoide aumenta linealmente con r y varia sinusoidalmente con el tiempo. Problema 1 Serway quinta edición Pág. 1002 Una bobina rectangular de 50 vueltas y dimensiones de 5 cm * 10 cm se deja caer desde una posición donde B = 0 hasta una nueva posición donde B = 0,5 T y se dirige perpendicularmente al plano de la bobina. Calcule la magnitud de la fem promedio inducida en la bobina si el desplazamiento ocurre en 0,250 seg. El área de una vuelta de la bobina es: Lado = 0,5 cm = 0,05 m Lado = 10 cm = 0,01 m A = 0,05 m * 0,1 m = 5 * 10- 3 m2 El flujo magnético a través de la bobina en t = 0 es cero, puesto que B = 0 en dicho momento. Φ2 = 0 En t = 0,25 seg. El flujo magnético a través de una vuelta de la bobina es: Φ1 = B * A Φ1 = 0,5 T * 5 * 10- 3 m2 Φ1 = 2,5 *10- 3 T m2 Por tanto, la magnitud de la fem inducida es: ΔΦB = Φ1 – Φ2 = 2,5 *10- 3 T m2 – 0 = 2,5 *10- 3 T m2 N = 200 vueltas. Δt = 0,25 seg B

ε =N

Δφ B Δt

Δφ B 2,5 * 10 - 3 T m 2 0,125 T m 2 = 50 * = = 0,5 voltios 0,25 seg 0,25 seg Δt ε = 0,5 voltios

ε =N

Problema 2 Serway quinta edición Pág. 1002 Una espira plana de alambre que consta de una sola vuelta de área de sección transversal igual a 8 cm2 es perpendicular a un campo magnético cuya magnitud aumenta uniformemente de o,5 T a 2,5 T en 1 seg. Cual es la corriente inducida resultante si la carga tiene una resistencia de 2 Ω. El área de una vuelta de la bobina es: A = 8 cm2 = 8 * 10 - 4 m2 En t = 0,25 seg. El flujo magnético a través de una vuelta de la bobina es: Φ2 = B2 * A Φ2 = 0,5 T *8 * 10- 4 m2 Φ2 = 4 *10- 4 T m2 Φ1 = B1 * A

7


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.