Page 1

Newtonotebook

Historia de newton Átomos, Carga eléctrica Y MUCHO MÁS…

INDICE:


# ¿QUE ES LA ALQUIMIA? # ESTRUCTURA DEL ATOMO # HISTORIA DE GALILEO GALILEI # FUERZAS FUNDAMENTALES DE LA NATURALEZA # ¿QUÉ ES CARGA ELÉCTRICA? # CONDUCTORES Y AISLADORES # TIPOS DE ELECTRIZACIÓN # CORRIENTE ELÉCTRICA… # HISTORIA DE ISAAC NEWTON # CIRCUITO LED JUEGOS ….

LA ALQUIMIA


¿QUÉ ES LA ALQUIMIA?

Técnica antigua practicada especialmente en la edad media, que se dedicaba principalmente a descubrir una sustancia que transmutaría los metales más comunes en oro y plata, y a encontrar medios de prolongar indefinidamente la vida humana. Aunque sus propósitos y procedimientos eran dudosos, y a menudo ilusorios, la alquimia fue en muchos sentidos la predecesora de la ciencia moderna, especialmente de la ciencia química.

Tipos de alquimia que se conocieron: ALQUIMIA GRIEGA: Los orígenes de la química se pierden en la noche de los tiempos. Estos orígenes son técnicos y mágicos a la vez.


ALQUIMIA CHINA Resulta muy complicado determinar la aparición de la alquimia en el pensamiento humano pero las evidencias parecen demostrar que ésta se desarrollo antes en China que en Occidente. La alquimia china esta relacionada con propósitos más antiguos que la metalurgia o la medicina.

ALQUIMIA HINDÚ La Alquimia China está muy relacionada con la hindú, durante el auge de éstas civilizaciones éstas se mantuvieron en estrecho contacto por lo que muchas ideas acerca de la alquimia coinciden. Se cree que las heredaron de los Griegos traídas por Alejandro Magno en sus conquistas.

ALQUIMIA ÁRABE La alquimia árabe es tan misteriosa en sus orígenes como la griega. Durante los califatos de los Abasidas desde 750 a 1258, floreció en Arabia una escuela de farmacia. El primer trabajo conocido de esta escuela es la obra que se difundió en Europa en su versión latina titulada De alchemia traditio summae perfectionis in duos libros divisa, atribuido al científico y filósofo árabe Abú Musa al-Sufí, conocido en Occidente como Geber; este trabajo, que podemos considerar como el tratado más antiguo sobre química propiamente dicha, es una recopilación de todo lo que se creía y se conocía por entonces.

LA ALQUIMIA Y LA PIEDRA FILOSOFAL En el transcurrir del tiempo, el interes de la alquimia se vió incrementado durante las Cruzadas, cuando Occidente a traves de ellas y los contactos con Oriente, se familiarizó con un gran numero de materias oloriferas procedentes del Lejano Oriente, para cuya elaboracion eran necesarios conocimientos alquimicos. De esta manera podriamos decir que llegamos a lo que los estudiosos consideran la Alquimia Medieval, que tuvo un gran desarrollo y un gran auge. Asi podriamos distinguir en la Alquimia Medieval tres "Tempos" o tres fases. El Primer Periodo (1200 -1300) se basó en un tiempo en que la alquimia era una capacidad manual que demostraba su utilidad a traves de la coloracion de metales, haciendo creer que se trataba de transmutaciones.

PARACELSO:


Médico y alquimista suizo nacido en 1493. Estableció el rol de la química en la medicina. Publicó el gran libro de la cirugía en 1536 y una descripción clínica de la sífilis en 1530. Hijo de un medico y químico, su madre murió cuando era muy joven por lo que se mudaron al sur de Austria donde su padre le enseñó la teoría y práctica de la química. El joven Paracelso aprendió de los mineros de la zona mucho acerca de los metales y se preguntó si algún día descubriría la forma de transformar el plomo en oro. En 1507, a los 14 años, se unió a un grupo de jóvenes que viajaban por Europa en busca de grandes profesores en las universidades. Asistió a varias universidades quedando decepcionado con la educación tradicional.

DE LA ALQUIMIA A LA QUÍMICA La aparición de la ciencia que llamamos "Química" requiere un proceso histórico más dilatado y lento que otras ramas de la ciencia moderna. Tanto en la antigüedad como en la Edad Media se contemplan denodados esfuerzos por conocer y dominar de alguna forma los elementos materiales que constituyen el entorno físico que nos rodea. Averiguar cuáles sean los elementos originarios de los que están hechos todas las cosas así como establecer sus características, propiedades y formas de manipulación son las tareas primordiales que se encaminan al dominio efectivo de la naturaleza. No es, pues, extraño que en sus primeros balbuceos meramente empíricos los resultados no tengan otro carácter que el que denominamos "mágico": la magia como conocimiento de la realidad que se oculta tras la apariencia de las cosas y como práctica que permite actuar sobre ellas según nuestra voluntad.

ESTRUCTURA DEL ATOMO


En el átomo distinguimos dos partes: el núcleo y la corteza. - El núcleo es la parte central del átomo y contiene partículas con carga positiva, los protones, y partículas que no poseen carga eléctrica, es decir son neutras, los neutrones. La masa de un protón es aproximadamente igual a la de un neutrón. Todos los átomos de un elemento químico tienen en el núcleo el mismo número de protones. Este número, que caracteriza a cada elemento y lo distingue de los demás, es el número atómico y se representa con la letra Z. - La corteza es la parte exterior del átomo. En ella se encuentran los electrones, con carga negativa. Éstos, ordenados en distintos niveles, giran alrededor del núcleo. La masa de un electrón es unas 2000 veces menor que la de un protón. Los átomos son eléctricamente neutros, debido a que tienen igual número de protones que de electrones. Así, el número atómico también coincide con el número de electrones. Isótopos La suma del número de protones y el número de neutrones de un átomo recibe el nombre de número másico y se representa con la letra A. Aunque todos los átomos de un mismo elemento se caracterizan por tener el mismo número atómico, pueden tener distinto número de neutrones. Llamamos isótopos a las formas atómicas de un mismo elemento que se diferencian en su número másico. Para representar un isótopo, hay que indicar el número másico (A) propio del isótopo y el número atómico (Z), colocados como índice y subíndice, respectivamente, a la izquierda del símbolo del elemento.


GALILEO GALILEI Nació cerca de Pisa el 15 de febrero de 1564. Su padre, Vincenzo Galilei, ocupó un lugar destacado en la revolución musical que supuso el paso de la polifonía medieval a la modulación armónica. Del mismo modo que Vincenzo consideraba que las teorías rígidas impedían la evolución hacia nuevas formas musicales, su hijo mayor veía la teología física de Aristóteles como un freno a la investigación cientí fica. Galileo estudió con los monjes en Vallombroso y en 1581 ingresó en la Universidad de Pisa para estudiar medicina. Al poco tiempo cambió sus estudios de medicina por la filosofía y las matemáticas, abandonando la universidad en 1585 sin haber llegado a obtener el título. Durante un tiempo dio clases particulares y escribió sobre hidrostática y el movimiento natural, pero no llegó a publicar nada. En 1589 trabajó como profesor de matemáticas en Pisa, donde se dice que demostró ante sus alumnos el error de Aristóteles, que afirmaba que la velocidad de caída de los cuerpos era proporcional a su peso, dejando caer desde la torre inclinada de esta ciudad dos objetos de pesos diferentes. En 1592 no le renovaron su contrato, posiblemente por oponerse a la filosofía aristotélica. Ese mismo año fue admitido en la cátedra de matemáticas de la Universidad de Padua, donde permaneció hasta 1610. Galileo (Galileo Galilei) (1564-1642), físico y astrónomo italiano que, junto con el astrónomo alemán Johannes Kepler, comenzó la revolución científica que culminó con la obra del físico inglés Isaac Newton. Su nombre completo era Galileo Galilei, y su principal contribución a la astronomía fue el uso del telescopio para la observación y descubrimiento de las manchas solares, valles y montañas lunares, los cuatro satélites mayores de Júpiter y las fases de Venus. En el campo de la física descubrió las leyes que rigen la caída de los cuerpos y el movimiento de los proyectiles. En la historia de la cultura, Galileo se ha convertido en el símbolo de la lucha contra la autoridad y de la libertad en la investigación.


Retrato de Galileo Galilei


FUERZAS FUNDAMENTALES DE LA NATURALEZA Fuerza gravitacional: Todos los cuerpos son atraídos por una fuerza que es directamente proporcional a sus masas, e inversamente proporcional al cuadrado de la distancia que los separa. La fuerza gravitacional es la causante de que los cuerpos caigan y del movimiento de los cuerpos celestes que se encuentran en el universo: planetas, satélites, estrellas, galaxias, cometas, entre otros. Su partícula mediadora es el gravitón. Posee un radio de acción infinito

Interacción electromagnética: Es considerada la fuerza que actúa sobre las partículas con carga eléctrica. Toda carga en movimiento produce un campo magnético a su alrededor y es de naturaleza atractiva o repulsiva, dependiendo de las cargas. La partícula mediadora es el fotón. Al igual que la interacción gravitacional, posee un radio de acción infinito. Interacción nuclear fuerte: Es la interacción más fuerte que existe y permite mantener los nucleones (protones y neutrones), en interacción. Se refiere a la interacción que mantiene unidos a los quarks para formar hadrones, (protones, neutrones y mesones), por lo tanto permite mantener el núcleo unidos. Esta fuerza es la responsable de la estabilidad en toda la materia (Román). La partícula mediadora en esta interacción es el gluón. “Son fuerzas de corto alcance, actúan sólo a distancias que tienen las dimensiones del núcleo atómico”. (Zubero, 2010).


Interacción nuclear débil: Este tipo de fuerza es responsable de la desintegración beta de los núcleos de los átomos. Esta interacción es de corto alcance, es decir, distancias menores que las dimensiones del núcleo. “Es la interacción responsable de que un quark de un tipo se transforme en un quark de otro tipo como ocurre en la desintegración Beta de los núcleos”. (Zubero, 2010). La partícula mediadora son los bosones.


¿Qué es carga eléctrica? La Carga Eléctrica es aquella propiedad de determinadas partículas subatómicas que se produce cuando se relacionan unas con otras, esta interacción es electromagnética y se hace con las cargas positivas y negativas de la partícula. Cualquier elemento considerado materia tiene un conjunto de cargas, positivas, negativas y fraccionadas (Quarks), existe un movimiento de las partículas que contiene este elemento y genera a su vez un campo electromagnético que interactúa con su entorno, lo que lo rodea también tiene electromagnetismo por lo que la interacción entre campos es constante.


Conductores eléctricos Un conductor eléctrico es un material que ofrece poca resistencia al movimiento de la carga eléctrica. Son materiales cuya resistencia al paso de la electricidad es muy baja. Los mejores conductores eléctricos son metales, como el cobre, el oro, el hierro, la plata y el aluminio, y sus aleaciones, aunque existen otros materiales no metálicos que también poseen la propiedad de conducir la electricidad, como el grafito o las disoluciones y soluciones salinas (por ejemplo, el agua de mar) o cualquier material en estado de plasma. Para el transporte de energía eléctrica, así como para cualquier instalación de uso doméstico o industrial, el mejor conductor es el cobre (en forma de cables de uno o varios hilos). Aunque la plata es el mejor conductor, pero debido a su precio elevado no se usa con tanta frecuencia. También se puede usar el aluminio, metal que si bien tiene una conductividad eléctrica del orden del 60% de la del cobre, es sin embargo un material tres veces más ligero, por lo que su empleo está más indicado en líneas aéreas que en la transmisión de energía eléctrica en las redes de alta tensión.1 A diferencia de lo que mucha gente cree, el oro es levemente peor conductor que el cobre; sin embargo, se utiliza en bornes de baterías y conectores eléctricos debido a su durabilidad y “resistencia” a la corrosión. La conductividad eléctrica del cobre puro fue adoptada por la Comisión Electrotécnica Internacional en 1913 como la referencia estándar para esta magnitud, estableciendo el International Annealed Copper Standard (Estándar Internacional del Cobre Recocido) o IACS. Según esta definición, la conductividad del cobre recocido medida a 20 °C es igual a 58.0 MS/m.2 A este valor es a lo que se llama 100% IACS y la conductividad del resto de los materiales se expresa como un cierto porcentaje de IACS. La mayoría de los metales tienen valores de conductividad inferiores a 100% IACS pero existen excepciones como la plata o los cobres especiales de muy alta conductividad designados C-103 y C-110.3

Aisladores eléctricos El aislamiento eléctrico se produce cuando se cubre un elemento de una instalación eléctrica con un material que no es conductor de la electricidad, es decir, un material que resiste el paso de la corriente a través del elemento que alberga y lo mantiene en su desplazamiento a lo largo del semiconductor. Dicho material se denomina aislante eléctrico.


La diferencia de los distintos materiales es que los aislantes son materiales que presentan gran resistencia a que las cargas que lo forman se desplacen y los conductores tienen cargas libres y que pueden moverse con facilidad. De acuerdo con la teoría moderna de la materia (comprobada por resultados experimentales), los átomos de la materia están constituidos por un núcleo cargado positivamente, alrededor del cual giran a gran velocidad cargas eléctricas negativas. Estas cargas negativas, los electrones, son indivisibles e idénticas para toda la materia. En los elementos llamados conductores, algunos de estos electrones pueden pasar libremente de un átomo a otro cuando se aplica una diferencia de potencial (o tensión eléctrica) entre los extremos del conductor. A este movimiento de electrones es a lo que se llama corriente eléctrica. Algunos materiales, principalmente los metales, tienen un gran número de electrones libres que pueden moverse a través del material. Estos materiales tienen la facilidad de transmitir carga de un objeto a otro, estos son los antes mencionados conductores. Los mejores conductores son los elementos metálicos, especialmente el oro, plata (es el más conductor),1 el cobre, el aluminio, etc. Los materiales aislantes tienen la función de evitar el contacto entre las diferentes partes conductoras (aislamiento de la instalación) y proteger a las personas frente a las tensiones eléctricas (aislamiento protector).

LEY DE OHM El voltaje hace que la electricidad fluya a lo largo de los alambres de cobre, mientras que el aislamiento que cubre dichos alambres ejercen una resistencia al paso de corriente, que es mucho menor a lo largo del alambre. Al aplicar la ley de Ohm al alambre, tendremos que a menor resistencia del alambre, se tendrá más corriente con el mismo voltaje. Es importante tener presente que ningún aislamiento es perfecto (su resistencia no es infinita), de modo que cierta cantidad de electricidad fluye a lo largo del aislamiento a través de la tierra. Esta corriente puede ser de millonésimas de amperios, pero se debe medir con un buen instrumento de prueba de aislamiento, como el megóhmetro, popularmente conocido como «Megger». En resumen, un buen aislamiento es el que no se deteriora al aumentar el voltaje y por ende,


la corriente, obteniéndose una resistencia alta, la cual se debe mantener en el tiempo. Esto se visualiza al realizar mediciones periódicas y estudiando la tendencia que provoca que un aislamiento se deteriore. Existen diferentes tipos de solicitaciones: • Sobretensiones en régimen permanente, o sobretensiones permanentes o en sus proximidades). Se caracterizan por un frente escarpado de duración comprendida entre microsegundos y milisegundos: • Frente lento: Frente de 20 microsegundos a 500 microsegundos, cola de hasta 20 milisegundos. • Frente rápido: Frente de 0`1 microsegundos a 20 microsegundos, cola de hasta 300 microsegundos. • Frente muy rápido: Frente menor (que haya contacto eléctrico) Los materiales utilizados más frecuentemente son los plásticos y las cerámicas. El comportamiento de los aislantes se debe a la barrera de potencial que se establece entre las bandas de valencia y conducción, que dificulta la existencia de electrones libres capaces de conducir la electricidad a través del material (para más detalles ver semiconductor). Un material aislante de la electricidad tiene una resistencia teóricamente infinita. Algunos materiales, como el aire o el agua son aislantes bajo ciertas condiciones pero no para otras. El aire, por ejemplo, aislante a temperatura ambiente y bajo condiciones de frecuencia de la señal y potencia relativamente bajas, puede convertirse en conductor. Materiales conductores: metales, hierro, mercurio, oro, plata, cobre, platino, plomo, etc. Materiales aislantes: plástico, madera, cerámicas, goma.

Tipos de electrización Carga por el efecto fotoeléctrico Es un efecto de formación y liberación de partículas eléctricamente cargadas que se produce en la materia. En el efecto fotoeléctrico externo se liberan electrones en la superficie de un conductor metálico al absorber energía de la luz que incide sobre dicha superficie. Este efecto se emplea en la célula fotoeléctrica, donde los electrones liberados por un polo de la célula, el fotocátodo, se mueven hacia el otro polo, el ánodo, bajo la influencia de un campo eléctrico.

Carga por electrólisis La mayoría de los compuestos inorgánicos y algunos de los orgánicos se ionizan al fundirse o cuando se disuelven en agua u otros líquidos; es decir, sus moléculas se disocian en especies químicas cargadas positiva y negativamente. Si se coloca un par de electrodos en una disolución de un electrólito (compuesto ionizable) y se conecta una fuente de corriente continua entre ellos, los iones positivos de la disolución se mueven hacia el electrodo negativo y los iones negativos hacia el positivo. Al llegar a los electrodos, los iones pueden


ganar o perder electrones y transformarse en átomos neutros o moléculas; la naturaleza de las reacciones del electrodo depende de la diferencia de potencial o voltaje aplicado.

Carga por efecto termoeléctrico Es la electricidad generada por la aplicación de calor a la unión de dos materiales diferentes. Si se unen por ambos extremos dos alambres de distinto material (este circuito se denomina como gonorreitix), y una de las uniones se mantiene a una temperatura superior a la otra, surge una diferencia de tensión que hace fluir una corriente eléctrica entre las uniones caliente y fría. Este fenómeno fue observado por primera vez en 1821 por el físico alemán Thomas Seebeck, y se conoce como efecto Seebec

Corriente eléctrica Corriente electricas La corriente eléctrica o intensidad eléctrica es el flujo de carga eléctrica por unidad de tiempo que recorre un material.1 Se debe al movimiento de las cargas (normalmente electrones) en el interior del material. En el Sistema Internacional de Unidades se expresa en C/s (culombios sobre segundo), unidad que se denomina amperio. Una corriente eléctrica, puesto que se trata de un movimiento de cargas, produce un campo magnético, un fenómeno que puede aprovecharse en el electroimán.

El instrumento usado para medir la intensidad de la corriente eléctrica es el galvanómetro que, calibrado en amperios, se llama amperímetro, colocado en serie con el conductor por el que circula la corriente que se desea medir. Intensidad de Corriente eléctrica. La corriente eléctrica es la circulación de cargas eléctricas en un circuito eléctrico. La intensidad de corriente eléctrica(I) es la cantidad de electricidad o carga eléctrica(Q) que circula por un circuito en la unidad de tiempo(t). Para denominar la Intensidad se utiliza la letra I y su unidad es el Amperio(A). Ejemplo: I=10A


Unidades eléctricas

Las unidades de la electricidad definidas por el Sistema Internacional para las magnitudes relacionadas por la ley de Ohm son: el voltio para la tensión; el amperio para la intensidad; y el ohmio para la resistencia.

Voltio

Artículo principal: Voltio El voltio es la unidad del SI para el potencial eléctrico, la fuerza electromotriz y el voltaje. Recibe su nombre en honor de Alessandro Volta, quien en 1800 inventó la primera batería química. Es representado simbólicamente por la letra V. Se define como la diferencia de potencial a lo largo de un conductor cuando una corriente con una intensidad de un amperio consume un vatio de potencia.

Amperio Artículo principal: Amperio El amperio es la unidad del SI para la intensidad de corriente eléctrica. Fue nombrado en honor de André-Marie Ampère. Un amperio es la intensidad de corriente que, al circular por dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y separados entre sí en el vacío a lo largo de una distancia de un metro, produce una fuerza entre los conductores de 2·10-7 newton por cada metro de conductor; también se puede conceptualizar como el paso de un Culombio (6.24 · 1018 electrones) en un segundo a través de un conductor. Se representa con la letra A.

Ohmio Artículo principal: Ohmio El ohmio es la unidad del SI para la resistencia eléctrica. Se representa con la letra griega Ω. Su nombre deriva del apellido del físico Georg Simon Ohm, que definió la ley del mismo nombre. Un ohmio es la resistencia eléctrica que presenta una columna de mercurio de 106,3 cm de altura y 1 mm2 de sección transversal, a una temperatura de 0 °C.

Circuito en serie Un circuito en serie es una configuración de conexión en la que los bornes o terminales de los dispositivos (generadores, resistencias, condensadores, interruptores, entre otros) se conectan secuencialmente. La terminal de salida de un dispositivo se conecta a la terminal de entrada del dispositivo siguiente.

Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la salida del


primero se conecta a la entrada del segundo. Una batería eléctrica suele estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el voltaje que se precise. El circuito paralelo es una conexión de dispositivos (generadores, resistencias, condensadores, etc.) en la que los bornes o terminales de entrada de todos los dispositivos conectados coinciden entre sí, al igual que sus terminales de salida.1

Siguiendo un símil hidráulico, dos depósitos de agua conectados en paralelo tendrán una entrada común que alimentará simultáneamente a ambos, así como una salida común que drenará ambos a la vez. En las viviendas todas las cargas se conectan en paralelo para tener el mismo voltaje.


CIRCUITO MIXTO Es una combinación de elementos tanto en serie como en paralelos. Para la solución de estos problemas se trata de resolver primero todos los elementos que se encuentran en serie y en paralelo para finalmente reducir a la un circuito puro, bien sea en serie o en paralelo.

Las bombillas LED son unas bombillas que no utilizan alambre, gas, filamentos o halógenos en su interior, sino tan sólo un chip que las hace diez veces más eficientes, alargando su duración hasta hacerla superior a cualquier otra actualmente. Claro que, como contrapartida, también son más caras. Todo son ventajas cuando hablamos de la tecnología de iluminación LED. La iluminación tradicional abarca hasta un 30% del bolsillo de un hogar promedio. Entre los principales beneficios, que también podemos llamar características, se encuentran las siguientes:

1.- Altos niveles de ahorro monetario: Los bombillos LED logran ahorrar hasta 9 veces más que los tradicionales. Será una gran inversión para tu bolsillo. La iluminación LED tiene la característica de ser fría, por lo que se traduce en ahorros en cuanto a refrigeración ya que las bombillas no acumulan calor. Por esta misma razón, es mucho más alto el riesgo de que se rompan las bombillas tradicionales que los bombillos LED, lo que de igual manera abarca mayor vida útil de los mismos. 2.- Conservas el medio ambiente: el uso de iluminación LED a través de bombillos LED, luces de LED y lámparas LED es favorable para todo el medio ambiente en general, ya que se encuentran libres de mercurio y otras sustancias tóxicas, además de que son reciclables. La larga vida útil con las que cuentan los bombillos LED significa mucho menos cantidad de basura en los vertederos. Como si fuera poco, la alta eficiencia y eficacia de la iluminación LED se traduce un muchísimo menos uso de recursos energéticos, lo que se traduce igual en alto ahorro de emisiones de CO2. La luz fría que emiten los bombillos LED, es igual a menos calor y menos calentamiento global. 3.- Gran tiempo de vida útil: Los bombillos LED cuentan con una duración de más de 70.000 horas, lo que para un hogar promedio se traduce en cambiar los bombillos cada 15 años e inclusive hasta 30 años. Generalmente, los bombillos LED tienen una duración de 50 a 75 veces más que los bombillos tradicionales y hasta 10 veces más que los bombillos CFL. 4.- Son más eficaces que los bombillos incandescentes: Los bombillos LED utilizan hasta un 85% menos de energía que los bombillos incandescentes y hasta un 50% menos que los bombillos compactos fluorescentes. Esta tecnología de iluminación LED cuenta con tanta eficiencia que produce hasta 130 lúmenes por vatio. 5.- Libres de mercurio y tóxicos: Los bombillos LED no causan daños al medio ambiente, porque no contienen elementos tóxicos en su composición. No contienen metales pesados como plomo, cadmio o mercurio, por ello están marcadas como cumplimiento de las regulaciones ROHS.

Resistencia electricas Se le denomina resistencia eléctrica a la reducción que tienen los electrones al moverse a través


de un conductor. La unidad de resistencia en el Sistema Internacional es el ohmio, que se representa con la letra griega omega (Ω), en honor al físico alemán Georg Simon Ohm, quien descubrió el principio que ahora lleva su nombre. Para un conductor de tipo cable, la resistencia está dada por la siguiente fórmula:

class="MJX-TeXAtom-ORD" displaystyle="true" scriptlevel="0" R = ρ ℓ S Donde ρ es el coeficiente de proporcionalidad o la resistividad del material, class="MJXTeXAtom-ORD" displaystyle="true" scriptlevel="0" ℓ es la longitud del cable y S el área de la sección transversal del mismo. La resistencia de un conductor depende directamente de dicho coeficiente, además es directamente proporcional a su longitud (aumenta conforme es mayor su longitud) y es inversamente proporcional a su sección transversal (disminuye conforme aumenta su grosor o sección transversal). Descubierta por Georg Ohm en 1827, la resistencia eléctrica tiene un parecido conceptual con la fricción en la física mecánica. La unidad de la resistencia en el Sistema Internacional de Unidades es el ohmio (Ω). Para su medición, en la práctica existen diversos métodos, entre los que se encuentra el uso de un ohmnímetro. Además, su magnitud recíproca es la conductancia, medida en Siemens. Por otro lado, de acuerdo con la ley de Ohm la resistencia de un material puede definirse como la razón entre la diferencia de potencial eléctrico y la corriente en que atraviesa dicha resistencia, así:1 class="MJX-TeXAtom-ORD" displaystyle="true" scriptlevel="0" R = V I Donde R es la resistencia en ohmios, V es la diferencia de potencial en voltios e I es la intensidad de corriente en amperios. También puede decirse que "la intensidad de la corriente que pasa por un conductor es directamente proporcional a la diferencia de potencial e inversamente proporcional a su resistencia" Según sea la magnitud de esta medida, los materiales se pueden clasificar en conductores, aislantes y semiconductor. Existen además ciertos materiales en los que, en determinadas condiciones de temperatura, aparece un fenómeno denominado superconductividad, en el que el valor de la resistencia es prácticamente nulo.


ISAAC NEWTON ISAAC NEWTON (1642-1727): El científico inglés realizó trabajos que revolucionaron el conocimiento y fundaron la ciencia clásica. Sus principios de la luz, del movimiento y de la atracción de las masas sólo serían cuestionados a comienzos del siglo XX, particularmente por Einstein. LA GLORIA Y LA MUERTE En 1688, Newton fue elegido diputado al Parlamento, representando a la Universidad de Cambridge, pero él no se ocupó de política. En 1697 fue nombrado Director de la Casa de Moneda de Londres; entonces abandonó Cambridge y se estableció en la capital, en un lujoso departamento. Además, poseía mucho talento y arte para ganar dinero; jugó en la Bolsa con tanta fortuna que logró acumular un patrimonio de 32.000 libras esterlinas. En 1705, con una ceremonia especial, realizada en Cambridge, fue investido del titulo de “sir” por la reina Ana: fue el primer sabio que recibió tal honor. Pero siempre permaneció como un individuo reservado, modesto; un día, a una persona que lo alababa por su inmensa contribución al conocimiento humano, respondió: “No he tenido ninguna perspicacia particular, solamente la capacidad de reflexionar pacientemente”. En 1725, a consecuencia de una pulmonía y un ataque de gota, dejó la ciudad de Londres y


se estableció en Kensington, donde continuó con sus ocupaciones habituales. El 2 de marzo de 1727 se consideró en condiciones de dirigirse a Londres para presidir una reunión de la “Roya! Society”. Al regresar de este pequeño viaje cayó enfermo. Murió el 20 de marzo de 1727, a los 85 años. Su desaparición conmovió a todo el mundo. Los funerales fueron extraordinarios. Su féretro lo llevaron seis miembros de la Cámara de los Lores y fue depositado en la Abadía de Westminster, donde se halla su tumba. En la ciencia humana, Newton se encuentra en el pináculo de los grandes pensadores y descubridores, al lado de Galilea y de Einstein

AMPLIACIÓN DE LA BIOGRAFÍA SU INFANCIA: Un muchacho atento y silencioso “Profundo pensador… orgulloso de sus experiencias… extiende el imperio de las ciencia” : la persona a quien iban dirigidas estas palabras más que a cualquier otra, pocos decenios


antes iniciaba su vida escolar grabando con sumo cuidado su nombre en la madera de todos los bancos que solía ocupar. De Newton niño poco se sabe, pero seguramente tenía ya entonces una costumbre que lo acompañara toda la vida : la de blandir siempre una pluma, al punto de llenar en el transcurso de los años miles de páginas con su grafía diminuta y ordenada, tomando nota de todo y sobre todo. Isaac Newton había nacido en Woolsthorpe, Lincolnshire, el día de navidad de 1642, cuando ya hacía un niño que había estallado la guerra civil que turbaba al país con la primera revolución inglesa. Su padre, pequeño propietario agrícola, había muerto incluso antes de que el naciese, dejando a su viuda en condiciones económicas no muy florecientes. La madre se llamaba Anna Ayscough, y provenía de una familia relativamente acomodada que contaba entre sus miembros a profesionales y clérigos. Al parecer, en el momento de su nacimiento Newton era tan pequeño y grácil como para caber cómodamente en un bocal de un litro ; sin embargo, habría de convertirse en un muchacho sano y robusto. Dos años después de la muerte de su primer marido, Anna Ayscough se casó en segundas nupcias con el reverendo Barnaby Smith y se mudó a casa de éste, en la vecina aldea de North Withan. Pero el reverendo no tenía la menor intención de hacerse cargo de aquel hijo que no era suyo, por lo que el pequeño Isaac fue confiado a los cuidados de su abuela. De este nuevo matrimonio de la madre nacieron tres hijos ; Anna los llevó consigo a Woolsthorpe cuando, en 1656, volvió a quedar viuda y regresó a su antigua casa. A estas alturas, Isaac era ya un adolescente, y en verdad que no puede afirmarse que tuviera una infancia ejemplar. Naturalmente no sabemos hasta que punto sintió Newton el peso de esta situación familiar. Lo único cierto es que creció tímido y suspicaz, con muchas dificultades para relacionarse con los demás ; características que, con el transcurso del tiempo, se harán cada vez más evidentes hasta convertirse en el aspecto más destacado de su historia personal. Su educación dio comienzo en dos pequeñas escuelas aledañas a su casa hasta que, a los doce años, fue enviado a proseguir sus estudios en la King´s School de Grantham, poblado que por entonces contaba con dos mil o tres mil habitantes. Este distaba doce kilómetros de Woolsthorpe, y puesto que no era posible ir y volver todos los días, Isaac se estableció en Grantham durante todo el año escolar, pensionado en casa del doctor Clark, farmacéutico. No existen noticias sobre su rendimiento escolar. Y de su vida de entonces se sabe concretamente que su costumbre de escribir siempre y por todas partes no ahorraba siquiera los bancos de la escuela.


Desde niño comenzó a tomar notas en los libros que leía, dejando escritas reflexiones. En el primero de los tres cuadernos que han llegado a nosotros hay un poco de todo : registros de gastos, notas de química y medicina, apuntes sobre la lengua y, específicamente, páginas enteras copiadas de un libro (Los misterios del arte y la naturaleza, de J. Bate) que debía ser de su predilección. Se trataba de un texto semejante a muchos ahora, rico en indicaciones practicas sobre como preparar colores para pintar, o sobre fuegos artificiales, o bien acerca de carnadas para los peces y muchas otras cosas de vario interés. Siguiendo éstas -o quizás algunas otras- instrucciones, Isaac fabricó un poco de todo, desde un simple reloj de sol que colgó en la pared de su casa hasta (al parecer) una silla de ruedas. Construir con sus propias manos las cosas mas extrañas y diferentes era algo que le fascinaba. Por aquellos años, cerca de Grantham comenzó a funcionar un molino de viento, algo raro en aquella zona rica en cursos de agua en donde todas las muelas dedicadas al grano estaban accionadas por ruedas hidráulicas. Hasta donde es posible saber, el joven Newton estudió aquel molino con tanta atención como para reproducirlo en una maqueta que funcionaba a la perfección. Por consiguiente, la que surge es la figura de un niño reflexivo, habilísimo en las tareas manuales que requerían cierto ingenio, que amaba los libros y solía tomar apuntes sobre todo lo que le interesaba. No es verdadero el retrato de un jovencito de inteligencia torrentosa, pero tampoco lo es el de un muchacho condenado a pasar en el campo el resto de su vida ; de hecho, su madre se dejó convencer por el maestro de escuela Stokes y el tío William para renunciar a dos brazos que le ayudarían en su propiedad con el fin de permitirle continuar sus estudios. Precisamente su tío, quien había estudiado en Cambridge, se interesara por hacerle admitir en la universidad a pesar de su humilde origen. En aquella época la universidad era un privilegio destinado a una élite muy restringida, y eran pocos los jóvenes de las extracción social de Newton que conseguían llegar a ese nivel de estudios. No hay que olvidar que por entonces, en Inglaterra, no existía un sistema uniforme de instrucción, no había todavía periódicos. Las aldeas estaban diseminadas en grandes extensiones, aisladas entre sí por caminos en pésimas condiciones que eran recorridos por medios de transporte rudimentarios ; a pesar de esto, la vida en el campo había dejado de estar sumida en el clima casi feudal que todavía subsistía en las aldeas del continente. Las actividades manufactureras, más difundidas en la campiña que en los centros urbanos, producían mercancías para el mercado interno e internacional. Los intereses comerciales


hacía ya tiempo que habían alterado el clima de las aldeas, poniéndolas en contacto con los hombres de negocios de comarcas lejanas. Todo esto se había traducido en cierta movilidad cultural, en la que se insertaban muchos miembros de las clases intermedias como protagonistas del progreso social, político y productivo del país y de las colonias del reino. Sin embargo, la universidad seguía siendo una meta de difícil alcance. La pensión de un college universitario era de unas 45 libras esterlinas, cifra insostenible para una familia como la de Newton, si se tiene en cuenta que su propiedad agrícola rendía a lo sumo poco mas de 80 libras esterlinas anuales. Así, cuando el joven Isaac fue admitido en el prestigioso Trinity College de Cambridge, fue matriculado en la categoría de los estudiantes pobres, que se pagaban los estudios realizando distintos servicios domésticos, sirviendo a los profesores, haciendo las veces de porteros, cocineros, camareros, etc. Y, además, con tres o cuatro de retraso respecto a los otros estudiantes. Cambridge : los años de mayor creatividad científica. Dos años para pensar: Los dos años de la peste han pasado a formar parte de la historia de la ciencia. En este período Newton tuvo sus primera grandes intuiciones científicas, incluida la que más habría de contribuir a su fama : la gravitación universal. El mismo, efectuando muchos años después el balance de su actividad en Woolsthorpe, redactó una lista completa de sus descubrimientos : a principios de 1665 se había dedicado a las matemáticas, formulando aquel importantísimo enunciado conocido en el álgebra como teorema del binomio ; entre noviembre de 1665 y mayo 1666 definió el cálculo infinitesimal, dándose tiempo, en enero, para elaborar una original teoría sobre la naturaleza de los colores. Y además, “en el mismo año comencé a pensar en la gravedad, extendiéndola a la órbita de la Luna…y confronté la fuerza necesaria para mantener a la Luna en su órbita con la fuerza de gravedad existente en la Tierra, y observé que son aproximadamente iguales. Todo esto ocurrió en los dos años de la peste, 1665 y 1666, cuando me hallaba en la plenitud de mis capacidades intelectuales y me ocupaba de matemáticas y filosofía en mayor grado de lo que nunca volvería a hacerlo posteriormente”. Puede resultar útil recorrer las etapas de esos dos años para entender en profundidad su importancia en la vida de Newton así como en la totalidad de la historia del pensamiento científico. En Woolsthorpe, los días transcurrían lentos, con la cadencia regular de la vida campestre. Newton pasaba mucho tiempo en compañía de su madre, con la que mucho se había encariñado, pero por lo demás estaba solo. Nadie había allí con quien discutir, nadie con quien intercambiar opiniones, e incluso tenía muy pocos libros a su disposición.


Esta fase de aislamiento intelectual, privada de cualquier clase de distracciones, le ayudó a retomar el hilo de muchos pensamientos y a poner orden en sus ideas, desovillando los nudos que hasta en ese momento le habían obstaculizado el camino. Quizá también el aburrimiento jugó su parte en esa incitación de Newton a concentrarse, casi obsesivamente, en algunos problemas. Ya anciano, contestaba a quien le preguntase cómo había procedido de joven para llegar a determinados descubrimientos : “Pensando continuamente en ellos”. SU secreto era muy simple : “Suelo mantener pendiente el tema ante mí, y espero hasta que los primeros albores se convierten poco a poco en la plena luz del día.” Esta constancia, unida a una gran capacidad de concentración, le ayudaba al menos a alejarse en parte de una rutina pobre en estímulos culturales para vivir en otra realidad. En ella encontraban su espacio las observaciones sobre la luz, los estudios matemáticos y todas las otras expresiones del amplio bagaje cultural que había acumulado en aquellos años. En la primera parte del período pasado en Woolsthorpe, Newton se dedicó a la elaboración del cálculo diferencial e integral. En el álgebra elemental, con frecuencia el problema consiste en hallar el valor numérico atribuido a una determinada letra que representa una cantidad desconocida y que, en las particulares condiciones establecidas por el enunciado problema, acaba asumiendo determinados valores. Pero en muchos campos de las matemáticas es posible hallarse ante dos cantidades que varían continuamente una con respecto a otra ; baste con pensar, por ejemplo, en los problemas ligados a la velocidad, que obligan a valorar la relación entre las variaciones de la distancia y las correspondientes variaciones de tiempo. Los problemas de física y de astronomía tratan casi siempre con leyes de variación ; el calculo diferencial e integral servía precisamente para afrontar ese tipo de problemas. El perfecto dominio de estos instrumentos matemáticos le permitirá a Newton, muchos años después, llegar más allá que cualquier otro en la descripción sistemática del universo.

Hasta la primera mitad del siglo XVII las matemáticas habían mantenido un aspecto muy distinto del actual. Los números árabes, es decir los que empleamos normalmente, se utilizaban ya en todas partes, pero en la contabilidad se usaban todavía números romanos ; en realidad, los símbolos de las cuatro operaciones se volvieron de uso común en la segunda mitad del siglo XVII ; la práctica de utilizar las letras para indicar cantidades desconocidas o


indeterminadas, es decir la notación algebraica, sólo fue introducida por el matemático francés Viète poco antes de 1600. El propio hecho de efectuar cálculos con la pluma, o escribiendo con ayuda del ábaco o de otros instrumentos similares, se consideraba todavía un método avanzado, comparable con el que hasta hace algunos años era el empleo de la calculadora. Ya a comienzos del siglo XVII muchos estudiosos habían concentrado sus esfuerzos en el álgebra y la geometría analítica. Algunos de los problemas insolubles de la geometría clásica, en especial los que implicaban líneas y superficies curvas mediante ecuaciones algebraicas. Este nuevo modo de proceder -que precisamente caracteriza a la geometría analítica- se mostraba muy fértil, pero a la vez obligaba a plantear otro orden de problemas particularmente insidiosos para la mentalidad de la época : el de las magnitudes infinitamente pequeñas. Así pues, los matemáticos del siglo XVII se vieron enfrentados con las magnitudes infinitesimales y el modo con que determinan las magnitudes finitas.

¿Cómo hacer un circuito led?


MATERIALES: 2 TRANSISTORES 2N2222A 2 CONDENSADORES DE 100 MICRO FARADIOS A 25 VOLTIOS 2 RESISTENCIAS DE 22K CODIGO ROJO,ROJO,NARANJA 2 RESISTENCIA DE 1K CODIGO MARRON,NEGRO,ROJO 2 LED ESTANDAR


1 METRO DE CABLE DELGADO 50 CM DE ESTAÑO 1 CAUTIN 1 EXACTO

Juegos


Participantes: Diana Brito Ruthcelys Oyarbes Luis Valdivia Yarileth Rojas

5 “B�

Revista  
Read more
Read more
Similar to
Popular now
Just for you