Issuu on Google+

MAGNITUDES Magnitud: Es toda propiedad de los cuerpos que se puede medir. Por ejemplo: temperatura, velocidad, masa, peso, etc. Medir: Es comparar la magnitud con otra similar, llamada unidad, para averiguar cuántas veces la contiene. Unidad: Es una cantidad que se adopta como patrón para comparar con ella cantidades de la misma especie. Ejemplo: Cuando decimos que un objeto mide dos metros, estamos indicando que es dos veces mayor que la unidad tomada como patrón, en este caso el metro.

Sistema Internacional de unidades: Para resolver el problema que suponía la utilización de unidades diferentes en distintos lugares del mundo, en la XI Conferencia General de Pesos y Medidas (París, 1960) se estableció el Sistema Internacional de Unidades (SI). Para ello, se actuó de la siguiente forma: •En primer lugar, se eligieron las magnitudes fundamentales y la unidad correspondiente a cada magnitud fundamental. Una magnitud fundamental es aquella que se define por sí misma y es independiente de las demás

(masa, tiempo, longitud, etc.). •En segundo lugar, se definieron las magnitudes derivadas y la unidad correspondiente a cada magnitud derivada. Una magnitud derivada es aquella que se obtiene mediante expresiones matemáticas a partir de las magnitudes fundamentales (densidad, superficie, velocidad). •En el cuadro siguiente puedes ver las magnitudes fundamentales del SI, la unidad de cada una de ellas y la abreviatura que se emplea para representarla:


PROPORCIONALIDAD

• •

Cuando decimos que alguien está bien proporcionado damos a este término un sentido de armonía y estética: "este niño ha crecido mucho, pero está bien proporcionado" Si comentamos que el éxito de una persona es proporcional (o está en proporción) a su trabajo ponemos de manifiesto la correlación entre estas dos variables: ÉXITO y TRABAJO. También solemos utilizarlo para comparar fenómenos en distintos ámbitos: " proporcionalmente una hormiga es más fuerte que un elefante " (el hombre no resiste las comparaciones con otros animales: un escarabajo puede levantar 850 veces el peso de su propio cuerpo. Proporcionalmente equivaldría a que un hombre levantara sobre su cabeza un tanque de 50 Tm. Una pulga puede saltar hasta 130 veces su altura. Para competir con ella un hombre debería saltar limpiamente la Giralda de Sevilla). También se cometen errores: Hace años se estudió la reacción de un elefante macho al LSD (una droga). Los científicos calcularon la dosis que se debía administrar a partir de la cantidad que pone a un gato en estado furioso. Esta proporción fue trágica para el elefante pues inmediatamente empezó a correr y a trompetear, tuvo convulsiones y expiró.


PROPORCIONALIDAD DIRECTA

1. Proporcionalidad directa e inversa Proporcionalidad directa Dos magnitudes son directamente proporcionales si al multiplicar o dividir una de ellas por un número, la otra queda multiplicada o dividida por ese mismo número. Al dividir cualquier valor de la segunda magnitud por su correspondiente valor de la primera magnitud, se obtiene siempre el mismo valor (constante). A esta constante se le llama razón de proporcionalidad directa. Para resolver un ejercicio de proporcionalidad directa se puede utilizar: •La razón de proporcionalidad. •Una regla de tres. •El método de reducción a la unidad.


PROPORSIONALIDAD INVERSA

Dos magnitudes son inversamente proporcionales cuando al aumentar una, disminuye la otra en la misma proporción . Tres pintores tardan 10 días en pintar una tapia. ¿Cuánto tardarán seis pintores en hacer el mismo trabajo? . Al aumentar el número de pintores disminuye el tiempo que se tarda en pintar la tapia, como el número de pintores se multiplica por 2, el número de días que s emplean en pintar se divide por 2. Así tardarán 5 días.

• Regla de tres simple inversa Dadas dos magnitudes, se conocen la equivalencia entre un valor de una y el valor de la otra. Entonces para cada nuevo valor que se de a una magnitud calculamos el valor proporcional inverso de la segunda magnitud

En una granja avícola hay 300 gallinas que se comen un camión de grano en 20 días. Si se compran 100 gallinas más ¿En cuanto tiempo comerán la misma cantidad de grano?


EJERCICIOS INVERSO

En una granja avícola hay 300 gallinas que se comen un camión de grano en 20 días. Si se compran 100 gallinas más ¿En cuanto tiempo comerán la misma cantidad de grano? • Un coche que circula a 90Km/h. invierte 3 horas en cubrir la distancia que separa dos ciudades, si vuelve a realizar el viaje y emplea 10 horas. ¿A qué velocidad circula en el segundo viaje? Solución =


EJEMPLO DIRECTO

Se cumple que: 220 por 45 = 450 por x, de donde

En la práctica esto se suele disponer del siguiente modo:

Luego 450 vacas podrán comer 22 días Esta forma de plantear y resolver problemas sobre proporciones se conoce con el nombre de regla de tres simple inversa. Ejemplo 2 Para envasar cierta cantidad de vino se necesitan 8 toneles de 200 litros de capacidad cada uno. Queremos envasar la misma cantidad de vino empleando 32 toneles. ¿Cuál deberá ser la capacidad de esos toneles?

Pues la cantidad de vino = 8 por 200 = 32 por x Debemos tener 32 toneles de 50 litros de capacidad para poder envasar la misma cantidad de vino.

PROPORCIONALIDAD COMPUESTA DE MAGNITUDES Regla de tres compuesta. Método de reducción a la unidad Ejemplo 1: Proporcionalidad directa Cuatro chicos durante 10 días de campamento han gastado en comer 25.000 pesos. En las mismas condiciones ¿cuánto gastarán en comer 6 chicos durante 15 días de campamento?


Magnitudes gladys