Issuu on Google+

MATH 533 Week 7 Homework (New) Click Here to Buy the Tutorial For more course tutorials visit

1. Researchers developed a safety performance function (SPF), which estimates the probability of occurrence of a crash for a given segment of roadway. Using data on over 100 segments of roadway, they fit the model E(y) = + + , where y = number of crashes per three years, = roadway length (miles), and = average annual daily traffic (number of vehicles) = AADT.

2. The data shown below represent the annual earnings (y), age (--, and hours worked per day (x2) for a random sample of street vendors in a certain. Complete parts a through f.

3. Data on the average annual precipitation (y), altitude (x1), latitude (x2), and distance from the coast (x3) for a particular state were collected for 10 meteorological stations. The observations are listed in the table below. Consider the first-order model y = + + , + Îľ. Complete parts a through c.

4. A manufacturer of boiler drums wants to use regression to predict the number of hours needed to erect the drums in future projects. To accomplish this task, data on 15 boilers were collected. In addition to hours (y), the variables measured were boiler capacity (x1 = 1b/hr), boiler design pressure (x2 = pounds per square inch, or psi), boiler type (x3 = 1 if industry field erected, 0 if utility filed erected), drum type (x4 = 1 if steam, 0 if mud). Complete parts a through d.

5. A magazine reported on a study of the reliability of a commercial kit to test for arsenic in groundwater. The field kit was used to test a sample of 20 ground water wells in a country. In addition to the arsenic level (micrograms per liter), the latitude (degrees), and depth (feet) of each well was measured. Complete parts a through g.

6. A researcher wants to find a model that relates square footage x1, number of bedrooms x2, number of baths x3, and asking price y (in thousands of dollars) of a house. Complete parts (a) through (h).

Math 533 week 7 homework