Page 1

Glacial Flooding & Disaster Risk Management Knowledge Exchange and Field Training July 11-24, 2013 in Huaraz, Peru HighMountains.org/workshop/peru-2013

GLOF and  glacier-­‐related  hazards  and  risk  in  Tajikistan   Tetsuya  Komatsu  and  Teiji  Watanabe   Faculty  of  Environmental  Earth  Science,  Hokkaido  University,  Sapporo,  Japan   1. Introduction Glaciers  in  high  mountain  regions  not  only  give  benefits  to  human  activities  in   respect  of  water  sources  for  drinking  water,  irrigation  and  energy  generation,  but   also  occasionally  cause  hazards  such  as  glacial  lake  outburst  floods  (GLOFs)  and   ice  avalanches.  Accordingly,  various  assessments  and  mitigations  to  the   glacier-­‐related  hazards  have  been  undertaken  worldwide  (e.g.  Quincy  et  al.  2007).   The  Pamir  is  one  of  the  high  mountain  regions  in  Asia,  where  assessment   investigations  to  glacier-­‐related  hazards  are  few  (Schneider  et  al.  2010;  Mergili  &   Schneider  2011)  although  glacier-­‐related  hazards  and  their  threats  have  been   recently  reported  (e.g.  Shodomonov  2012).  More  activities  for  reducing  the   potential  risks  of  glacial-­‐related  hazards  should  be  required  hereafter.  This  paper,   focusing  on  the  Tajik  Pamir,  aims  to  examine:  (1)  the  contemporary  glacial   features,  (2)  characteristics  of  documented  hazards  associated  with  glaciers,  and   (3)  the  current  status  of  the  hazard  assessment.     2. The  Pamir,  glaciers,  and  glacial  lakes  The  terrain  of  the  Tajik  Pamir  differs  distinctly  between  the  western  and  eastern   areas.  The  western  Tajik-­‐Pamir  (west  from  ca.  73°E)  is  distinguished  as  a   combination  of  the  predominantly  west-­‐east  trending  mountain  ranges  in  altitudes   from  5,000–7,000  m,  and  the  deep,  narrow  valleys.  In  contrast,  the  eastern  Tajik   Pamir  (east  from  ca.  73°E)  comprises  the  broad  valleys  and  basins  bordered  by  the   more  subdued  mountain  ranges  with  altitudes  of  5,000–6,000  m.   The  climate  of  the  Pamir  is  represented  by  sub-­‐continental  and  arid   continental  climate.  The  moisture  delivered  to  the  Pamir  is  mainly  from  the   Westerlies:  two-­‐thirds  of  the  annual  precipitation  occurs  during  the  winter  and   spring  seasons  (Aizen  2011).  The  western  Tajik  Pamir  generally  receives  greater   amounts  of  the  mean  annual  precipitation  (200–2,000  mm/y)  compared  to  the   eastern  Tajik  Pamir  (<  100–200  mm/y).   The  settlements  in  the  Tajik  Pamir  are  concentrated  in  the  valley  floors  of   the  western  Tajik  Pamir,  except  for  several  eastern  villages  (e.g.  Murgab);  most   residence,  infrastructure  and  arable  field  in  the  western  Tajik  Pamir  are  situated   on  the  alluvial  fans/cones  developing  on  the  tributary  mouths  (Watanabe  2000).   This  situation  makes  the  potential  risk  for  geohazards  (GLOF  and  flash  flood)   higher  in  the  western  Tajik  Pamir.     1


In the  Tajik  Pamir,  6,730  glaciers,  of  which  the  total  area  attains  7,493   km2,  have  been  identified  by  the  Institute  of  Geography,  the  USSR  Academy  of   Sciences  (Kotlyakov  et  al.  2010a).  Scattered  cirques  and  small  valley  glaciers   dominate  in  the  western  Tajik  Pamir  (west  from  ca.  73°E).  Large  glacier  complexes   comprising  two  or  more  individual  valley-­‐glaciers  (e.g.  the  Fedchenko  Glacier)  can   be  often  found  in  the  northeastern  most  portion  of  the  western  Tajik  Pamir.  In   contrast,  smaller  valley  glaciers  or  slope  niche  glaciers  largely  occupy  in  the  arid   eastern  Tajik  Pamir.  A  notable  feature  of  the  Pamirian  glaciers  is  that  some  of  them   show  dynamic  instability,  which  can  be  regarded  as  ‘surging’:  630  surge-­‐type   glaciers  have  been  identified  in  total  in  the  Tajik  Pamir  up  until  1991  (Kotlyakov  et   al.  2010b).       Systematic  investigations  to  clarify  the  distribution,  type  and   development  of  glacial  lakes  have  been  conducted  only  in  the  southwestern  Tajik   Pamir  (the  Gunt  and  Shakhdara  valleys)  by  Mergili  &  Schneider  (2011)  and  Mergili   et  al.  (2012).  These  studies  cover  the  period  1968–2009  using  multitemporal   satellite  images:  172  glacial  lakes  (an  area  of  ≥2,500  m2)  have  been  identified  in   the  2007/2008  images.  The  172  glacial  lakes  are  mostly  located  at  4,400–4,700  m   (Mergili  et  al.  2012).  This  altitudinal  zone  is  significantly  higher  than  the  altitudes   ranging  from  3,810–4,000  m,  which  are  calculated  as  lower  boundary  of   discontinuous  permafrost  (permafrost  probable)  by  Müllebner  (2010).  This   situation  in  the  southwestern  Tajik  Pamir  is  at  least  a  favorable  factor  for  the   stability  of  the  ice  core  (dead  ice)  underneath  the  lake-­‐dammed  moraines.         3.  Glacier-­‐related  hazards  in  the  Tajik  Pamir   The  report  published  from  the  Department  of  Hydrometeorology  in  Tajikistan   (Makhmadaliev  et  al.  2008)  indicates  that  9  GLOFs  and  1  glacier-­‐related   debris-­‐flow  have  occurred  in  the  western  Tajik  Pamir.  On  the  other  hand,  7  GLOFs   are  confirmed  from  the  website  of  the  MNV  Consulting  Ltd.,  which  shows  the   historical  records  of  the  major  floods  in  Tajikistan  during  the  period  1894–2000.   The  detailed  information  about  cause  and  occurrence  location  of  such   glacier-­‐related  hazards  has  been  obtained  from  only  five  events.  These  hazardous   events  are  closely  associated  with  either  glacier  surge  or  glacial  lake  on  moraines.     3.1.  Hazard  related  to  glacier  surge   A  well-­‐known  case  of  the  surge-­‐related  hazard  in  the  Tajik  Pamir  is  the  outburst  of   the  glacial-­‐dammed  lake,  which  occurs  as  a  consequence  that  the  tributary  glacier   advances  into  the  ice-­‐free  trunk  valley  and  blocks  the  main  river.  For  instance,   such  a  hazardous  surge  took  place  at  the  Medvezhiy  (Bear)  Glacier  (N38°39’,   E72°09’37”),  located  in  the  upper  reaches  of  the  Vanch  Valley,  the  western  Tajik   Pamir.  Surges  of  this  glacier  have  been  identified  six  times  (1951,  1963,  1973,   1989,  2001,  and  2011)  (Kotlyakov  et  al.  2010b).  Among  these  surges,  the  events  in   1963,  1973,  1989,  and  2011  have  induced  the  glacier  terminus  to  block  the  main   valley,  and  close  the  Abdukagor  River.        

2


3.2. Hazard  related  to  glacial  lake  on  moraines     Only  one  event  has  been  recognized  as  a  hazard  related  to  a  glacial  lake   on  moraines  in  the  Tajik  Pamir  up  to  now,  i.e.,  a  debris  flow  named  ‘the  Dasht  2002   event’,  which  occurred  in  the  tributary  headwaters  of  the  Shakhdara  valley  (the   southwestern  Tajik  Pamir)  on  7  August  2002.  This  hazardous  debris  flow   originated  from  a  glacial  lake  (the  Dasht  Lake;  N37°13’12”,  E71°44’03”,  4,400  m),   which  had  formed  on  the  ice-­‐cored  end  moraine  and  gained  its  size  to  an  area  of   32,000  m2.  The  volume  of  the  released  water  from  this  lake  and  that  of  the   entrained  debris  into  the  water  were  estimated  to  be  32,000  m3  and  1.0–1.5   million  m3,  respectively  (Mergili  &  Schneider  2011).  This  debris  flow  traveled  10.5   km  downstream  the  valley,  and  attacked  the  Dasht  village  (2,620—2,600  m)   situated  on  the  alluvial  fan;  its  travel  time  to  the  village  was  considered  to  be  at   least  45  minutes  based  on  the  voice  of  the  local  people  (Mergili  &  Schneider  2011).   Eventually,  this  event  destroyed  a  large  part  of  the  village  and  killed  approx.  25   local  people.           The  changes  of  the  Dasht  Lake  before  and  after  the  event  can  be  traced   from  the  observation  of  the  multitemporal  satellite  images  covering  the  years  of   1968,  1973,  1992,  2000,  2002  and  2008,  and  a  1:50,000  Russian  map  compiled  in   1983–84.  The  development  history  of  the  Dasht  Lake  suggests  that  the  lake  is   characterized  by  the  ‘no  surface  outlet’,  ‘repeatedly  appeared’,  ‘rapidly  enlarged’,   and  ‘short-­‐lived’  lake  on  the  ice-­‐cored  end  moraine.  Considering  these   characteristics,  the  appearance  and  expansion  of  this  glacial  lake  are  most  likely   attributed  to  the  temporal  blockage  of  the  drainage  channel  through  or  beneath   the  dead-­‐ice/till  complex,  caused  by  the  ice  deformation  and/or  ice-­‐debris   collapses  into  the  channel,  which  was  observed  in  Tien  Shan  (Narama  et  al.  2010);   the  sudden  discharge  (outburst)  from  the  lake  is  probably  due  to  the  blockage   failure  assigned  to  the  increasing  water  pressure  and/or  the  atmospheric  warming   in  summer.         4.  Applied  hazards  assessment:  A  review     4-­‐1.  Assessment  by  Schneider  and  Mergili  (2010)   Schneider  et  al.  (2010)  focused  on  the  potential  risk  rating  of  geohazards  to  each  of   the  selected  209  villages  in  the  Jirgital  and  Gorno-­‐Badakhshan  Autonomous  Oblast   (GBAO)  areas,  as  well  in  the  Zarafshan  range,  and  to  provide  the  proper  hazard   mitigation  recommendations  to  the  respective  villages  by  (1)  remote  sensing   survey,  (2)  field  observation  at  several  key  areas  including  observations  from   helicopter,  and  (3)  estimates  of  hazard  impacts  using  computer  modeling.  The   potential  hazard  risk  to  the  villages  is  rated  to  be  either  of  six  classes  (1:  very  low   hazard  to  6:  very  high  hazard),  depending  on  the  calculated  score;  and  the   confidence  level  (A:  vey  high  confidence  to  E:  no  information)  is  given  to  each  of   such  rating  results.  They  showed  that  34  villages  in  the  Tajik  Pamir  (the  GBAO  and   Jirgital  area)  were  rated  as  over  ‘medium  hazard  (Class  4)’.   Regarding  the  significant  glacier-­‐related  hazards,  the  following  three  cases   can  be  extracted  from  their  assessment:  (1)  ice  avalanches  caused  by  glacier   3


detachment, (2)  GLOFs,  and  (3)  compounded-­‐GLOFs  induced  by  cascade  effect.  The   potentiality  of  (1)  was  detected  in  a  hanging-­‐glacier  (N38°01’,  E71°55’),  which   occupies  uppermost  reaches  of  a  tributary  valley  in  the  Bartnag  valley.  Both  of   Bartang  and  Ravivd  villages,  located  near  the  mouth  of  the  tributary,  were  rated   ‘medium  hazard  (Class  4)’.  The  risks  of  (2)  have  been  pointed  out  particularly  in   the  following  glacial  lakes:  (a)  glacial  lakes  proximal  to  glacier  snouts  (e.g.   supraglacial  lakes  and  moraine-­‐dammed  lakes)  (N37°42’26”,  E72°12’34”)  and   Shadzud  village  (N37°42’45”,  E72°21’40”)  in  the  Gunt  valley;  (b)  the  distal  glacial   lake  named  Nimatskul     (N37°40’30”,  E72°04’07”),  located  in  a  tributary  of  the   Gunt  valley;  and  (c)  the  lake  dammed  by  rock-­‐glacierized  glacier-­‐terminus   (N38°34’,  E72°36’30”),  located  in  the  headwaters  of  Pasor  village,  the  upper   Bartang  valley.  Villages  in  the  downstream  of  these  glacial  lakes  were  assigned  to   the  rate  up  to  the  ‘medium  hazard  (Class  4)’.  The  case  of  (3)  can  occur  when  a   GLOF  triggers  one  or  more  cascading  outburst  floods  of  the  downstream  lakes.   Such  cases  have  been  assumed  in  two  glacial  lakes  in  the  headwater  of  Varshedz   village  (N37°42’,  E72°20’50”)  and  the  landslide-­‐dammed  lake  named  Rivakkul   (N37°36’55”,  E72°04’40”)  and  the  glacial  lakes  in  its  upstream.  In  particular,  the   former  lakes  have  been  assessed  as  the  most  hazardous  glacial  lakes  in  the  GBAO,   and  therefore  the  Varshedz  village,  located  at  the  valley  mouth,  was  rated  ‘high   hazard  (Class  5)’.       4-­‐2.  Assessment  by  Mergili  and  Schneider  (2011)   Mergili  &  Schneider  (2011),  based  on  the  GIS  and  Remote  Sensing  approaches,   focused  on  assessment  of  each  of  the  identified  alpine  lakes  about  the  potentiality   and  impact  of  lake  outburst  hazard.  The  study  area  of  this  assessment  covers  the   Gunt  and  Shakhdara  valleys  only.  In  their  assessment,  408  alpine  lakes  were  firstly   identified  in  the  study  area.  Secondary,  both  of  the  potentially  hazardous  lakes  and   possible  hazard-­‐impact  areas  were  evaluated  thorough  the  rating  and  scouring   systems.  Their  results  show  that  122  lakes  were  identified  as  ‘negligible  (Class  0)’,   35  lakes  as  ‘low  hazard  (Class  1)’,  124  lakes  as  ‘moderate  hazard  (Class  2)’,  87   lakes  as  ‘medium  hazard  (Class  3)’,  34  lakes  as  ‘high  hazard  (Class  4)’,  6  lakes  as   ‘very  high  hazard  (Class  5)’,  and  no  lakes  as  ‘extremely  high  hazard  (Class  6)’.   Moreover,  three  lakes  were  highlighted  as  the  potentially  worst  hazardous  lakes,   based  on  overlaying  the  possible  impact  areas  of  lake  outburst  floods  with  the   areas  of  settlements  and  agriculture/pasture  fields.  All  of  these  lakes,  mentioned   also  in  Schneider  et  al.  (2010),  were  found  in  the  upper  reaches  of  the  tributaries   of  the  Gunt  valley:  Lake  V1  (N37°37’39”,  E72°16’16”)  ranked  as  ‘very  high  hazard’,   V2  (N37°36’40”,  E72°16’45”)  ranked  as  ‘high  hazard’,  and  N1  (Nimatskul)  ranked   as  ‘high  hazard’.  The  Dasht  Lake  in  2002  (just  before  causing  the  GLOF)  was   ranked  as  ‘medium  hazard  (Class  3)’,  which  is  considered  to  be  underestimation   against  the  actual  impact  to  the  downstream.          

4


5. Remarks  on  the  Tajik-­‐Pamirian  glacial-­‐related  hazards       5-­‐1.  Assumed  glacial-­‐related  hazards   Considering  both  of  the  past  hazardous  events  (Chapter  3)  and  the  assessment   results  (Chapter  4),  the  following  three  matters:  (1)  detached  glacier,  (2)  surge   glacier,  and  (3)  glacial  lake  (in  particular  ‘guerrilla  glacial  lake’),  should  be   responsible  for  the  major  hazards  in  the  Tajik  Pamir,  especially  in  the  GBAO  area.     (1)  Detached  glacier:  A  hanging  glacier,  located  in  a  tributary  of  the  Bartang  valley,   shows  the  sign  of  glacier  detachment  along  the  transverse  crack  (Schneider  et  al.   2010).  Ice  avalanche  by  the  falling  ice  bodies  may  cause  serious  damage  to  the   downstream  villages  when  the  detachment  occurs.   (2)  Surge  glacier:  Some  of  the  surge  glaciers  terminate  their  snouts  at  the  valley   confluence  to  potentially  block  the  ice-­‐free  main  valley  after  the  surge-­‐induced   advance,  and  subsequently  to  form  a  temporary  lake,  which  is  prone  to  cause   outburst  floods  (e.g.  Medvezhiy  Glacier).  Further,  it  is  reported  that  a  collapsed   glacier-­‐tongue  itself  by  the  surge  movement  causes  an  ice-­‐water  debris  flow.   Surging  behaviors  of  such  glaciers  should  become  a  potential  disastrous  threat  in   the  area.   (3)  Glacial  lake  (in  particular  ‘guerrilla  glacial  lake’):  Potentially  hazardous  glacial   lakes  were  screened  out  through  the  hazard  assessment  studies  (Schneider  et  al.   2010;  Mergili  &  Schneider  2011)  in  the  most  areas  of  the  Tajik  Pamir  (chapter  4).     It  should  be  noted  that  although  an  outburst  flood  from  the  relatively   small-­‐size  glacial  lake  (e.g.  32,  000  m2)  can  cause  serious  damage  to  downstream,   as  exemplified  by  the  Dasht  2002  event,  its  potential  risk  could  not  be   appropriately  evaluated  by  these  hazard  assessment  studies.  To  analyze  the  case  of   the  Dasht  2002  event,  this  type  of  glacial  lake  should  be  distinguished  as  a   ‘repeatedly  appeared’,  ‘rapidly  enlarged  (within  less  than  one  year)’,  ‘short-­‐lived   (within  less  than  two  years)’,  ‘superficially  closed’,  and  ‘relatively  small  size’  glacial   lake  on  the  ice-­‐cored  moraine,  being  appropriate  to  be  designated  as  a  guerrilla   glacial  lake.  Such  guerrilla  glacial  lakes  would  be  discharged  unexpectedly,  when   the  blockage  to  the  drainage  channels  beneath/through  the  ice-­‐cored  moraine  is   failed  (e.g.  Narama  et  al.  2010).  Because  both  of  the  blockage  and  its  failure  likely   occur  depending  on  the  invisible  factors  in  the  sub/intra-­‐moraine  conditions,  it  is   impossible  to  predict  the  timing  of  not  only  the  lake  outburst,  but  also  the  lake   appearance.     5-­‐2.  Recommended  mitigation  activity  to  glacier-­‐related  hazards   Not  only  glacial  lakes  assessed  as  the  dangerous  lakes,  but  also  those  displaying   similar  features  to  a  guerilla  glacial  lake,  should  be  assumed  to  cause  a  serious   hazard  to  downstream  in  the  Tajik  Pamir.  In  addition,  it  must  be  taken  into   consideration  that  the  early  detection  of  the  emergence  of  the  guerrilla  glacial   lakes  should  be  a  key  to  reducing  the  GLOF  hazards  in  this  area,  because   unpredicted  outburst  discharge  from  such  lakes  can  potentially  occur  within  less   than  one  or  more  years  after  its  appearance.  Regular  monitoring  of  identified   5


hazard factors  should  be  required  to  prepare  appropriate  hazard-­‐mitigation   activities.  In  other  words,  a  frequent  and  routine  monitoring  to  all  of  the  glaciers   and  glacial  lakes  should  be  conducted  continuously  to  fulfill  these  demands.  In   terms  of  the  cost  and  efficiency,  one  of  the  most  suitable  ways  to  such  monitoring   is  to  use  the  earth  observation  satellite  images.  In  near  future,  observation  of  a   certain  area  with  frequent  repetitions  may  be  practicable  by  launching  many  sets   of  microsatellites  such  as  a  50-­‐kg  class  microsatellites.  The  observation  requests  to   the  microsatellites  must  be  worth  considering.  Further,  the  risk  assessments  to   glacier-­‐related  hazards  in  the  Tajik  Pamir  have  been  accomplished  in  different  two   ways  (Schneider  et  al.  2010;  Mergili  &  Schneider  2011)  at  present;  however,  the   assessment  areas  of  these  two  hardly  overlap  each  other,  and  do  not  cover  the   whole  Tajik  Pamir.  Therefore,  the  assessment  investigation  using  both  of  the  two   approaches  should  be  pursued  urgently  to  diminishing  the  missing  areas  such  as   the  Vanch  valley.     References   Aizen,  V.  2011.  Pamirs.  In:  Singh,  V.P.  et  al.  (eds.)  Encyclopedia  of  Snow,  Ice  and   Glaciers,  Dordrecht,  Springer,  813–815.   Kotlyakov,  V.M.  et  al.  2010a.  Glaciers  of  the  former  Soviet  Union.  In:  Williams,   R.S.Jr.,  Ferrigno,  J.G.  (eds.)  Glaciers  of  Asia,  U.S.  Geological  Survey  Professional   Paper  1386–F–1.   Kotlyakov,  V.M.  et  al.  2010b.  Investigations  of  the  fluctuations  of  surge-­‐type   glaciers  in  the  Pamir  based  on  observations  from  space.  In:  Williams,  R.S.Jr.,   Ferrigno,  J.G.  (eds.)  Glaciers  of  Asia,  U.S.  Geological  Survey  Professional  Paper   1386–F–1,  pp.77–93.   Makhmadaliev,  B.  et  al.  2008.  The  second  national  communication  of  the  Republic  of   Tajikistan  under  the  United  Nations  Framework  Convention  on  Climate  Change.   State  Agency  for  Hydrometeorology  of  the  Committee  for  Environmental   Protection,  Dushanbe,  Tajikistan,   http://unfccc.int/resource/docs/natc/tainc2.pdf  (Accessed  May  25,  2012).   Mergili,  M.,  Schneider,  J.F.  2011.  Regional-­‐scale  analysis  of  lake  outburst  hazards  in   the  southwestern  Pamir,  Tajikistan,  based  on  remote  sensing  and  GIS.  Natural   Hazards  and  Earth  System  Sciences,  11,  1447–1462.   Mergili,  M.  et  al.  2012.  Changes  of  the  cryosphere  and  related  geohazards  in  the   high-­‐mountain  areas  of  Tajikistan  and  Austria:  a  comparison.  Geografiska   Annaler,  Series  A,  93,  79–96.     Müllebner,  B.  2010.  Modelling  of  potential  permafrost  areas  in  the  Pamirs  and  Alai   mountains  (Tajikistan)  using  remote  sensing  and  GIS  techniques.  Master’s   thesis,  BOKU  University.     Narama,  C.  et  al.  2010.  The  24  July  2008  outburst  flood  at  the  western  Zyndan   glacier  lake  and  recent  regional  changes  in  glacier  lakes  of  the  Teskey  Ala-­‐Too   range,  Tien  Shan,  Kyrgyzstan.  Natural  Hazards  and  Earth  System  Sciences,  10,   647–659.   Quincy,  D.J.  et  al.  2007.  Early  recognition  of  glacial  lake  hazards  in  the  Himalaya   using  remote  sensing  datasets.  Global  and  Planetary  Changes,  56,  137–152.   6


Schneider, J.F.  2005.  Glacier  retreat,  glacial  lake  outburst  and  surging  glaciers  in   the  Pamir,  Tajikistan.  Geophysical  Research  Abstracts,  Vol.  7,  08129.   Schneider,  J.  F.  et  al.  2010.  Remote  geohazards  in  high  mountain  areas  of  Tajikistan.   Assessment  of  hazards  connected  to  lake  outburst  floods  and  large  landslide   dams  in  selected  areas  of  the  Pamir  and  Alai  mountains.  Report  of  the   TajHaz-­‐Project  by  the  BOKU  University  Vienna  and  FOCUS  Humanitarian   Assistance.   Shodomonov,  M.  2012.  Remote  geohazards  in  Tajikistan:  Assessment  of  the   hazards  connected  to  lake  outburst  floods  and  large  landslides  in  selected   areas  of  the  Pamir  and  Alai  mountains.  Andean-­‐Asian  Mountain  Global   Knowledge  Exchange  on  Glaciers,  Glacial  Lakes,  Water  and  Hazard   Management,  An  Adaption  Partnership  Workshop,  131–132.   Watanabe,  T.  2000.  Environmental  impact  assessment:  geomorphology  of  the   Bartang  and  Kudara  valleys.  In:  Alford,  D.,  Schuster,  R.  (eds.)  Usoi  Landslide   Dam  and  Lake  Sarez—An  Assessment  of  Hazard  and  Risk  in  the  Pamir   Mountains,  Tajikistan:  Geneva,  Switzerland,  United  Nations,  ISDR  Prevention   Series  No.  1,  pp.  53-­‐58.       Dr.  Tetsuya  Komatsu  is  a  research  student  at  the  Faculty  of  Environmental  Earth   Science,  Hokkaido  University,  Japan.  He  received  his  PhD  from  Hokkaido   University  in  2010  for  his  doctoral  thesis  entitled  “Late  Quaternary  lake-­‐glacier   interaction  in  the  Karakul  closed-­‐basin,  eastern  Pamir.”  His  major  fields  of  study   are  Geomorphology  and  Quaternary  Science.  Since  2006,  he  has  focused  his   research  largely  on  Quaternary  landscape  reconstruction  and  hazard  assessment   study  in  the  Pamir.     Dr.  Teiji  Watanabe  is  a  professor,  Faculty  of  Environmental  Earth  Science,   Hokkaido  University,  Japan.  His  first  visit  to  Tajikistan  was  1999  as  a  member  of   the  Lake  Sarez  assessment  team  sent  by  the  UN-­‐ISDR.  He  has  been  involved  in   GLOF  and  landscape  change  research  in  the  Nepal  Himalaya  since  1987,  and  has   been  leading  a  team  to  the  Tajik  and  Kyrgyz  Pamir  since  2005  for  establishing   sustainable  mountain  society.  

7

Teiji Watanabe: GLOF and glacier-related hazards and risk in Tajikistan  

Glaciers in high mountain regions not only give benefits to human activities in respect of water sources for drinking water, irrigation and...

Read more
Read more
Similar to
Popular now
Just for you