Page 1

Glacial Flooding & Disaster Risk Management Knowledge Exchange and Field Training July 11-24, 2013 in Huaraz, Peru HighMountains.org/workshop/peru-2013

Climate adaptation  in  the  Indian  Eastern  Himalaya:   Vulnerabilities  and  adaptive  capacities   Reinmar  Seidler   ATREE-­‐USA   University  of  Massachusetts  Boston  

Climate change  is  an  extraordinarily  challenging  concept  to  grasp  fully,  and  even  more   challenging  to  respond  to  in  a  practical  sense.  This  is  true  for  people  with  extensive   academic  education  and  science  savvy—indeed,  even  the  scientists  developing  these  ideas   and  advocating  for  societal  awareness  of  climate  change  have  a  hard  time  applying  the   lessons  of  the  need  for  ‘adaptation’  to  their  own  lives.  How  much  trickier,  then,  for   villagers,  or  for  regional  and  local  government  officials  in  developing  countries,  whose   capacity  for  action  is  many  ways  far  more  limited,  to  alter  their  perceptions  of  future   security  and  change  their  behaviors  based  on  what  can  seem  very  abstract  notions?  Yet   that  is  what  we  are  asking  people  to  do  when  we  promote  climate  adaptation.     In  this  short  paper  we  attempt  to  unpack  the  notion  of  ‘climate  adaptation’  and  to  relate  it   more  closely  to  the  realities  of  rural  people’s  lives.  It  is  based  on  preliminary  work  being   done  by  ATREE  in  several  mid-­‐  and  high-­‐altitude  locations  in  the  Eastern  Himalaya  of   Darjeeling  District  (West  Bengal)  and  the  North  District  of  Sikkim.     Climate  change  and  future  discounting   Future  discounting  is  a  well-­‐known  phenomenon  in  economic  psychology,  extensively   documented  by  behavioral  economists  and  presumed  virtually  universal  in  humans  (___,   but  see  Read  and  Roelofsma  2003).Under  discounting,  potential  future  rewards  such  as   those  deriving  from  present  investments  are  reduced  in  perceived  value.  The  less  ample  an   economic  buffer  a  person  or  a  group  perceives  themselves  to  enjoy,  the  more  steeply  s/he   or  they  tend  to  discount  future  rewards  in  comparison  with  immediate  and  tangible   advantages  (Smith  &  Ezzati  2005).  Correspondingly,  future  threats  (‘negative  rewards’)   may  also  appear  diminished  in  scale  in  comparison  with  risks  perceived  to  be  immediate  or   impending.  Discount  rates  tend  to  be  steep  in  the  near  future  and  then  to  level  off  quickly   into  a  hyperbolic  curve,  so  that  people  tend  to  value  medium  and  quite  distant  futures   more  or  less  the  equivalently  (Laibson  1997).  Efforts  to  bring  the  threats  associated  with  a   changing  climate  to  the  forefront  of  people’s  awareness—and  into  the  public  discourse— 1  


appear to  run  precisely  counter  to  this  basic  psychological  pattern,  when  they  ask  that   people  privilege  a  relatively  distant,  uncertain  and  unfamiliar  risk  over  immediate  and   familiar  threats.     Hyperbolic  discounting  is  a  natural  and  intuitive  decision-­‐making  aid,  and  appears  to  be   nearly  ubiquitous—except,  perhaps,  among  economists  when  writing  in  their  professional   capacity.  The  prevalent  approach  to  estimating  future  value  in  neoclassical  welfare   economic  analyses  remains  cost-­‐benefit  analysis,  or  CBA  (Heinzerling  and  Ackermann   2002).  Conventional  CBA  is  built  on  the  concept  of  a  future  discounting  rate  that  takes  the   form  of  an  approximately  straight  line  across  all  future  time  periods.  CBA  is  liable  to   underestimate  people’s  true  valuation  of  the  distant  future.  Under  a  conventional  CBA   analysis,  large  possible  future  damages  often  appear  to  have  very  low  discounted  present   value,  which  means  they  rarely  enter  strongly  into  policy  discussions.     To  take  an  extreme  case,  at  a  5%  discount  rate  applied  consistently  over  time,  the  lives  or   well-­‐being  of  a  billion  people  500  years  in  the  future  are  worth  less  than  the  life  or  well-­‐ being  of  a  single  individual  in  the  present  (e.g.,  Heinzerling  and  Ackerman  2002).  To  the   extent  that  this  kind  of  analysis  is  taken  seriously  by  policy  makers,  this  obviously   represents  a  major  barrier  to  crafting  policy  for  climate  adaptation.  Most  policy  makers   would  probably  be  reluctant  to  consciously  apply  such  a  draconian  discount  rate,  but  at  a   pre-­‐analytic  level,  such  linear  rates  do  influence  a  multitude  of  decisions  about  public   investment  priorities.     However,  it  is  also  true  that,  intuitively,  people  apply  discount  in  a  context-­‐dependent   manner—that  is,  they  apply  different  rates  to  different  kinds  of  outcomes  and  in  different   situations  (Loewenstein  1987).  Thus,  people’s  understanding  of  the  nature  of  a  particular   threat,  and  the  particularities  of  the  way  a  threat  is  presented  or  described,  strongly  affect   their  ability  and  willingness  to  respond  effectively.     What  does  this  imply  for  climate  adaptation  research  and  policy  formulation?  We  suggest  it   means  there  are  pathways  of  greater  and  lesser  resistance,  and  the  choice  between  them   matters  overwhelmingly  for  the  success  or  failure  of  policy  implementation.  Policy   formulation  must  therefore  take  implementation  into  account  in  its  earliest  stages.  We   must  expect,  for  instance,  that  many  poor  farmers  will  exhibit  considerable  risk  aversion,   or  what  Patt  and  Schroeter  (2007,  2008)  call  “status  quo  bias”—namely  the  unwillingness   to  adopt  new  procedures  with  unknown  degrees  of  risk  in  preference  to  continuing  present   patterns,  even  when  the  surrounding  environmental  context  appears  to  be  changing.  In   Patt  and  Schroeter’s  (2007)  surveys  of  climate  perception  among  vulnerable  smallholders   in  Mozambique,  90%  reported  noticing  major  changes  during  their  lifetimes,  including   changes  in  temperature  (80%),  cyclones  (80%),  rainfall  (73%),  soil  moisture  (69%),  and   flooding  (64%).  Nevertheless,  most  of  them  refused  to  participate  in  adaptive  policy  

2  


recommendations—which in  this  case,  it  is  true,  were  relatively  extreme  since  they   involved  resettlement  out  of  a  dangerous  flood  plain.     How  do  people  prioritize  risk?     Even  though  people  perceive  risk  partly  as  individuals,  being  social  animals  they  also  share   common  interests  with  an  assortment  of  groups.  The  ways  risks  are  foregrounded  and   back-­‐grounded  can  reasonably  be  assumed  to  be  quite  sensitive  to  some  groupings.  In  the   effort  to  design  adaptive  strategies,  it  would  be  useful  to  know  what  kinds  of   generalizations  can  be  made  about  different  groups  within  a  particular  social  landscape.     But  it  is  not  easy  to  decide  on  which  societal  groupings  will  yield  the  most  useful   information  to  help  in  predicting  the  likely  success  of  particular  adaptation  policies.   Individuals  belong  to  multiple  separate  and  often  overlapping  or  contradictory  groups   (Slovic  &  Weber  2002).  Also,  there  might  conceivably  be  greater  variation  within  a   particular  group—perhaps  even  within  a  household—than  among  groups.  These  variations   might  follow  intra-­‐group  divisions  along  lines  of  gender,  age,  or  even  psychological  make-­‐ up.  Patt  &  Schroeter  2007,  for  instance,  found  that  in  their  sample,  “psychological   variables—factors  such  as  feelings  of  control,  optimism,  and  fatalism—were  able  to  predict   self-­‐protective  behavior  with  significantly  greater  accuracy  than  were  the  socio-­‐economic   variables.”  In  addition,  a  single  individual  is  likely  to  belong  and  feel  allegiance  to  several   different  ‘groupings’  simultaneously  (Slovic  &  Weber  2002)—and  these  might  call  for   allegiance  to  conflicting  perceptions  of  risk.  Does  this  account  for  some  of  the  manifest  self-­‐ contradictions  inherent  in  people’s  publicly  professed  attitudes  toward  risk?   How,  too,  to  incorporate  evidence  of  false  or  exaggerated  impressions?  For  instance,  Jewitt   &  Baker  2010  describe  how  in  a  village  in  India,  “The  perceived  rise  of  ‘mystery  illnesses’  in   children  was  a  good  example  of  this,  as  was  the  general  feeling,  amongst  a  number  of   wealthier  households,  that  people  in  the  village  ‘are  weaker  nowadays  .  .  .  more  sickly  than   they  used  to  be’…  despite  widespread  evidence  to  the  contrary.”  They  related  this  to  an   emergent  awareness,  among  the  economically  secure  population,  of  larger-­‐scale  (‘late-­‐ modern’)  threats  such  as  climate  change.  This,  of  course,  underlines  the  fact  that   perceptions  of  change  at  the  day-­‐to-­‐day  level  often  fail  to  realistically  reflect  long-­‐term   trends.  Community-­‐based  studies  of  climate  perception,  such  as  our  own,  thus  need  to   exercise  appropriate  skepticism  toward  accounts  of  large-­‐scale  change  unsupported  by   instrumentation  and  systematic  records.  This  is  especially  true  when  perceptions  are   generated  as  parts  of  community  discourses  concerning  other  large-­‐scale  trends  such  as   growing  tourism,  symptoms  of  the  globalization  of  economic  pressures,  new  technologies,   etc.  Thus  in  Sikkim,  Lachenpa  and  Dokpa  communities  agreed  1)  that  there  are  weather-­‐ related  changes  in  phenology,  seasonality  and  other  parameters,  and  2)  that  these  could  be   attributed  to  the  increased  regional  presence  of  tourists,  motor  vehicles  and  the  Indian   Army.  The  communities  varied,  however,  in  their  prioritization  of  these  influences;  and   3    


these variances—especially  regarding  the  relative  importance  of  the  military—are   correlated  with  the  degree  to  which  people  experience  the  military’s  restrictions  and   regulations  of  their  movements  as  onerous.     The  Kanchenjunga  Conservation  Landscape  region  is  undergoing  what  Smith  &  Ezzati   (2005)  call  an  “environmental  risk  transition”.  Some  groups,  in  particular  the  forest   villagers,  foreground  household-­‐level  risks  (human-­‐wildlife  conflict,  poor  harvests,   monsoon  failure  and  other  extreme  weather  events,  household  sickness,  restrictions   imposed  by  the  military,  and  the  difficulty  and  expense  of  transporting  agricultural   produce  to  remunerative  markets.  Other  groups,  such  as  the  tourism  operators  and   traders,  tend  to  be  focused  on  community-­‐level  risks:  poor  road  construction  and   maintenance,  earthquake-­‐  and  landslide-­‐unready  housing  construction,  poor  enforcement   of  building  codes  and  zoning.    A  still  more  urban-­‐based  and  educated  group  of  social   activists  tends  to  focus  on  regional-­‐level  hazards,  such  as  the  allegedly  inadequate  design   and  construction  of  commercial  mega-­‐dam  projects,  and  their  relation  to  other  hazards   such  as  earthquakes  and  climate  changes.  Allegiance  to  each  of  these  ‘risk-­‐perception   groups’  is  apparently  governed  by  a  fluid  combination  of  factors  including  level  of  formal   education,  self-­‐perceived  economic  security,  and  degree  of  dependence  on  local  resources   versus  inflows  of  goods,  information  and  cash  from  outside  the  immediate  region.     Can  roads  be  made  into  a  unifying  factor?  

Table  1:  Risk  priorities.  [Substantial  gaps  in  these  data  will  be   filled  in  the  near  future—field  work  and  FGDs  are  presently   ongoing  in  SNP.]     4    


Based on  very  preliminary  data,  Table  1  shows  the  relative  prioritization  patterns  of   several  community  groupings  in  Indian  Eastern  Himalaya.  Although  we  need  to  collect  and   analyze  further  data,  a  reasonable  working  hypothesis  seems  to  be  that  in  our  region,  the   rapidly  expanding  road  network  is  a  common  concern  shared  by  most  groups  as  a  first  or   second-­‐order  concern.  We  do  not  yet  have  precise  data  on  the  extent  and  spatial   distribution  of  new  rural  pathway  and  roadway  construction  in  Darjeeling  and  Sikkim   Himalaya,  and  this  information  is  difficult  to  come  by  especially  because  two  of  the  major   players  in  rural  road  construction  are  1)  large  hydropower  companies,  who  are  building   roads  (sometimes  in  remote  areas)  to  service  their  hydro  construction  sites,  and  2)  the   military  and  border  control,  who  want  secured  access  for  vehicles  into  border  regions.   Neither  of  these  entities  is  motivated  to  publish  the  details  of  their  activities,  and  perhaps   surprisingly,  there  is  no  central  authority  tasked  with  tracking  and  mapping  the  rapidly   expanding  road  network  (Sarkar  2010).  Remote  sensing  can  give  a  representative  picture   of  the  physical  infrastructure,  except  smaller  pathways  and  trails  that  do  not  break  the  tree   cover  yet  can  contribute  to  erosive  processes  under  some  conditions  (Sidle  2006).  But  that   will  not  reveal  the  essential  information  about  who  built  a  road,  and  how,  and  who  is  using   it  now  it  is  built.     Concern  with  the  quantity  and  especially  the  quality  of  the  rural  roads—despite  the   disagreements  it  also  brings  out—may  serve  as  a  way  to  bring  together  disaster   preparedness  and  climate  adaptation  in  this  region,  while  at  the  same  time  facilitating   sustainable  economic  development.  Different  groups  certainly  have  different  reasons  for   concern  about  roads,  and  they  may  have  different  underlying  goals  for  connectivity,  but  in   all  cases,  climate  change  is  likely  to  heighten,  not  alleviate,  the  concerns.  For  instance,  there   is  a  well-­‐documented  positive  relationship  between  amount  of  rainfall  and  average  size  of   landslides.  But  in  Nepali  Central  Himalaya,  Petley  (2007)  showed  that  this  expected  strong   relationship  has  remained  significantly  constant  through  time.  The  number  of  landslides   with  associated  fatalities  has  risen  very  fast  over  the  last  20  years,  but  the  rainfall-­‐induced   average  size  of  the  landslides  has  not  increased  during  that  period—implying  that  there  are   simply  more  landslides,  not  bigger  ones.  Other  forms  of  land  use  change  could  influence  the   density  of  landslides,  but  the  strong  spatial  and  temporal  correlation  between  serious   landslides  and  rural  roads  is  not  found  between  landslides  and  land  use  changes  such  as   deforestation.  Sidle  et  al.  (2006)  demonstrated  that  throughout  Asia,  the  density  of   landslides  associated  with  road  construction  in  mountainous  areas  is  as  much  as  two   orders  of  magnitude  greater  than  it  is  for  other  land  use  changes.   Thus  there  are  potential  built-­‐in  points  of  consensus  when  it  comes  to  roads.  They  are   valued  very  highly;  they  loom  large  in  rural  people’s  lives,  though  not  always  for  the  same   reasons.  The  situation  in  Indian  East  Himalaya  in  many  ways  mirrors  that  in  Nepal.  The   rural  road  network  has  been  expanding  rapidly  over  the  last  20  years,  with  highly  unequal   inputs  of  design,  engineering  and  maintenance.  Society  has  every  reason  to  increase  the   5    


level of  investment  in  the  quality  of  the  road  network.  Satisfying  today’s  urgent  need  for   more  careful  planning  and  engineering  would  simultaneously  constitute  a  very  reasonable,   and  relatively  broad-­‐based,  investment  toward  a  climate-­‐secure  future.     Roads  and  MGNREGA   About  1990  in  Nepal  there  was  a  change  in  national  priorities  for  economic  and  social   development  with  a  new  emphasis  on  access  for  remote  rural  communities  (Petley  2007).   A  key  aspect  of  this  was  the  construction  of  a  network  of  ‘low  technology’  roads  to  montane   villages,  built  as  much  as  possible  using  local  human  and  physical  resources  and  with   minimal  recourse  on  expensive  engineering  and  design.  The  success  of  this  policy  in  rapidly   generating  rural  connectivity—and  its  political  popularity—may  have  influenced  the   formulation  and/or  implementation  in  India  of  the  National  Rural  Employment  Guarantee   Act  (NREGA)  enacted  in  2005.  This  Act  guarantees  100  days  of  manual  work,  paid  from  a   central  government  fund,  to  rural  households  across  India.  Although  the  Act  has  been   unevenly  implemented  in  different  states,  it  has  been  described  as  potentially  one  of  the   most  effective  rural  poverty-­‐alleviation  schemes  in  the  nation’s  history.  One  of  its   stipulations  is  that  only  a  minimal  amount  of  machinery  can  be  used  in  its  projects,  in  order   to  provide  as  many  places  as  possible  for  unskilled  labor  and  to  help  insure  that   employment  opportunities  go  to  the  neediest.  Another  is  that  road-­‐building  (‘rural   connectivity’)  should  absorb  no  more  than  10%  of  a  state’s  NREGA  budget.  The  second   condition  is  much  more  difficult  to  regulate  than  the  first,  and  Tables  2  and  3  show  that,  in   fact,  rural  connectivity  projects  dominate  in  project  plans  for  Darjeeling  Hills  (2013-­‐14)   and  for  North  Sikkim  (2012-­‐2013),  both  in  terms  of  number  of  projects  and  in  budget  size.      

Tables  2  &  3:  MGNREGA  projects  &  budgets  for  two  years  in  Darjeeling  and  North  Sikkim   Districts.     These  figures  are  derived  from  the  NREGA  website   (http://nrega.nic.in/netnrega/home.aspx  ).  Several  independent  studies  have  found  the  

6  


same anomaly.  IRMA  (2010)  found  that  throughout  the  state  of  Sikkim,  the  situation  was   similar  (Table  4).  

Tables  1:  MGNREGA  projects  for  2010,  Sikkim  state.     There  is,  thus,  every  reason  to  suspect  that  the  expansion  of  the  rural  road  network  in   Indian  East  Himalaya  may  not  be  proceeding  with  the  care  and  investment  level  warranted,   especially  under  conditions  of  impending  and  ongoing  climate  change.  Raising  the   engineering  and  construction  standards  of  MGNREGA  road  projects,  and  landslide-­‐proofing   them  to  the  greatest  extent  possible,  makes  sense  even  if  it  means  a  tightening  of  the   overall  budget.  Roads,  especially  motorable  roads,  benefit  some  groups  a  lot  more  than   others.  It  appears  that  at  least  in  the  hill  areas,  NREGA  is  to  some  extent  becoming  a  pool  of   inexpensive  labor  to  benefit  a  vision  of  rural  development  that  continues  to  leave  out  the   neediest.  The  remotest  villages  will  continue  to  benefit  most  from  land  development   projects  that  reduce  erosion,  improve  productivity  and  reduce  wastage.  And  even  the   construction  of  efficient  foot-­‐paths,  which  do  benefit  the  rural  poor,  should  be  done  with   care:  Sidle  (2006)  shows  that  foot-­‐path  construction,  too,  can  contribute  to  slope  instability   and  potential  failure.   But  this  should  not  be  interpreted  as  an  attack  on  MGNREGA  itself.  On  the  contrary,   MGNREGA  needs  to  be  strengthened,  by  increasing  the  role  of  capable  environmental  and   civil  engineers,  to  ensure  that  the  social  assets  created  do  not  in  future  prove  to  be  deadly   social  liabilities.  Although  outcomes  have  been  variable  from  state  to  state,  most   evaluations  of  the  still-­‐young  scheme  agree  that  it  is  on  its  way  to  becoming  possibly  the   most  effective  anti-­‐poverty  legislation  in  the  history  of  the  Indian  nation,  at  least  in  the   states  and  areas  where  implementation  is  achieving  a  minimum  level  (IRMA  2010,   Ravindranath  et  al  2013,  Vijayanand  ND,  but  see  Kidwai  2008).  It  has  already  provided   valuable  off-­‐farm  employment,  increasing  the  sustainability  of  the  smallholder  system.  As  a   rights-­‐based  program,  it  has  lent  a  new  respectability  to  the  kinds  of  manual  labor  that  are   its  focus,  increasing  the  self-­‐confidence  and  self-­‐respect  of  beneficiaries,  especially  women.   By  providing  a  reliable  alternative  and  thus  pushing  up  wages  and  increasing  the   7    


bargaining power  of  the  unskilled  worker  pool,  it  has  also  influenced  the  private  sector   employment  picture.  Finally,  by  creating  tangible  assets  in  land  and  supporting  agricultural   productivity,  it  increases  village  security  and  economic  capacities.     Reforestation  and  vegetation  management     It  is  often  assumed  that  deforestation  and  reforestation  are  strong  determinants  of   landslide  probability  (___).  While  forests  do  stabilize  slopes  to  shallow  depth,  they  do  not   have  much  influence  on  deep-­‐seated  landslides,  which  instead  reflect  geology  and   hydrology  (____).  Vegetation  (including  shrubs  and  herbs)  also  has  a  preventive  effect  on   shallow  landslides  by  drying  surface  soil  through  transpiration  and  intercepting  rainfall   (Sidle  2006).  Importantly,  forests  can  be  maintained  as  protection  forests  while  also   serving  as  production  forests:  fruit  orchards,  NTFP  production,  and  perennial  shade  crops   such  as  cardamom  and  ginger  do  not  offer  substantially  lower  effectiveness  of  soil   retention  services.  Carbon  sequestration  would  be  an  ideal  combination  with  protection   services,  where  (as  is  often  the  case)  protection  forests  are  situated  on  steep  and  relatively   inaccessible  slopes.   Shrubs  provide  comparable  soil  stabilization  services  to  trees,  while  adding  less  weight   surcharge  and  wind-­‐loading  to  steep  slopes.  Vegetation  can  be  managed  to  control  surface   erosion  as  well  as  to  control  landslide  risk.  By  reducing  erosion,  vegetation  cover  fights  the   formation  of  gullies  which  increase  water  infiltration  and  landslips  (FAO  2011).  Anything   creating  concentrated  water  flow  (gullies,  seepage  areas)  should  be  avoided  and  stabilized   with  vegetation.  In  general,  the  “consensus  among  land  managers  and  scientists  is  that   forests  lower  the  probability  of  shallow  landslides,  and  to  a  lesser  extent  deep-­‐seated   movements,  in  upland  areas.  This  is  reflected  in  the  reduced  amount  of  eroded  soil  and   rock  material  that  is  dislodged  and  transported  down  slope  in  forested  areas”  (FAO  2011).   Vegetation  management  must  also  be  considered  in  the  context  of  fuel  use,  and  this  is  again   linked  to  roads.  The  first  alternative  to  extracting  fuel  wood  as  a  ‘free  good’  from  the  forest   is  LPG,  but  the  large  heavy  cylinders  are  not  adopted  where  there  is  poor  road  access.  Thus   the  existence  of  LPG,  and  pressure  from  governments  or  NGOs  to  adopt  LPG,  add  to  the   ‘pull’  for  new  roads.  Alternatives  like  solar  or  peltric  sets  may  be  superior  to  LPG  in  some   respects  but  are  not  direct  competitors,  serving  separate  uses.  For  the  near  to  mid-­‐term,   there  is  no  alternative  to  wood  as  the  primary  energy  source  for  a  vast  number  of  people   worldwide.  In  montane  Eastern  Himalaya,  LPG  is  catching  on  quickly  as  the  road  network   and  the  tourism  industry  expand,  but  it  will  remain  an  adjunct  and  out  of  reach  for  many   families  for  the  near  to  mid-­‐term.  Given  what  is  now  known  about  the  health  effects  of   traditional  stoves,  and  their  aggregate  impacts  on  climate  change  through  emissions  of   ‘black  carbon’,  it  is  essential  to  consider  short-­‐term  mitigating  strategies  (Smith  ___,  ____).   ICS  connection    

8  


The fuel  wood  question  needs  more  systematic  attention  particularly  in  the  context  of  the   growth  of  tourism.  In  the  Himalayas,  much  tourism  has  been  concentrated  at  or  above  the   tree  line,  where  demand  may  easily  outstrip  supply.  In  Singalila  National  Park,  Sandakphu   and  the  ridge-­‐line  villages  leading  up  to  it  are  relatively  dry  and  the  surrounding  forests  are   highly  degraded.  Nepali  cook  stoves,  based  on  traditional  models,  constructed  of  dried  mud   brick  and  with  exterior  chimneys,  are  increasingly  popular  in  the  villages,  both  because   they  emit  less  smoke  and  use  fuel  more  efficiently.  They  need  to  be  rigorously  field-­‐tested,   though,  especially  under  the  intensive  use  conditions  of  tourist  tea-­‐stalls  and  hotels.   One  issue  it  has  yet  to  address  in  a  comprehensive  way  in  the  hill  districts  is  the  problem  of   human-­‐wildlife  conflict,  which  we  outline  briefly  below.   HWC  in  the  hill  districts:  the  forgotten  catastrophe?   Our  preliminary  analyses  show  that  human-­‐wildlife  conflict  is  probably  the  most  pressing   development  and  security  concern  of  the  group  of  smallholders,  especially  those  living  in   the  remote  villages  surrounded  by  mid-­‐montane  forest.  Our  own  interviews,  and  reports   from  our  local  partners,  indicate  that  as  much  as  40%  of  a  farmer’s  crops  of  potatoes,  peas   and  maize  may  be  consumed  or  spoiled  in  a  given  season  by  wild  boar,  barking  deer,   macaques  and  porcupine  (Rai  et  al  2013).  Populations  of  wild  boar  and  deer  seem  to  be   increasing  in  Eastern  Himalayan  lower  altitude  forests,  but  have  not  been  monitored.  The   villagers,  on  the  other  hand,  tend  to  assume  that  animals  are  coming  to  vegetable  fields   because  they  can  find  no  food  in  the  forest  (___).  The  creation  of  living  barriers  or  other   fencing  strategies  needs  to  be  studied  systematically.  This  issue  needs  to  be  addressed,   because  if  villagers  are  indeed  losing  significant  proportions  of  their  crops,  there  is  little   point  in  supporting  them  with  ancillary  activities  like  apiary  or  medicinal  plants.  The   hemorrhage  needs  to  be  fixed  first.             REFERENCES   Gowdy,  J.  M.  2004.  The  revolution  in  welfare  economics  and  its  implications  for   environmental  valuation  and  policy.  Land  Economics  80(2):239-­‐257.   Heinzerling,  L.  and  F.  Ackerman.  2002.  “Pricing  the  Priceless:  Cost-­‐Benefit  Analysis  of   Environmental  Protection.”  Washington,  D.C.:  Georgetown  Environmental  Law  and  Policy   Institute,  Georgetown  University  Law  Center.   IRMA  2010.  An  impact  assessment  of  the  usefulness  and  sustainability  of  the  assets  created   under  MGNREGA  in  Sikkim.  Institute  of  Rural  Mgmt,  Anand.   9    


Rai, R.,  R.  Chakraborty  and  P.  Shrestha.  2013.  Human-­‐Wildlife  Conflict:  Challenges  for   Conservation  and  Livelihood  Security  in  Sikkim  and  Darjeeling.  Indian  Mountain  Initiative,   Sustainable  Mountain  Development  Summit,  May  25  –  26,  2013.   Ravindranath  et  al.  2013.  Environmental  benefits  and  vulnerability  reduction  through   Mahatma  Gandhi  National  Rural  Employment  Guarantee  Scheme:  Synthesis  report.  Indian   Institute  of  Science,  Bangalore  (IIS),  Ministry  of  Rural  Development  (MoRD),  Government   of  India  (GoI)  and  Deutsche  Gesellschaft  für  Internationale  Zusammenarbeit  (GIZ).     Read,  D.  and  P.H.M.P.  Roelofsma.  2003.  Subadditive  versus  hyperbolic  discounting:  A   comparison  of  choice  and  matching.  Organizational  Behavior  and  Human  Decision  Processes   91:140–153.   Sidle,  R.C.,  Ziegler,  A.D.,  Negishi,  J.N.,  Nik,  A.R.,  Siew,  R.  &  Turkelboom,  F.  2006.  Erosion   processes  in  steep  terrain—truths,  myths,  and  uncertainties  related  to  forest  management   in  Southeast  Asia.  Forest  Ecology  and  Management,  224(1-­‐2):  199-­‐225.   Slovic,  P.  &  E.  U.  Weber.  2002.  Perception  of  Risk  Posed  by  Extreme  Events.  Prepared  for   conference  “Risk  Management  Strategies  in  an  Uncertain  World,”  Palisades,  New  York,   April  12-­‐13,  2002.   Smith,  K.R.  &  M.  Ezzati.  2005.  How  environmental  health  risks  change  with  development:   the  epidemiologic  and  environmental  risk  transitions  revisited.  Annual  Review  of   Environmental  Resources  30,  291–333.      

10  

Reinmar Seidler: Climate adaptation in the Indian Eastern Himalaya vulnerabilities and capacities  

Climate change is an extraordinarily challenging concept to grasp fully, and even more challenging to respond to in a practical sense. This...

Read more
Read more
Similar to
Popular now
Just for you