Page 1

Glacial Flooding & Disaster Risk Management Knowledge Exchange and Field Training July 11-24, 2013 in Huaraz, Peru

Modern and  past  climate  and  environmental  change  impact  on   cryosphere/water  resources  in  Central  Asia   Vladimir  B.  Aizen  and  Elena  M.  Aizen   University  of  Idaho,  USA   E-­‐mail:   Abstract   The  central  Asian  cryosphere  is  a  part  of  planet's  climate  and  hydrological  system,  one  that  is   particularly  at  risk  from  accelerated  climate  changes.  Despite  the  very  arid  climate,  the  central   Asian  glaciers  comprise  approximately  10,000  km3   fresh  water  that  is  a  vital  source  of  life  for   more   than   100   million   people.   The   history   of   climate   revealed   from   the   ice-­‐core   isotope-­‐ chemistry   records   large   variability   in   the   past   12,600   years   in   central   Asia.   Glaciers   in   Altai   and  inner  Tien  Shan  did  not  exist  at  the  end  of  Pleistocene,  and  were  regenerated  during  and   the   Younger   Dryas,   when   air   temperature   was   6.1   ±   0.3◦C   lower   than   the   modern   mean   air   temperature  (Aizen  et  al,  2013d).  An  abrupt  increase  in  air  temperature  of  more  than  6.7°C  at   the  end  of  the  Younger  Dryas  occurred  for  less  than  one  century  did  not  destroyed  glaciers  in   Altai.   During   the   last   30   years   of   modern   time,   annual   air   temperature   increased   0.65°C,   mainly  in  summer,  and  up  to  1.6°C  over  the  prairies  and  deserts.  In  high  mountains  of  central   Tien   Shan   air   temperature   increased   on   0.21°C   but,   even   a   small   increase   of   summer   air   temperatures  intensifies  seasonal  snow  and  glacier  melt,  decreasing  snow  cover  duration  for   one  month.  The  glaciers  lost  on  average  14%  of  area  and  27%  of  volume  in  Altai  from  1960s  to   2009,  8.5%  of  area  in  Tien  Shan  and  5%  in  Pamir  from  1970th  to  2009.   Keywords:  Central  Asia;  cryosphere,  climate,  snow  cover;  glaciers;  paleoclimate   Introduction   Shrinking  of  alpine  glaciers  and  the  acceleration  of  the  glacier’s  recession  appears  from  the   middle  of  1970  in  the  majority  of  mountain  regions  of  the  World  (Heiberly,  1990;  Kadota  et  al.,   1997;   Liu   et   al.,   2002;   Zemp   et   al.,   2006;   Aizen   et   al.,   2006;   Niederer   et   al.,   2008;   Paul   and   Andreassen,   2009;   Shahgedanova   et   al.,   2010).   An   accurate   evaluation   of  cryospheric   changes   becomes   a   crucial   issue   for   water   resource,   water   supply   and   hydropower   assessments   in   central   Asia.   Central   Asia   has   extremely   fragile   arid   lowlands   and   water-­‐rich   highlands,   where   melt  of  glacier  and  seasonal  snow  cover  supplies  over  80%  of  river  runoff  (Dikih,  1993;  Aizen,   et   al.,   1998;   Shi,   et   al.,   2007).   During   droughts,   glacial   runoff   can   reach   45%   (Schultc,   1965,   Aizen,   1997).   There   is   a   lack   of   generalized   knowledge   on   cryospheric   changes   over   high   central  Asia.  Existent  investigations  used  data  from  a  few  stations  (Table  1a),  accounting  for  a   relatively   limited   number   of   glaciers   (Table  1b),   which   results   often   do   not   account   for   the   extended  terrain  in  central  Asia  and  are  valid  only  for  local  purposes.   Central  Asia  (Fig.  1)  with  area  of  about  6.2  million  km2  consists  primarily  of  planes,  with   high  mountains,  reaching  7,000  m  in  the  south  and  southeast.  The  highest  point  is  Kongur  in   the  eastern  Pamir,  of  7719  m,  and  the  lowest  point  is  the  Turphan  depression  in  eastern  Tien   1  

Shan, of  -­‐154  m  bsl.  In  our  research,  Central  Asia  is  bordered  by  Caspian  Sea,  western  Siberia   and   Altai   mountains,   the   Mongolian   steppes   and   the   Gobi   desert,   and   the   Takla   Mahan   and   Karakum  deserts.     Data  and  Methods   Meteorological     data     include   monthly   average   air   temperatures   and   sums   of   precipitation  from  251  stations  spanning  35.28°-­‐50.25°N  and  50.4°-­‐91.98°E  and  from  -­‐134  m   bsl  to  4169  m  asl  for  two  periods:  1942-­‐1975  and  1976-­‐2009.  Sums  of  annual  (Pan),  winter   (Pw)   and   summer   (Ps)   precipitation,   means   of   annual   (Tan)   and   summer   (Ts)   air   temperatures,   linear   trends   (α)   for   the   two   periods   (1942-­‐1975   and   1976-­‐2009)   and   their   differences  (ΔT,  ΔP)  were  calculated.  The  statistical  significance  was  determined  by  T-­‐test,  F-­‐ test   and   non-­‐parametric   test   (Wilks,   2011).   We   consider   acceleration   (a)   through   changes   in   linear  trends  for  two  periods:  a  =  α1976-­‐  2009  –  α1942-­‐1975.     To   generate   continuous   spatial   fields   for   climatic   characteristics,   we   used   the   Geographically   Weighted   Regression   (GWR)   method   (Hofierka   et   al.,   2002)   interpolating   temporal   gaps   (Fotheringham   et   al.,   2002;   Brunsdon   et   al.,   2001).   The   lapse   were   estimated   for   each  grid  point  based  on  data  from  closest  stations.  Input  from  a  station  is  linearly  weighted   due  to  its  distance  from  the  point.  Cross  validation  was  used  to  evaluate  the  errors  of  spatial   interpolation.       Remote  sensing  data:     Snow   covered   area:   A   8-­‐day   dataset   was   developed   based   on   1   km   AVHRR   and   High   Resolution   Picture   Transmission   (NOAA,   1998,   2007)   via   NOAA   Stewardship   System   (   from   1976   to   2009   using   SAPS   (Khlopenkov   and   Trischenko,   2007).   MODIS   Terra   daily   and   8-­‐day   snow   cover   product   (MOD10A1v5   and   MOD10A2v5)   was   obtained   from   NSIDC   (   Auxiliary   data   include  Digital  Elevation  Model  (500  m  -­‐  1  km),  snow  survey  data,  and  land  cover  information.   Snow   survey   data   obtained   from   NSIDC   were   used   to   validate   snow   identification   in   daily   composite  AVHRR.  The  Land  Cover  Classification  data  at  1  km  resolution  from  AVHRR  (Hansen   et  al.,  1998,  2000)  was  obtained  from  University  of  Maryland  (Zhou  et  al,  2013).     Glacier   area/volume   (1970th-­‐2009)   were   completed   in   three   central   Asia   glacier   inventories   (   using   declassified   photographs   from   Corona   and     KH-­‐9   Mapping   Program,   Landsat   ETM+   and   ASTER   images,   and   ALOS/PRISM   2.5   m   resolution   (Surazakov   &   Aizen,   2010;   Aizen,   2011).   Volume   of   all   Altai-­‐Sayan   glaciers   was   estimated   using   glacier  area/volume  relationships  developed  with  in-­‐situ  radio  echo-­‐sounding  measurements   of  130  glaciers  (Nikitin,  2009).  Maps  of  the  Fedchenko  Gl.,  central  Pamir,  from  1928  and  1958   photogrammetric  surveys  and  data  of  ice  surface  velocity,  DEMs  and  ground  penetrating  radar   measurements  in  2009,  were  used  to  estimate  glacier  ice-­‐volume  changes  from  1928  to  2009   (Lambrecht,  et  al,  2013).       12,600   years   paleoclimatic   isotope-­‐chemistry   records   were   obtained   from   two   surface   to   bedrock   ice-­‐cores   drilled   in   2003   on   the   West   Belukha   Plateau   (Siberian   Altai   at   4115   m;   171.3  m  depth)  and  in  2007  on  the  Grigorieva  Ice-­‐cap  (Inner   Tien   Shan  at  4563  m;  87.46  m   depth).  Both  ice-­‐cores  were  processed  and  analyzed  at  University  of  Idaho,  University  of  Maine   (USA),  National  Institute  for  Polar  Research  and  Research  Institute  for  Humanity  and  Nature   (Japan)  dedicated  laboratories  at  2-­‐3  cm  resolution  (Takeuchi  et  al,  2013;  Aizen  et  al,  2013).    Stable   isotope   ratios   (δ18O,   δD)   were   determined   via   headspace   equilibration   using   a  Finnigan   Delta   Plus   isotope   mass   spectrometer   coupled   with   Finnigan's   GasBench   II.   The   analytical   precision   of   δ18O   and   δD   isotope   ratios   was   ±0.05‰   and   ±0.5‰.   Major   ion   2    

analysis was   via   suppressed   ion   chromatography   using   a   Dionex   DX500   system.   Ion   concentration   was   determined   at   0.01–0.07m   resolution   with   minimum   of   1   ppb.   Radiocarbon   analysis   of   the   POC   fraction   was   conducted   at   Laboratory   of   Radio   and   Environmental  Chemistry  at  Paul  Scherrer  Institute  (Switzerland)  (Jenk  et  al.  2009;  Sigl  et  al.,   2009).   Radiogenic   (δ3H)   isotope   ratios   were   measured   via   liquid   scintillation   counting   at   National   Institute   of   Polar   Research   and   in   the   Idaho   State   University,   USA.   The   dating   was   based  on:  δ3H  and   14C  marks;  seasonal  signal  in  stratigraphy  and  stable  isotope  distribution;   multi-­‐identification   of   layers   including   forest   fires,   Tunguska   explosion,   dust   storm   and   significant   volcanic   eruptions.   The   numeric   modeling   of   ice   thickness   aging   presented   in   Raymond   (1983)   and   implemented   by   Kaspari   et   al.,   (2008),   Thompson   et   al.,   (1989,   2000),   Yao   and   Yang   (2004),   Davis   et   al.,   (2005)   was   applied.   Information   on   discrepancy   of   dating   presented  in  (Aizen  et  al.,  2013d).           Results  and  Discussion   Changes   in   climatic   characteristics   (between   1976-­‐2009   and   1942-­‐1975).   Air   temperatures.  Increases  in  annual  means  were  observed  at  93%  and  7%  of  stations  show  no   changes.   The   area-­‐weighted   difference   in   annual   mean   temperature   throughout   the   central   Asia   was   0.65°C,   with   the   most   increase   in   the   summer.   The   most   significant   differences   in   annual/summer   means   were   observed   in   the   Aral   Caspian   deserts   and   Kazakhstan   steeps   (ΔTa=1°C,   ΔTs   =1.6°C).   The   lowest   difference   was   in   the   central   Tien   Shan,   0.21°C.   Differences   in   annual   means   decreased   with   altitude   from   0.72°C   below   1,000   m   to   0.31°C   above   3,000   m,   while   the   summer   differences   were   significant   throughout   all   regions   and   altitudes.   Area   weighted  means  of  acceleration  was  positive  (0.034°C  yr-­‐1)  throughout  regions  and  altitudes   with  the  most  acceleration  in  summer  (0.024°C  yr-­‐1).  The  western  and  eastern  Pamir  regions   in   summer   are   exceptions.   Precipitation   increased   significantly   at   35%,   decreased   at   35%,   and   did   not   change   at   the   remaining   30%   of   stations.   In   summer   46%   of   stations   showed   decreases   and   20%   showed   increases.   In   winter,   47%   stations   showed   increases,   while   only   16%   showed   decreases.   Spatially   interpolated   ΔPan   ranged   from   +27   mm   in   plain/desert   to   -­‐101   mm   in   the   inner   and   central   Tien   Shan.   The   total   area   weighted   ΔPan   was   positive   because   the   areas   with   increased   precipitation   exceeded   the   areas   with   decreased   precipitation  by  8%.  Increases  in  annual  precipitation  were  observed  in  western  and  eastern   Pamir,   western   Aral-­‐Caspian,   northern   Tien   Shan   foothills,   southern   Altai-­‐Sayan   mountains   and   eastern   Tarim   deserts   (42%   of   central   Asia   area).   An   increase   in   winter   precipitation   was   observed   below   2,000   m,   while   winter     precipitation   decreased   in   eastern   Pamir   and   Tien   Shan  above  2,000m.  Annual  differences  on  average  decreased  in  alpine  areas  above  3,000  m.   However,  the  western  Pamir  ΔPan  had  increases  at  all  altitudes,  while  the  western,  inner  and   eastern   Tien   Shan   had   significant   decreases   over   all   altitudes.   The   greatest   decrease   in   precipitation  occurred  during  the  summer  especially  at  altitudes  above  3,000  m  in  Tien  Shan.     Changes  in  cryosphere:     Seasonal   snow   cover   (1976-­‐   2009).   The   Man-­‐Kendall's   test   revealed   negative   trend   in   snow  covered  area  (SCA)  with  the  rate  of  -­‐0.31%  yr-­‐1  in  western  Pamir  above  3,000  m,  -­‐0.41%   yr-­‐1   in   eastern   Pamir   above   4,000   m,   -­‐0.35%   yr-­‐1   in   western   Tien   Shan   above   3,000   m   and   -­‐ 0.31%   yr-­‐1   in   inner   Tien   Shan   above   3,000m,   while   Altai-­‐Sayan   shows   increase   of   SCA   by   +0.25%  yr-­‐1   due  to  increase  of  winter  precipitation.  Maximum  decrease  of  SCA  is  observed  at   the  beginning  of  June.  There  is  the  negative  trend  of  snow  cover  duration  (SCD)  over  3,000  m   3    

of -­‐0.80  day  yr-­‐1  in  Pamir  and  -­‐1.20  day  yr-­‐1   in  Tien  Shan.  The  SCD  reduced  by  30  by  2009  in   central  Asia.     The   glaciers   of   Altai-­‐Sayan.   Counting   the   glaciers   larger   than   0.1   km2,   there   were   1,428   glaciers   with   area   of   1,285   km2   by   2009.   The   glaciers   lost   on   average   14%   of   area   from   1960s   to   2009   (Surazakov   et   al.,   2007;   Nikitin,   2009;   Shahgedanova   et   al.,   2010;   Aizen,   2011a).   The   recession   varied   from   4%   for   valley   glaciers   to   16%   for   small   cirque   and   piedmont   glaciers.   The  number  of  glaciers  have  reduced  by  7.5%  that  mainly  attributed  by  small  glaciers.  Average   glacier  retreat  was  from  -­‐2  to  -­‐10m  yr-­‐1  with  maximum  of  -­‐45m  yr-­‐1.  Overall  glacier  recession   was  accompanied  by  expansion  of  5  glaciers  in  1988  and  8  glaciers  in  1993.  The  glaciers  ice   volume  was  33.5  km3  in  2009  and  42.6  km3  in  1960  (Nikitin,  2009).  Altai’s  glaciers  lost  9.1  km3   (27%).     The  glaciers  of  Tien  Shan  had  area  12,949.29  km2  (7,590  glaciers,  1,840  km3)  in  2009  and   14,152.23  km2  in  the  1970th,  resulting  in  8.5%  loss.  The  largest  absolute  and  relative  glacier   area  loss  occurred  in  the  northern  Tien  Shan  (361  km2,  14.3%),  where  sums  of  precipitation   decreased  above  3,000  m  (-­‐18.6  mm),  and  the  summer  air  temperatures  increased  on  0.44°C.   Similar  large  absolute  recession  occurred  in  the  inner  and  central  Tien  Shan  at  higher  than  in   the   northern   Tien   Shan   elevations:   annual   precipitation   decreased   -­‐35   mm   and   summer   air   temperatures   increased   0.71°C.   The   least   absolute   glacier   recession   occurred   in   the   western   Tien   Shan   where   the   mountains   do   not   reach   4000   m,   summer   air   temperatures   increased   only   0.23°C   and   precipitation   decreased   -­‐13.4   mm.   The   eastern   Tien   Shan   lost   196   km2   of   glacier   area   (12%)   (Li,   2006;   Aizen,   2013c).   The   tongue   of   the   largest   Tien   Shan   glacier,   Inylchek,  (59  km  long,  547  km2)  retreated  700  m  and  area  loss  is  -­‐0.98  km2  (-­‐0.3%)  from  1943   to  2011.     The  glaciers  of  Pamir    cover  12,449  km2  in  1970th  and  11,834  km2  in  2009  (Aizen  et  al  ,   2011c).  The  Pamir  glaciers  changed  mainly  due  to  shrinkage  of  small  glaciers  with  area  <0.5-­‐   2.0  km2,  which  numbers  decreased  from  456  in  1970s  to  359  in  2009.  The  number  of  medium   (2.1  –  10.0  km2)  and  large  glaciers  (over  100  km2)  remains  stable  and  their  area  shrunk  less   than  2%.  The  large  central  Pamir  glaciers  are  the  most  stable  due  to  high  elevated  location  of   accumulation   areas   and   precipitation   surplus   in   the   last   two   decades.   The   rate   glacier   recession   is:  -­‐11.5%   and   -­‐7.6%   in   Hindukush   and   Vakhshan   Ranges,   southern   Pamir;   -­‐4.9%   in   Gissaro-­‐Alai;  -­‐0.7%  and  -­‐1.5%  in  central  Pamir,  and  -­‐3.8%  in  eastern  Pamir  and  total  glaciers   area  shrunk  615  km2  (5%)  from  1970  to  2009.  According  to  Schetinnikov  (1998),  Pamir  glacier   area  has  shrunk  10.5%  from  1950s  to  1980.  The  Fedchenko  Glacier,  one  of  the  world  largest   alpine  glaciers  (72  km  long,  579  km2),  has  insignificantly  retreated  755  m  with  area  loss  of  -­‐ 2.91  km2   (-­‐0.5%)  from  1958  to  2009  (Lambrecht,  et  al.,  2013;  Aizen,  eat  al.,  2013a).  However,   the   level   of   the   glacier   surface   dropped  -­‐30   m   at   the   altitude   of   terminus   (2,896   m)   with   ice   volume  loss  of  about  4.3  km³  from  1958  to    2009.  The  historical  photogrammetry  surveys  on   the  Fedchenko  Gl.  have  revealed  that  glaciers  in  Pamir  had  the  highest  rate  of  recession  from   1928  to  1958.  In  the  1960s  and  between  2000  and  2007,  the  area  loss  was  insignificant  (0.014   and  0.010  km²/yr  respectively)  (Lambrecht,  et  al,  2013).           Paleoclimate   The  Altai-­‐Sayan  and  Tien  Shan  glaciers  below  5,000  m  did  not  exist  in  the  Bølling-­‐Allerød   period  (Takeuchi,  et  al.,  2012;  Aizen,  et  al.,  2013d).  Altai-­‐Sayan  glaciers  regenerated  during  the   Younger  Dryas  (YD),  when  air  temperatures  were  on  average  6.1°C  lower  than  in  the  Recent   Warming  Period  (RWP),  i.e.  from  1993  to  2003.  The  inner  Tien  Shan  Glaciers  regenerated  later   (Takeuchi   et   al.,   2013).   An   abrupt   decrease   in   air   temperatures   at   the   beginning,   and   an   increase   at   the   end,   of   the   YD   intensified   winds   and   dust   loading   to   atmosphere   from   4    

expanded Asian   deserts.   Concentrations   of   major   ions   increased   significantly   during   the   transitional   time   of   abrupt   air   temperature   change   while   during   the   minimum   air   temperatures  of  the  YD,  mineral  dust  loading  weakened.  These  results  are  in  accordance  with   analyses  from  Greenland  (Mayewski  et  al.,  1997),  Antarctica  (Jouzel  et  al.,  1996),  and  tropical   alpine   (Thompson   et   al.,   1995)   ice   cores.   After   the   YD,   major   ions   concentration   decreased,   with  the  lowest  concentrations  during  RWP.     During  the  Holocene,  the  time  colder  than  RWP  observed  for  about  six  and  a  half  millennia,   i.e.,  YD,  Pre  Boreal  Oscillation,  Severe  Centennial  Drought  (SCD).  During  SCD  air  temperature   was   on   average   4.9°C   lower   than   during   the   following   MWP,   and   4.41°   lower   compared   to   the   recent   time.   The   Altai   glaciers   survived   the   Abrupt   Warming   Events,   the   Holocene   Climate   Optimum   (HCO),   and   the   Medieval   Warm   Period   (MWP).     Air   temperatures   during   the   HCO   and   MWP   were   warmer   corresponding   to   a   1.6°C   and   2.4°C   centennial   means   increase   compared  RWP.  During  the  MWP,  decadal  means  exceeded  3.3°C  the  recent  decadal  mean  air   temperatures.   The   most   intensive   enrichment   of   δ18O   is   related   to   circa   760   AD   during   the   MWP   when   temperatures   reached   a   maximum,   further   cooling   followed   gradually   with   periods  of  higher  or  lower  temperatures  until  the  middle  of  20th  century.     Changed   trajectories   in   prevailing   western   and   northwestern   storms   from   the   Atlantic   during  MWP  described  by  Bradley  (2000),  Bradley  et  al.  (2003),  resulted  in  increase  share  of   re-­‐evaporated   moisture   from   the   Aralo-­‐Caspian   basin,   which   extended   and   dominated   as   far   as  Tien  Shan  and  Siberia  with  a  maximum  share  during  the  pre-­‐industrialization  time  (Aizen  et   al.,  2013d).     Conclusion   Significant  increases  in  annual  and  summer  average  air  temperatures  for  the  last  30  years   were  observed  at  93%  of  central  Asian  stations.  The  most  significant  increase  was  observed  in   the  Aral  Caspian  deserts  and  Kazakhstan  steeps.  Acceleration  in  grow  of  annual  and  summer   air  temperatures  were  positive  throughout  regions  and  altitudes,  except  for  the  western  and   eastern  Pamir  in  summer.  Increases  in  precipitation  for  the  last  30  years  were  observed  in  the   western   Pamir,   the   western   Aral-­‐Caspian,   the   northern   Tien   Shan   foothills,   Altai-­‐Sayan   mountains   and   eastern   Tarim   deserts.   The   increase   in   winter   precipitation   was   observed   mainly   below   2,000   m,   and   in   central   Pamir   and   eastern   Pamir   above   5,000   m.   The   largest   decrease  in  precipitation  observed  during  the  summer,  particularly  in  Tien  Shan  over  3,000  m   asl.   The  rate  of  seasonal  snow  covered  area  decrease  for  the  last  30  years  varied  from  -­‐0.31%   to  0.41%  yr-­‐1  in  western  and  eastern  Pamir,  and  in  western  and  inner  Tien  Shan  above  3,000  -­‐ 4,000  m.  The  Altai-­‐Sayan  shows  positive  rate:  +0.25%  yr-­‐1.   The   rate   of   glacier   area   change   is   different   in   the   large   glacierized   massifs   and   small   glaciers.   The   biggest   glacier   recession   observed   below   4,000-­‐4,500   m.   The   80%   of   glacier   covered   area   are   presented   by   several   large   glacierized   massifs   over   300   km2   each   with   accumulation  areas  above  5,000  m,  where  the  rate  of  area  recession  does  not  exceed  3%  for   the   last   40-­‐60   years.   However,   changes   in   glacier   covered   area   do   not   represent   the   real   changes  of  glaciers.  To  estimate  the  water  resources  in  central  Asia,  assessment  of  changes  in   ice  volume  is  necessary.     Glaciers  up  to  5,000  m  in  central  Asia  did  not  exist  during  the  Bølling-­‐Allerød  interstadial   period.   The   climate   that   time   was   warmer   than   during   the   last   30   years.   The   glaciers   regenerated   during   and   after   the   Younger   Dryas,   when   air   temperatures   were   on   average   6.1oC  lower  than  now.  At  the  end  of  Younger  Dryas  air  temperature  increased  abruptly  more   than  6.7oC  within  100  years.  Reconstructed  air  temperatures  shows  several  periods  during  the   5    

Holocene Climate  Optimum  (7,000  to  3,600  cal  yrs  BC)  and  Medieval  Warm  Period  (AD  700– 1,150)  with  air  temperatures  up  to  3.3oC  higher  than  in  the  last  30  years  decadal  mean.                   References   Aizen,   V.B.,   H.   Zhou,   E.M.   Aizen,   C.   Mayer,   A.B.   Surazakov.   Central   Pamir   Glaciers   regime   and   dynamics:  1928-­‐2011  photogrammetry,  GPS  survey,  Corona  KH-­‐9,  Landasat,  SRTM,  ALOS   PRISM  data  (2013a,  in  process).   Aizen,   E.M.,   V.B.   Aizen,   H.   Zhou.   Atmosphere   Circulation   Patterns   and   Climate   Changes   in   Central  Asia.  Journal  of  Climate  (2013b,  submitted).   Aizen,  V.  B.,  E.M.  Aizen,  A.  B.  Surazakov,  S.A.  Nikitin,  J.  Kubota,  H.  Zhou.  Glaciers  changes  in  Tien   Shan  in  20th  century  J.  Glaciology  (2013c,  submitted)   Aizen,  E.M.,  Aizen,  V.  B.,  Takeuchi,  N.,  Joswiak,  D.  R.,  Fujita,  K.,  Nikitin,  S.  A.,  Grigholm,  B.,  Zapf,   A.,   Mayewski,   P.A.,   Scwikowski,   M.,   Nakawo,   M.,   Abrupt   and   moderate   climate   changes   at   high-­‐mid   latitudes   of   Asia   during   the   Holocene.   Submitted   to   the   Journal   of   Glaciology   (2013d,  in  review))   Aizen,  V.B.  2011a.  Altai  Glaciers.    Encyclopedia  of  Snow,  Ice  and  Glaciers.  Ed:  V.P.Sigh,  Springer   Publisher,  p.1253.   Aizen,   V.B.   2011b.   Tien   Shan   Glaciers.   Encyclopedia   of   Snow,   Ice   and   Glaciers.   Ed:   V.P.Sigh,   Springer  Publisher,  p.1253.   Aizen,   V.B.   2011c.   Pamir   Glaciers.   Encyclopedia   of   Snow,   Ice   and   Glaciers.   Ed:   V.P.Sigh,   Springer  Publisher,  p.1253.   Aizen,   V.B.,   P.A.   Mayewski,   E.M   Aizen,   D.R.   Joswiak,   S.   Kaspari,   S.   Sneed,   A.B.   Surazakov,   B.   Grigholm,   A.   Finaev.   2009.   Stable-­‐Isotope   and   Chemical   Time   Series   from   Fedchenko   Glacier  Firn  Core  (Pamir).J.  of  Glaciology,  V.55/190  pp.275-­‐291.   Aizen,   V.B.,   E.M.   Aizen,   A.B.   Surazakov,   V.A.   Kuzmichenok,   2006.   Assessment   of   Glacial   Area   and  Volume  Change  in  Tien  Shan  (Central  Asia)  During  the  Last  150  years  Using  Geodetic,   Aerial  Photo,  ASTER  and  SRTM  Data.  Ann.  Glac.,  V.43,  pp.  202-­‐213.   Aizen  V.  B.,  E.  M.  Aizen,  J.  Melack  and  J.  Dozier,  1997.  Climate  and  Hydrologic  Changes  in  the   Tien  Shan,  Central  Asia.  J.  Climate,  10,  6,  1393-­‐1404.     Aizen,  V.B.,  E.M.  Aizen,  1998.  Estimation  of  glacial  runoff  to  the  Tarim  River,  Central  Tien  Shan.   Proceedings   of   International   Symposium   "WaterHead'98",   Merano,   ITALY,   IAHS   Publ.,   No   248,  pp.191-­‐199.   Bradley,   R.S.,   K.R.   Briffa,   J.   Cole,   M.K.   Hughes   and   T.J.   Osborn.   2003.   The   climate   of   the   last   millennium.   In:   Alverson,   K.,   R.S.   Bradley   and   T.F.   Pedersen   (eds.)   Paleoclimate,   Global   Change  and  the  Future.  Springer,  Verlag,  Berlin,  105-­‐141.   Bradley,  R.  2000.  1000  Years  of  Climate  Change,  Science  288:1353-­‐1354.   Brunsdon,   C.,   J.   McClatchey,   and   D.J.   Unwin,   2001.   Spatial   variations   in   the   average   rainfall-­‐ altitude   relationship   in   Great   Britain:   an   approach   using   geographically   weighted   regression.  International  Journal  of  Climatology  21  (4),  pp.455-­‐466.   Claussen,   M.,   C.   Kubatzki,   V.   Brovkin,   A.   Ganopolski,   P.   Hoelzmann,   and   H.-­‐J.   Pachur.   1999.     Simulation   of   an   abrupt   change   in   Saharan   vegetation   in   the   mid-­‐Holocene.   Geoph.   Res.   Lett.,  26(14),  2037-­‐2040.   Davis,   M.E..,   L.G.   Thompson,   T.Yao   and   N.   Wang.   2005.   Forcing   of   the   Asian   monsoon   on   the   Tibetan   Plateau:   eveidence   from   high-­‐resolution   ice   core   and   tropical   coral   records.   J.   Gephys.  Res.,  110  (D4),  D04101,  (10.1029/2004)D004933.)   Dikih,  A.  N.,  1993:  Glacial  runoff  of  Tien  Shan  rivers  and  its  role  in  formation  of  total  runoff  J.   Data  Glaciol.    Studies,  78,  pp.  5–43  (Russ).   6    

Froehlich, K.,   J.J.   Gibson   and   P.   Aggarwal.   2002.   Deuterium   excess   in   precipitation   and   its   climatological   significance.   In   Study   of   environmental   changes   using   isotope   techniques.   Vienna,  International  Atomic  Energy  Agency,  C&S  Papers  Series  13/P,  54–65.     Fotheringham,   S.,   M.   Charlton,   and   C.   Brunsdon,   2002.   Geographically   Weighted   Regression:   The  Analysis  of  Spatially  Varying  Relationships  Wiley,  282  p.   Gillespie,  A.R.,  R.M.  Burke,  and  A.  Bayasgalan.  2001.    Neoglaciation  in  Central  Asia.    Geological   Society  of  America,  Abstracts  with  Program,  33  (6),  442.   Haeberli,   W.,   1990.   Glacier   and   permafrost   signals   of   20th-­‐century   warming.   Annals   of   Glaciology,  14,  pp.  99-­‐101.   Hofierka  J.,  Parajka  J.,  Mitasova  H.,  Mitas  L.,  2002.  Modeling  impact  of  terrain  on  precipitation   using  3-­‐D  spatial  interpolation.  Transactions  in  GIS,  135-­‐150.   Kääb,  A.,  E.    Berthier,  C.  Nuth,  J.  Gardelle,  Y.Arnaud.  2012.  Contrasting  patters  of  early  twenty-­‐ first-­‐century   glacier   mass   change   in   the   Himalayas.   Nature.   23   August   2012.   Vol   488,   issue   7412,  pages  495-­‐498,  doi:10.1038/nature11324.   Kadota   T.,   K.   Fujita,   K.   Seko,   R.B.   Kayastha,   Y.   Ageta.   1997.   Monitoring   and   prediction   of   shrinkage  of  a  small  glacier  in  the  Nepal  Himalaya.  Ann.  Glaciol.,  24,  90-­‐94.   Khlopenkov,   K.V.,   Trishchenko,   A.P.,   2007.   SPARC:   New   Cloud,   Snow,   and   Cloud   Shadow   Detection   Scheme   for   Historical   1-­‐km   AVHHR   Data   over   Canada.   Journal   of   Atmospheric   and  Oceanic  Technology  24,  322-­‐343.   Krenke,   A.,   1998.   Former   Soviet   Union   hydrological   snow   surveys,   1966-­‐1996,   Edited   by   NSIDC  [WWW  Document].  URL   Kropacek,  J.,   Neckel,  N.   2012.   Towards   a   robust   method   for   estimation   of   volume   changes   of   Mountain  glaciers  from  ICESat  data.  EGU  General  Assembly  2012,  held  22-­‐27  April,  2012  in   Vienna,  Austria.,  p.2849.   Latifovic,   R.,   Trishchenko,   A.P.,   Chen,   J.,   Park,   W.B.,   Khlopenkov,   K.V.,   Fernandes,   R.,   Pouliot,   D.,   Ungureanu,  C.,  Luo,  Y.,  Wang,  S.,  others,  2005.  Generating  historical  AVHRR  1  km  baseline   satellite  data  records  over  Canada  suitable  for  climate  change  studies.  Canadian  Journal  of   Remote  Sensing  31,  324–346.   Lambrecht,   A.,   C.   Mayer,   V.   Aizen,   D.   Floricioiu,   A.   Surazakov.   The   Fedchenko   glacier   in   the   Pamir  during  eight  decades.  Journal  of  Glaciology  (2013,  in  review).   Mayewski,  P.A.,  L.D.  Meeker,  M.S.  Twickler,  S.I.  Whitlow,  Q.  Yang,  W.B.  Lyons,  M.  Prentice.  1997.   Major   features   and   forcing   of   high-­‐latitude   northern   hemisphere   atmospheric   circulation   using  a  110,000-­‐year-­‐long  glaciochemical  series.  J.  Geoph.  Res.  102:  26345-­‐26366.     Jenk  TM,  S.  Szidat,  M.  Schwikowski,  H.W.Gäggeler,  S.  Brütsch,  L.  Wacker,  H.A.Synal,  M.Saurer,   2006.   Radiocarbon   analysis   in   an   Alpine   ice   core:   record   of   anthropogenic   and   biogenic   contributions   to   carbonaceous   aerosols   in   the   past   (1650-­‐1940).   Atmos   Chem   Phys   6:5381-­‐90.   Jouzel,   J.,   C.   Waelbroeck,   B.   Malaize,   M.   Bender,   J.R.   Petit,   M.   Stievenard,   N.I.   Barkov,   J.M.   Barnola,   T.   King,   V.   M.   Kotlyakov,   V.   Lipenkov,   C.   Lorius,   D.Raynaud,   C.   Ritz,   and   T   .   Sowers.   1996.   Climatic   interpretation   of   the   recently   extended   Vostok   ice   records.   Climate   Dynamics  12,  513–21.   Kaspari.  S.,R.  L..Hooke,  P.A.Mayewski,  S.Kang,  S.Hou  and  D.  Qin.2007.  Snow  accumulation  rate   on   Qomolangma   (Mount   Everest),   Himalaya:   synchroneity   with   sites   across   the   Tibetan   Plateau  on  50-­‐100  year  timescales.  J.  Glaciol.,  54,  (185).  343-­‐353.   Li  B,  Zhu  A-­‐X,  Zhang  Y,  Pei  T,  Qin  C.,  Zhou  C.,  2006.  Glacier  change  over  the  past  four  decades  in   the  middle  Chinese  Tien  Shan.    J.  Glaciol.  52/178.  


Liu Chaohai,   Xie   Zichu,   Liu   Shiyin,   2002.   Study   on   the   glaciers   variation   and   its   runoff   responses   in  the  arid  region  of  Northwest  China.  Science  in  China  (Series  D),  42  (suppl.),   pp.  55-­‐62.   Niederer,   P.,   V.   Bilenko,   N.   Ershova,   H.   Hurni,   S.   Yerokhin,   and   D.   Maselli,   2008.   Tracing   glacier   wastage   in   the   Northern   Tien   Shan   (Kyrgyzstan/Central   Asia)   over   the   last   40  years.   Climatic  Change  86  (1):227-­‐234.     Nikitin,  S.A.  2009.  Zakonomernosti  respredeleniya  lednikovyh  ldov  v  Russkom  Altae,  ocenka  ih   zapasov  i  dinamiki  (Pattern  of  distribution  of  ice  in  the  Russian  Altai  glaciers,  evaluation  of   its  resources  and  dynamics).  Materialy  Glaciol.Issledovanii  (Data  of  Glaciological  Studies),   V.  107,  87-­‐96  (Russ).   Paul,  F.  and  L.M.  Andreassen,  2009.  A  new  glacier  inventory  for  the  Svartisen  region,  Norway,   from  Landsat  ETM+  data:  challenges  and  change  assessment.  J.  Glaciol.,  55(192),  607–618.   Raymond,  CF.1983.  Deformation  in  the  vicinity  of  ice  divides    J.  Glaciol.,  29  (103),  357-­‐373.   Savelieva,   N.   I.,   I.   P.   Semiletov,   L.   N.   Vasilevskaya,   and   S.   P.   Pugach.   2000.   A   climate   shift   in   seasonal  values  of  meteorological  and  hydrological  parameters  for  northeastern  Asia,  Prog.   Oceanogr.,  47(2–4),  279–297.   Schetinnikov,   A.S.   1998.   Morfologiya   i   regime   lednikov   Pamiro-­‐Alaya   (Morphology   and   regime   of  the  Pamir-­‐Alai  glaciers).  CANIGMI  Publisher,  Tashkent,  p.219.   Schultc,  V.L.,  1965.  Book:  Riki  Srednei  Azii  (The  Rivers  of  Central  Asia).  Hydrometeo  Publisher,   Leningrad,  691p.  (Russ).   Sigl  M,  Jenk  TM,  Kellerhals  T,  Szidat  S,  Gäggeler  HW,  Wacker  L,  Synal  HA,  Boutron  C,  Barbante   C,   Gabrieli   J,   Schwikowski   M.   2009.   Towards   radiocarbon   dating   of   ice   cores.   J   Glaciol   55(194):985-­‐96.   Shahgedanova,   M.   G.   Nosenko,   T.   Khromova,   A.   Muraveyev.   2010.   Glacier   shrinkage   and   climatic   change   in   the   Russian   Altai   from   the   mid-­‐   20th   century:   An   assessment   using   remote   sensing   and   PRECIS   regional   climate   model.   J.   Geophysical   Research,   V.   115,   D16107,  doi:10.1029/2009JD012976   Shi,   Yafeng,   Yongping   Shen,   Ersi   Kang,   Dongliang   Li,   Yongjian   Ding,   Guowei   Zhang   and   Ruji   Hu   2007.   Recent   and   Future   Climate   Change   in   Northwest   China.   Climatic   Change,   Vol.   80,   Numbers  3-­‐4,  pp.  379-­‐393.   Surazakov,  A.B.,  V.  B.  Aizen,  2010.  Positional  accuracy  evaluation  of  declassified  Hexagon  KH-­‐9   mapping   camera   imagery.   Photogrammetric   Engineering   &   Remote   Sensing,   Vol.76,   N   5,   pp.603-­‐608.   Surazakov,   A.B.,   V.   B.   Aizen,   S.A.Nikitin.  2007.   Glacier   Area   and   River   Runoff   Changes   in   the   Head   of   Ob   River   Basins   During   the   Last   50   Years.   Environmental   Research   Letters,­‐9326/2/4/045017.   Surazakov,  A.B.,  Aizen  V.B.  2006.  Surazakov,  A.B.,  V.B.  Aizen.  2006.  Estimating  Volume  Change   of  Mountain  Glaciers  Using  SRTM  and  Map-­‐Based  Topographic  Data:  IEEE,  Transaction  of   Geoscience  and  Remote  Sensing,  V.  44,  №.  10,  October  2006.   Takeuchi,   N.,   K.   Fujita,   V.   B.   Aizen,   C.   Narama,   Y.   Yokoyama,   S.   Okamoto,   K.   Naoki,   J.   Kubota.   2012.  The  disappearance  of  glaciers  in  Central  Asia  at  the  end  of  Pleistocene  revealed  by  an   ice  core  drilled  in  the  Tien  Shan  Mountains.  Earth  and  Planetary  Science  (2013  in  review)   Taylor,   K.C.,   P.   A.   Mayewski,   R.B.   Alley,   E.J.   Brook,   A.J.   Gow,   P.M.   Grootes,   D.A.   Meese,   E.S.   Saltzman,  J.P.  Severinghaus,  M.S.  Twickler,  J.W.C.  White,  S.  Whitlow,  G.A.  Zielinski.  1997.  The   Holocene-­‐Younger   Dryas   Transition   Recorded   at   Summit,   Greenland.   Science,   278:   825-­‐ 827.  


Thompson L.G,   E.   Mosley-­‐Thompson,   M.E.   Davis,   P.N.   Lin,   K.A.   Henderson,   J.   Cole-­‐Dai,   J.F.   Bolzan,   K.B.   Liu.   1995.   Late   Glacial   Stage   and   Holocene   tropical   ice   core   records   from   Huascara´n,  Peru.  Science  269:  47–50.   Thompson,  L.G.,  E.  Mosley-­‐Thompson,  M.E.  Davis,  J.F.  ,  Bolzan,  T.Yao,  N.  Gundestrup,  X.  Wu,  L.   Klein,   and   Z.   Xie.   1989.   100,000   year   climate   record   from   Qinghai-­‐Tibetan   Plateau   ice   cores.  Science,  246(4929),  474-­‐477.     Thompson,  L.G.,  T.  Yao,  E.  Mosley-­‐Thompson,  M.E.  Davis,  K.A.  Henderson,  and  P.N.  Lin.  2000.    A   high-­‐resolution   millennial   record   of   the   south   Asian   monsoon   from   Himalayan   ice   cores.   Science  ,  289  (5486):  1916-­‐1919.   Yao,   T.   and   M.Yang.   2004.   Climatic   changes   over   the   last   400   years   recorded   in   ice   collected   from  the  Guliya  Ice  Cap,  Tibetan  Plateau.  In  Cecil,  L.D.,  J.R.  Green  and  L.G.  Thompson,  eds.   Earth  paleoenvironments:  records  preserved  in  mid  and  low-­‐  latitude  glaciers.  Dordecht,   Kluwer,  163-­‐180.   Zemp,   M.,   W.Haeberli,   M.Hoelzle,   F.   Paul,   2006.   Alpine   glaciers   to   disappear   within   decades?   Geophysical  Research  Letters,  Vol.  33,  l13504,  doi:10.1029/2006gl026319.   Zhou,  H.,  Aizen,  V.  B.,  Aizen,  E.  M.,  Deriving  long  term  snow  cover  extent  dataset  from  AVHRR   and  MODIS  data:  central  Asia  case  study,  Remote  Sensing  of  Environment  (2013,  accepted)       Table  1.  Recent  publications  on  Central  Asia  climate,  glaciers  and  hydrological  changes.    (a)     Temper Region,   Peri Resol Techniqu n   atur Precipitation                                    Others   area   od   ut.   e   e   (1)   Tien   Max   snow   194 Thiessen   Shan   thickness,   11 0-­‐ mont polygon   +0.01C   +1.2  mm/yr   200to   >   duration:-­‐ 0   199 h   spatial   /yr   <  2000m   4000  m   10cm,-­‐9   1   averaging     day/50yrs   sum 195 North   TS   (2)  CA   mer   SE   Mongolia   &   N   1-­‐ summer   precip   35-­‐50N   32   mont REOFA     China   negative   199 shows   decadal   75-­‐120E   h   trend   0   scale  oscillation     valleys: (3)   193 +2.2°C/  <1000   m:   +0.25   Tajikistan   0-­‐ 60yrs;     mm/yr         4   year     800-­‐4160   199 HE:   >2000   m:   m   1   +0.4°C/ +5.37mm/yr   60  yrs     (4)  CA   Multi-­‐ 189 -­‐25   to   848   regressio Steady   1-­‐ Less   steady   m   26   year   n;   spatial   positive     199 positive  trend   37  to  50N   extrapola trend   1   50  to  85E   tion   (5)   68-­‐ 187 Warming   did   Regressio +   0.027   3614  m   21   9   year     not   occurring   n,  DFA     C  yr-­‐1   39.73-­‐ 200 steadily.   Three   9    

45.77N 62.12-­‐78.4   E  


(6) north   9   China    (b)   Region  

197 9– 199 9

Perio d

(7) 1943-­‐ Akshiirak   1977   (8)   1977-­‐ Akshiirak   2001  

(9) 1977-­‐ Akshiirak   2003  

(10) 1955-­‐ Zailiyskiy   1990   Alatau   (11)   Zailiyskiy   1979-­‐ Alatau  (6   1999   valleys)   (12)   Sokoluk   R.  basin,   Kirgizkiy   range   (13)   Glacier   No.  1,   Urumqi   (14)   Terskey-­‐

thrusts were     identified   :   beginning  30th  ;   50th  70th  

1963-­‐ 1986 1986-­‐ 2000   1962-­‐ 2003   1971-­‐ 2002  

mont h

Negative trend  

Droughts for   3   summers   (1997-­‐99)    

Initial Data,  map/image  geo-­‐referencing  error,   Area  change,   area,   method  of  glacier  delineation  for  the  First  (F),   km2  (%)   km2   Second  (S)  and  Third  (T)  inventories   F,  S:  1:10,000  topographic  maps  compiled   from  aerial  photography;  horizontal  errors  <   424.7   -­‐17.95  (-­‐4.2)   2.5  m;  manual  digitizing  with  stereo   interpretation  of  the  aerial  photographs.   F:  1:50,000  map  (Kuzmichenok,  1990);   manual  digitizing  of  the  scanned  map.   406.8   -­‐93.6  (-­‐23)   S:    ASTER  image;  georeferencing  errors  were   not  reported;  manual  digitizing.   F:  original  glacier  boundaries  from   Kuzmichenok  (1990)   406.8   S:  ASTER  image;  image  orthorectification   -­‐35.15  (-­‐8.6)   error  9  m;  manual  digitizing  with  stereo   interpretation  of  the  3N  and  3B  bands.   F:  Glacier  boundaries  were  transferred  from   aerial  photographs  to  1:25,000  map;  errors  of   287.3   area  estimation  5-­‐7%.   81.8  (-­‐29)   S:  Aerial  photographs,  same  methods  as   above;  errors  of  area  estimation  2-­‐3%.   F:  1:100,000  topographic  maps;  nominal   accuracy  20  m;  manual  digitizing   198.3 S:  Landsat  ETM;  errors  of  area  estimation  2-­‐ -­‐34.2  (-­‐17.3)   7   3%;  multispectral  classification  and  manual   editing.   F:  1:25,000  topographic  maps;  nominal   accuracy  5  m;  manual  digitizing.   31.7   S:  KFA1000  space  photograph;   -­‐4.2  (-­‐13.3)   orthorectification  error  15  m;  manual   digitizing.   T:  Landsat  ETM+;  orthorectification  error  10   27.5   -­‐4.7  (-­‐17.1)   m;  4/5  band  ratio  for  glacier  classification.   F,S:  topographic  maps  1962,  1964,  1986,   1992,  1994,  2000  and  2001;  errors  were  not   1.94   -­‐0.24  (-­‐12.4)   reported;  manual  digitizing.   245  

F: Corona  (1.8  m  resolution);   orthorectification  error  30.0  m;  manual  

-­‐18 (-­‐8)   10  

Alatoo (15)  Aksu   1963-­‐ R.  basin   1999   (15)   Kaidu  R.   basin  

1963-­‐ 2000

digitizing. S:  Landsat  ETM+;  orthorectification  error  25.7   m;  multispectral  classification.   F:  Topographic  maps  of  1:100,000  scale;   1760   manual  digitizing.   S:  Landsat  TM  and  ETM;  manual  digitizing.   Linear  error  of  glacier  boundary  change  90  m.   333   Only  the  glaciers  with  length  change  >90m   were  included  in  the  study.   F:  Aerial  photographs  and  S:  Landsat  TM   2093. images.  Linear  error  of  glacier  boundary   8   change  90  m.  Only  the  glaciers  with  length   change  >90m  were  included  in  the  study.  

-­‐58.6 (-­‐3.3)   -­‐38.5  (-­‐11.6)  

(16) 1960s Southern   -­‐   -­‐96.3  (-­‐4.6)   Chinese   1999   Tien  Shan     (1) Aizen   et   al.,   1997;   (2)   Yatagai   and   Yasunari,   1994;   (3)   Finaev,   2005;     (4)   Konovalov,   2003;  (5)  Giese  et  al.,  2007;  (6)  Xu,  2001;  (7)  Kuzmichenok,  1990;  (8)  Khromova  et  al.,   2003;   (9)   Aizen,   et   al.,   2007;   (10)   Vilesov   and   Uvarov,   2001;   (11)   Bolch,   2007;   (12)   Niederer  et  al.,  2008;  (13)  Ye  et  al.,  2005;  (14)  Narama  et  al.,  2006;  (15)  Liu  et  al.,  2002;   (16)  Ding  et  al.,  2006.                                 Figures     Fig.  1.  The  Central  Asia  study  area    



Vladimir Aizen: Climate and environmental change impact cryosphere/water resources Central Asia.  

The central Asian cryosphere is a part of planet's climate and hydrological system, one that is particularly at risk from accelerated climat...

Read more
Read more
Similar to
Popular now
Just for you