Issuu on Google+

UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO DECANATO DE INGENIERIA

Relaciones que se dan en un conjunto

Alumna: Jennyfer Pérez Corrales Prof.: Ing. Domingo Mèndez Estructuras Discretas I Saia B

Cabudare, febrero de 2013


1.- Relaciones Binarias Una relación binaria es una relación matemática R entre los elementos de dos conjuntos A y B. Una relación de este tipo se puede representar mediante pares ordenados, Las proposiciones siguientes son correctas para representar una relación binaria : También puede expresarse: Sean X e Y dos conjuntos. Una relación de X en Y es un subconjunto R del producto cartesiano X x Y. El conjunto X es llamado conjunto de partida de la relación R; e Y es el conjunto de llegada. En el caso de que Y = X, en lugar de decir que R es una relación de X en X, diremos que R es una relación en X. Los elementos de R son pares ordenados. Si (x, y) es un elemento de R, en lugar de escribir (x, y) Î R, escribiremos X R Y y leeremos: "X está relacionado con Y", según la relación R". Nota: Usaremos las letras R, S, T, etc., para representar relaciones. Ejemplos 1. Si X = {a, b, c, d} e Y = {1, 2, 3, 4, 5}, una relación de X en Y es R = {(a, 2), (b, 1), (b, 4), (c, 5)} 2. La siguiente relación S de R en R S = { (X, Y) Î R x R / X £ Y } es la relación "menor o igual" en R. En este caso X S Y Û X £ Y


3. Sea U el conjunto referencial. La relación de inclusión en P(U) es la relación R = { (A, B) Î P(U) x P(U) / A Ì B } A modo de guía o diagrama, se puede presentar el siguiente gráfico para el estudio de las representaciones binarias


2.- Dominio y Rango Definición: Sea R una relación de X en Y El Dominio de R es el conjunto Dom(R) = { xÎ X / (x,y) Î R, para algún y Î Y} El Rango o imagen de R es el conjunto Rang(R) = { y Î Y / (x, y) Î R, para algún x Î X } En otros términos, el dominio y la imagen de una relación están constituidos por los primeros y segundos componentes respectivamente de los pares ordenados que constituyen la relación. Ejemplo: La relación R= { (a, 2) , (b, 1) , (b, 4) , (c, 5) } tiene como dominio el conjunto Dom (R) = { a, b, c} y rango a rang (R) = { 1, 2, 4, 5 }, ya que a,b y c están en el primer componente de los pares ordenados y 1,2,4,5 están en el segund componente de cada par. 3.- Representación gráfica de Relaciones Existen varias formas de representar gráficamente una relación. Las más usuales son las siguientes: Representación Cartesiana, Matricial y Sagitaria. Representación Cartesiana Para obtener una representación cartesiana de una relación, se toman como abscisas los elementos del conjunto de partida; y como ordenadas, el conjunto de llegada. En el plano se marcan los pares ordenados que conforma la relación. Esta representación alcanza su mayor importancia cuando el conjunto de partida y el de llegada son subconjuntos de R. Ejemplo 1 si X={ a, b, c, d} e Y={ 1, 2, 3, 4, 5} una relación de X en Y R={ (a, 2), (b, 1), (b, 4), (c, 5) } La representación cartesiana es el diagrama adjunto.


Representación Sagital La representación sagital es la más popular de las representaciones. Ésta, igual que la matricial, se usa cuando los conjuntos de partida y llegada son finitos. La representación sagital se obtiene representando mediante diagramas de Venn el conjunto de partida y el de llegada; uniendo luego, con flechas, los elementos relacionados. Así, la representación sagital de la relación del ejemplo 1 es el siguiente diagrama: Si el conjunto de partida y el de llegada coinciden, se usa un solo diagrama de Venn y las flechas se representan interiormente. Así, el diagrama siguiente representa a la siguiente relación en X={ a, b, c, d } S= { (a, b), (b, b), (a, d), (b, c), ( d, d) } 4.- Matriz Binaria La representación matricial se usa cuando los conjuntos de partida y de llegada de la relación son conjuntos finitos con pocos elementos. Para obtener tal representación, se asigna a cada elemento del conjunto de llegada una columna; y a cada elemento del conjunto de partida, una fila. Si (x, y) está en la relación, en la intersección de la fila que corresponde a x con la columna que corresponde a Y, escribimos 1; y escribiremos 0 en caso contrario. La configuración rectangular de ceros y unos que se obtiene se llama matriz binaria de la relación. Así, la matriz de la relación. R={(a, 2), (b, 1), (b, 4), (c, 5)} Construcción de la matriz a partir de un grafo Las columnas de la matriz representan las aristas del grafo. Las filas representan a los distintos nodos. Por cada nodo unido por una arista, ponemos un uno (1) en el lugar correspondiente, y llenamos el resto de las ubicaciones con ceros (0).


En el ejemplo de la figura, si sumamos las cantidades de 1's que hay en cada columna, veremos que hay solo dos. Pero si sumamos las cantidades de unos 1's que hay por cada fila, comprobaremos que los nodos 2, 4 y 5 poseen un valor de 3. Ese valor indica la cantidad de aristas que inciden sobre el nodo.

Relación binaria descrita mediante una matriz de incidencia, y mediante un grafo.

5.- Relación Inversa Sea R una relación de X en Y. Se llama relación inversa de R a la relación R-1 de Y en X dada por: R-1 = { (y, x) Î Y x X / (x, y) Î R} O sea, Y R-1 X Û X R Y Es evidente que se verifica que: dom(R-1)= rang(R) 2. Rang( R-1)= dom( R) Ejemplo Si X= { a, b, c } Y= { 1, 2, 3, 4 } y R Ì X x Y es dado por R= { (a, 3) , (a, 1) , (b, 1) , (c, 4) } R-1= { (3, a) , ( 1, a) , (1, b) , (4, c) } Además domR-1= { 1, 3, 4 } = rang( R) Rang(R-1)= { a, b, c } = dom( R)


El siguiente teorema nos dice que la inversa de la inversa de una relación es la misma relación. Teorema: Sea R una relación de X en Y. Entonces (R-1)-1 = R Demostración X(R-1)-1 Y Û Y R-1 X definición de relación inversa ÛXRY Luego, (R-1)-1 = R 6.- Composición de Relaciones Sea R una relación de X a Y y S una relación de Y en Z. Se llama composición de R con S a la siguiente relación de X en Z: X(S o R) Z Û $ YÎ Y, X R Y Ù Y S Z Observación En la composición de R con S, es necesario que el conjunto de llegada de R sea igual al conjunto de partida de S. Este requisito puede ser aligerado exigiendo solamente que el conjunto de llegada de R esté contenido en el conjunto de partida de S. Observar también que el orden en que se escriben R y S en la composición S o R es inverso al orden en que se dan R y S. Ejemplo Sean X={ 2, 3, 5 } , Y= { a, b, c, d } y Z= { 1, 4, 9 } Si R y S son las relaciones de X en Y y de Y en Z respectivamente, dadas por R= { (2, a) , (2, d) , (3, c) , (5, a) } ,


S= { (a, 9) , (b, 1) , (d, 4) } Entonces: SoR = { (2, 9) , (2, 4) , (5, 9) } Teorema: Si R es una relación de X en Y, S es una relación de Y en Z y T es una relación de Z en W, entonces: To(SoR)=(ToS)oR Demostración X( T o ( S o R ) W Û $ z Î Z , x(S o R)z Ù z T w Û $ z Î Z, ( $ y Î Y, x R y Ù y S z) Ù z T w Û $ y Î Y, x R y Ù ($ z Î Z, y S z Ù z T w )$ y Î Y, x R y Ù y(T o S) w Û x ( ( T o S ) o R )w Luego, T o ( S o R ) = ( T o S ) o R Teorema: Si R es una relación de X en Y y S en una relación de Y en Z, entonces (S o R)-1 = R-1 o S-1 Demostración z ( S o R )-1 x Û x ( S o R )z Û$yÎY,xRyÙySz Û $ y Î Y , y R-1 x Ù z S-1 y Û $ y Î Y, z S-1 y Ù y R-1 x Û z( R-1 o S-1)x Luego, ( S o R )-1 = R-1 o S-1


revista