Page 22

La ciencia de los alimentos en la práctica

el contenido en un trozo de carne, por lo que se requiere más energía para calentar agua que para que la grasa o el aceite lleguen a la misma temperatura. Buena parte de esa energía se destina a romper primero los puentes de hidrógeno y a disminuir la tensión superficial para después incrementar la temperatura. El agua pura es neutra (pH 7); sin embargo, presenta acidez o alcalinidad dependiendo de su origen: lago, lluvia, río, mar o pozo; puede ser algo ácida por la disolución del bióxido de carbono (CO2) del aire que se convierte en ácido carbónico (H2CO3), o alcalina por la presencia de sales solubles de calcio y de magnesio y responsables de su dureza.

|| Diagrama de fases La formación, cantidad y estabilidad de los puentes de hidrógeno, y en consecuencia la existencia del hielo, del agua líquida y del vapor, dependen de la temperatura y de la presión. Los tres estados se encuentran en equilibrio, como se muestra en la figura 1.2, cuyas curvas, I, II y III delimitan cada uno de estos estados; la intersección de las tres curvas da origen al muy preciso punto triple, 0.01 °C y 4.5 mm Hg, en el que teóricamente el hielo, el agua y el vapor conviven. Para entender la figura, tomemos como referencia la presión atmosférica de 760 mm Hg que corresponde al nivel del mar. El agua líquida se evapora, es decir, cruza la curva II de izquierda a derecha a 100 °C; para evaporarse y desprenderse a la atmósfera, sus moléculas gaseosas deben vencer la presión que ejerce sobre ellas una columna de aire de 160 km de altura, aproximadamente, que equivale a la presión atmosférica; la densidad del aire es muy baja, pero la cantidad acumulada por centímetro cuadrado a esta altura es considerable. Es decir, entre menos aire, menor presión y más fácil la ebullición; por eso en la Ciudad de México, a 2 200 metros de altura sobre el nivel del mar (msnm), el agua hierve a 92.8 °C ya que posee una presión atmosférica de 585 mm Hg. En general, la ebullición disminuye 1 °C por cada 300 m de altitud, razón por la cual en algunas poblaciones de Sudamérica a 4 000 msnm ésta se alcanza a 86 °C, mientras que en el Everest, se logra a 71 °C (temperatura mínima para hacer un huevo tibio). El efecto opuesto se observa en la olla a presión que alcanza 1 300 a 1 500 mm Hg, presión superior a la atmosférica, lo que provoca que el agua hierva a 120 °C (figura 1.2); en términos de altitud, el agua herviría a 120 °C en un lugar a 6 000 m (300 × 20) bajo el nivel del mar. Por el contrario, el cruce de la curva II de derecha a izquierda representa la condensación, como se observa al hervir el agua y cuyo vapor se condensa en pequeñas gotas al contacto con una superficie fría. Algo semejante ocurre en la parte externa de un vaso con hielo en un ambiente húmedo de playa o con los anteojos al entrar a una zona húmeda y caliente. Al continuar de derecha a izquierda y cruzar la curva I, se propicia el congelamiento; el regreso sobre esta misma línea corresponde al descongelamiento. Además del efecto de la presión, la temperatura de ebullición se incrementa con la adición de sustancias de bajo peso molecular, como la sal o el azúcar; por ejemplo, 20 g de sal (2%) por litro de agua sólo la aumenta 1 °C. Sin embargo, esto es más notorio al preparar jarabes con una alta concentración de azúcar y más aún cuando éstos se calien6

Profile for javier Laplaza

la ciencia de los alimentos en la practica  

la ciencia de los alimentos en la practica  

Advertisement