{' '} {' '}
Limited time offer
SAVE % on your upgrade.

Page 19

P r o b l e m a t i k a s t a n o v o v á n í h o d n o t m e c h a n i c k ý c h v l a s t n o s t í s l i t i n h l i n í ku l i t ý c h (n e j e n) p o d t l a ke m

M ěř e n í, r e s p. s t a n ovová n í h o d n o t m e c h a n i c k ýc h v l a s t n o s t í U litých slitin hliníku se vyhodnocuje zejména mez pevnosti v tahu Rm, mez kluzu – vzhledem k charakteru materiálu Rp0,2, tažnost A a tvrdost HB, nejčastěji HBW. Norma ČSN EN 10002-1 (ČSN EN ISO 6892-1 (42 0310)) předepisuje smluvený způsob provádění tahové zkoušky. Měření tvrdosti se řídí ČSN 42 0371 a EN ISO 6506-1. V odborných textech je často možno setkat se s nesprávným označením těchto veličin, proto je zde uveden správný způsob označení, který je definován normou a měl by se dodržovat. Pro mez pevnosti v tahu, mez kluzu i tažnost platí, že veličina (R, A) je zapsána velkým písmenem kurzívou, její upřesnění (m, p0,2 atd.) je zapsáno jako index a není kurzívou. U tažnosti se již neuvádí index vyjadřující, zda byla vyhodnocena z krátké či dlouhé poměrné tyče – viz výše. Mez pevnosti v tahu je hodnota napětí odpovídajícího největšímu zatížení, které předchází přetržení zkušební tyče. Je to hodnota smluvní, neboť toto napětí je vypočteno z maximální síly Fmax vztažené k původnímu průřezu S 0. Mez pevnosti je charakteristickou veličinou používanou pro porovnání materiálů, i když často je vzhledem k charakteru použití pevnostních dílů výmluvnější mez kluzu, tedy napětí (zatížení), které díl snese, aniž by se deformoval plastickou deformací. Mez kluzu je rozhraní mezi pružnou a plastickou deformací. Slitiny hliníku nemají výraznou mez kluzu, a proto je vyhodnocována smluvní mez kluzu určená z trvalé deformace pod zatížením, která je definována jako napětí, které způsobí 0,2 % trvalé deformace. Teoreticky se stanoví tak, že se zjistí napětí, při kterém trvalá deformace dosáhne předepsané hodnoty vyjádřené v procentech (0,2 %) počáteční měřené délky zkušební tyče. Prakticky může být někdy určení této předepsané hodnoty trvalé deformace vzhledem k průběhu tahového diagramu náročné, a přestože je u trhacích strojů vybavených příslušným softwarem hodnota smluvní meze kluzu automaticky spočítána, nemusí odpovídat předpokladu a být spočítána správně. Proto je vhodné znát pro daný materiál modul pružnosti v tahu. Ten se z tahové zkoušky běžně nevyhodnocuje, ale znalost jeho předpokládané hodnoty může napomoci ke správnému stanovení meze kluzu, resp. i tažnosti a k jejich kontrole. Modul pružnosti v tahu je definován Hookovým zákonem jako směrnice počáteční přímkové části tahového diagramu síla – poměrné celkové prodloužení. A právě tato směrnice slouží k vynesení rovnoběžky pro stanovení smluvní meze kluzu. U slévárenských slitin Al-Si se hodnota modulu pružnosti pohybuje kolem 70 GPa. To je vhodné na

vypočítaných výsledcích ověřit, a pokud se hodnota modulu pružnosti výrazně liší, přičemž mez pevnosti přibližně odpovídá předpokladu, je vhodné manuálně v tahovém diagramu směrnici dle modulu pružnosti vynést a k ní potom sestrojit rovnoběžku pro stanovení smluvní meze kluzu. Smluvní mez kluzu by měla být stanovena z prodloužení měřené délky zkušebního tělesa, často je však u trhacích strojů vybavených příslušným zařízením se softwarem vyhodnocena z posuvu příčníku. To do výpočtu vnáší chybu, která sice není významná, ale výsledek ovlivní směrem k vyšším hodnotám, protože v posuvu příčníku je zahrnuta plastická deformace celé délky tyče, nikoliv pouze deformace měřené délky. Tažnost je poměrné prodloužení měřené délky zkušebního tělesa. Dříve se vyhodnocovala změřením trvalého prodloužení měřené délky tělesa mezi ryskami po přiložení částí přetržené tyče k sobě, dnes je běžné snímání prodloužení průtahoměrem pomocí nalepených reflexních pásek. Jak již bylo uvedeno, hodnota tažnosti je významně ovlivněna délkou zkušební tyče, resp. měřenou délkou (kratší měřená délka dá vyšší hodnoty tažnosti vzhledem k zaškrcení, kde se tyč nejvíce prodlužuje). Do značné míry je tažnost ovlivnitelná právě i způsobem měření, resp. jejího stanovení, podobně jako u meze kluzu. Proto je vždy vhodné ověřit, jak byla vyhodnocována, aby byly hodnoty tažnosti poměřitelné. Tvrdost dle Brinella HBW je definována jako odpor materiálu proti deformaci cizím tělesem, kterým je kulička ze slinutých karbidů. Kulička o průměru D je působením síly F směřující kolmo k povrchu tělesa vtlačována po stanovenou dobu, změřením průměru d vtisku po odlehčení je definována tvrdost HBW jako poměr působícího zatížení F k ploše povrchu kulového vtisku A. Zkoušený povrch musí být rovný a hladký, nejlépe broušený. Musí být vyloučeny změny vlastností povrchu ohřevem nebo tvářením za studena. Pro slitiny hliníku se nejčastěji používají kuličky o průměru 5 mm. Tvrdost podle Brinella je závislá na zatížení, neboť plocha vtisku není zatížení přímo úměrná, proto je při srovnávání nutné zatížení uvádět. Vzhledem k tomu, že tvrdost (ale i další vlastnosti) slitin hliníku obsahujících měď a/nebo hořčík se mění v čase, je důležité uvádět, jak dlouhý byl odstup mezi odlitím a měřením tvrdosti. Norma ČSN EN 1706 (42 1433) přímo uvádí, že hodnoty v tabulkách mohou být dosaženy po setrvání několika dní při pokojové teplotě. Obecně, chceme-li získat rozumné hodnoty tvrdosti na tlakových odlitcích, je vhodné ji měřit minimálně 3 dny po odlití. Přestože na přirozené stárnutí má největší vliv obsah mědi, i u slitin obsahujících hořčík tento jev zaznamenáváme. Je to způsobeno nerovnovážností stavu, ve kterém je odlitek vlivem rychlého ochlazení při procesu tlakového lití zachycen. Podle hodnoty tvrdosti lze usuzovat i na další mechanické vlastnosti materiálu, resp. je prokázána relace mezi nimi. Jedná se zejména o mez kluzu a mez pevnosti. Pro mez pevnosti platí přímá závislost na tvrdosti dle vztahu: Rm = k · HB

(2)

kde: k – koeficient závislý na materiálu, přičemž hliník má tuto hodnotu přibližně 2,6. Na tomto principu je založena indentační metoda ABI (Automatic Ball Indentation) stanovování hodnot mechanických vlastností, která se jeví jako vhodná alternativní metoda ke stanovování hodnot mechanických vlastností bez nutnosti výroby/odběru zkušebního tělesa. Tato metoda je vyvíjena na ČVUT v Praze a průběžně testována např. [4], [5].

S l é vá re ns t v í . L X I V . z á ř í – ř í j e n 2016 . 9 –10

353

53. S L É VÁ R EN SK É D N Y® – V Y B R A N É P Ř ED N Á ŠK Y

vlastností důležité a kde je chce měřit. Pak by se měla pozornost slévárny na tato místa zaměřit jak z pohledu konstrukce formy, tak z pohledu technologických parametrů a v těchto aspektech by měla být dodržena základní pravidla. Nejvýhodnější, jak již bylo uvedeno v citaci z normy, je zkoušení celého odlitku ve zkušebním přípravku či v zástavbě zatížením simulujícím reálné provozní namáhání. Tím sice nezískáme hodnoty mechanických vlastností dle smluvních způsobů zkoušení, získáme tím ale tu nejcennější informaci: zda odlitek požadované namáhání vydrží, či ne, resp. jaké hodnoty zatížení je schopen přenést. Je-li to podloženo dostatečně velkým počtem zkoušených kusů, optimálně litých při různých technologických parametrech, pak se jedná skutečně o ověření nejen vlastností dílu samotného, ale i technologického procesu.

B . B r y k s í St u n o v á

Profile for INA SPORT spol. s r.o.

Slevarenstvi 9-10 2016  

Slevarenstvi 9-10 2016  

Profile for inasport