Powerboater's Guide to Electrical Systems - PDF DOWNLOAD

Page 83

Batteries and Battery Systems

Deep-Cycle Batteries Cost Over Life of the Battery Battery Type . . . . . . . . . . . . . . . .Cost Formula Wet-cell . . . . . . .90 amp-hours ÷ 2 (50 percent discharge) = 45 amp-hours x 2,650 cycles = 0.0017¢ per amp-hour Gel-cell . . . . . . .86 amp-hours ÷ 2 (50 percent discharge) = 43 amp-hours x 1,400 cycles = 0.0027¢ per amp-hour AGM . . . . . . . . .92 amp-hours ÷ 2 (50 percent discharge) = 46 amp-hours x 3,000 cycles = 0.0014¢ per amp-hour Please keep in mind that these costs are based on charge-cycle numbers that are quite high. In actual use, your cost per amp-hour will probably be much higher. However, on average the findings here are as good for comparison of battery types as any other method. Although they will require more maintenance than other types, conventional wet-cell batteries are still the least expensive of the three types to buy and own over the long haul. AGM batteries offer all the advantages of the gel-cells plus a less-finicky charge cycle. Therefore, in almost all applications, AGMs are a better choice than gel-cells, but as of this printing you’ll still pay a substantial premium for AGMs over wet-cell batteries. AGMs are a particularly good choice for installations where acid spills are a consideration, as with personal watercraft (Jet Skis) and other sport boats, and they are excellent for use on boats that will be left unattended for months at a time.

Which Battery Is Right for You? All but the smallest open boats should have at least two batteries. The starting battery is for starting the engine and needs a lot of cranking capacity to spin a heavy-duty starter motor. The house battery is used to run equipment such as cabin lights, stereos, refrigerators, and electronic equipment that isn’t connected to the engine. The starting battery should be

a heavy-duty marine cranking battery, and the house battery should be a deep-cycle marine battery. One of my boats, a 15-foot dory I use for bay fishing, has a single deep-cycle battery that I use to operate my fish-finder and running lights at night. The engine is a pull-start outboard, so I don’t need a cranking battery. If I had an electric-start engine on this boat, I would consider an additional cranking battery, even for a boat this small. I hate paddling; it just takes too long against a 2-knot tide. My other powerboat, a 25-foot V8-powered walk-around, is set up with a group 27 cranking battery and a group 27 deep-cycle marine battery.

Deep-Cycle versus Cranking Batteries The difference between cranking and deep-cycle batteries is simple. Cranking batteries are designed to provide a burst of cranking power for a short period of time. Once the engine is running, the engine’s alternator will kick in and quickly recharge the battery, replacing the power used to start the engine. Cranking batteries are not designed to be discharged deeply over and over again. You would be lucky to get one season of boating out of a cranking battery used as a deep-cycle house battery. Deep-cycle batteries, on the other hand, are built with heavy and comparatively thick plates and have much more lead in them than cranking batteries. You can actually tell the difference between the two by lifting them. They are designed to be discharged up to 50 percent of capacity and recharged over and over again without sustaining any permanent damage. Because of the heavier and thicker plates used in deep-cycle batteries, they take much longer to reach full charge than cranking batteries. Therefore, they aren’t a good choice for a starting battery, particularly where an engine will be started frequently and run for short periods of time. Deep-cycle batteries are perfect for use as the house battery in cruisers that will be anchored away from shore power for overnight trips or for fishing boats that will be anchored for long periods with the fish-finder, radio, and beer cooler running. Deep-cycle batteries are designed to take abuse, but even these can’t be completely discharged and recharged continually without failing. Thirty percent 69


Turn static files into dynamic content formats.

Create a flipbook

Articles inside

Index

18min
pages 215-223

Resources

1min
page 214

Glossary

14min
pages 207-213

Installing Your Own Radar

5min
pages 205-206

Installing a GPS Receiver

2min
page 204

Power Supply

3min
page 196

Galvanic Isolators

6min
pages 191-193

AC Generators

5min
pages 189-190

Comparisons between AC and DC Circuits

6min
pages 173-175

AC Overcurrent Protection

4min
pages 176-177

Selecting a DC-to-AC Inverter

17min
pages 184-188

Color Coding for AC Wiring

3min
page 172

Checking Voltage, Continuity, and Polarity on AC Circuits

7min
pages 181-183

Ground-Fault Circuit Interrupters

2min
page 180

The Future

1min
page 169

General Instrument Troubleshooting

16min
pages 163-168

Abnormal Instrument Readings

3min
page 162

Adding a New Compact-Disc Player

7min
pages 158-160

Installing a New Bilge Pump

10min
pages 154-157

Installing a New Cabin Light

3min
page 153

Other Outboard-Engine Starter-Motor Problems

1min
page 149

Testing the Neutral-Safety Switch

3min
page 146

Engine Ignition Switch

4min
pages 147-148

Outboard-Engine Starter Circuits

10min
pages 142-145

Troubleshooting Starter-Motor Circuits

6min
pages 139-141

Starter-Motor Problems and Solutions

2min
page 138

Testing Your Stop Switch

3min
page 133

Final Checks and Ignition Timing

8min
pages 134-136

Outboard and PWC Ignition Tests

19min
pages 126-132

Beyond the Basics: Outboard and PWC Ignition Systems

6min
pages 124-125

Shore-Power Battery Charging Systems and Installations

9min
pages 110-112

MerCruiser Thunderbolt IV and Thunderbolt V Systems

7min
pages 121-123

Solar Cells

2min
page 113

Outboard-Engine Charging Systems

5min
pages 108-109

Battery Installations

15min
pages 90-95

Battery Maintenance and Testing

4min
pages 88-89

Which Battery Is Right for You?

9min
pages 83-85

Battery Safety

5min
pages 86-87

Connecting the Dots: Making Wiring and Connection Repairs

8min
pages 73-78

Testing Your Batteries

10min
pages 96-99

Types of Lead-Acid Batteries

9min
pages 80-82

Wire Routing and Support

4min
pages 71-72

Acceptable Locations for Fuses and Circuit Breakers

4min
pages 69-70

Levels of Circuit Protection

1min
page 68

Testing Fuses and Circuit Breakers

2min
page 67

Ignition Protection

1min
page 66

Fuses and Circuit Breakers

14min
pages 60-65

Wire Size

2min
page 56

Wire Insulation

2min
pages 57-59

Basic Wiring

3min
page 55

Drawing Your Own Wiring Diagram

9min
pages 36-38

Expanding the Basic Circuit

3min
page 33

Wire Identification and the ABYC Color Code

8min
pages 29-32

Using Your Multimeter

10min
pages 44-47

Voltage Drop

2min
page 22

Ohm’s Law and What It Can Tell Us

8min
pages 19-21

Tools

2min
pages 24-25

Measuring Amperage

4min
pages 48-50
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Powerboater's Guide to Electrical Systems - PDF DOWNLOAD by www.heydownloads.com - Issuu