Issuu on Google+

¿QUE ES LA ENTROPÍA?

De la exposición anterior queda claro que la entropía es una propiedad útil y una valiosa herramienta en el análisis de la segunda ley en los dispositivos de ingeniería, pero esto no significa que sabemos y entendemos bien la entropía. De hecho, no podemos dar una respuesta adecuada a la pregunta. ¿qué es la entropía? Sin embargo, la imposibilidad de describir la entropía en su totalidad no tiene nada que ver con su utilidad. No es posible definir energía, pero esto no interfiere con nuestra compresión de las transformaciones de energía y su principio de conservación. Se admite que entropía no es una palabra común como lo es energía, pero con el uso continuo se alcanza una compresión más profunda y una mayor apreciación. El estudio que sigue debe verter alguna luz en el significado físico de entropía, considerando la naturaleza microscópica de la materia. La entropía puede verse como una medida de desorden molecular, o aleatoria molecular. Cuando un sistema se vuelve más desordenado, las posiciones de las moléculas son menos predecibles y la entropía aumenta, de ahí que no sorprenda que la entropía de una sustancia sea más baja en la fase sólida y más alta en la gaseosa. En la sólida, las moléculas de una sustancia oscilan continuamente en sus posiciones de equilibrio, pero les es imposible moverse unas respecto de las otras, por lo que su posición puede predecirse en cualquier momento con certeza. Sin embargo, en la gaseosa las moléculas se mueven al azar, chocan entre si y cambian de dirección, lo cual hace sumamente difícil predecir con precisión el estado microscópico de una sistema en cualquier instante. Asociado a este caos molecular se encuentra un valor alto de entropía. Desde un punto de vista microscópico (a partir de la perspectiva de la termodinámica estadística), un sistema aislado que parece estar en equilibrio puede exhibir un nivel alto de actividad debido al movimiento incesante de las moléculas. A cada estado de equilibrio macroscópico corresponde un gran número de posibles estados microscópicos o configuraciones moleculares; entonces la entropía de un sistema se relaciona con el número total de esos estados posibles de ese sistema y es llamada probabilidad termodinámica “p”, que se expresa por la relación de Boltzman como:

S  k ln p Donde K=1.3806 x 10-23 J/K es la constante de Boltzman. Por consiguiente, desde un punto de vista microscópico, la entropía de un sistema aumenta siempre que la aleatoriedad o incertidumbre molecular (es decir, la probabilidad molecular) de un sistema aumenta. Así, la entropía es una


medida de desorden molecular, y el desorden molecular de un sistema aislado aumenta siempre que experimenta un proceso. Las moléculas de una sustancia en la fase sólida oscilan continuamente, creando una incertidumbre sobre su posición. Sin embargo, estas oscilaciones se desvanecen cuando la temperatura disminuye y las moléculas supuestamente se inmovilizan al cero absoluto, lo que representa u estado de orden molecular último (y energía mínima). Por lo tanto, la entropía de una sustancia pura cristalina a una temperatura absoluta de cero es cero a partir de que no hay incertidumbre sobre el estado de las moléculas con respecto a ese momento. Esta declaración es conocida como la tercera ley de la termodinámica, la cual proporciona un punto de referencia absoluto para la determinación de entropía. La entropía determinada como relativa con respecto a ese punto se llama entropía absoluta y es sumamente útil en el análisis termodinámico de las reacciones químicas. La entropía de una sustancia que no es pura cristalina (como una solución sólida) no es cero a temperatura absoluta cero. Esto se debe a que para tales sustancias hay más de una configuración molecular, las cuales introducen u poco de incertidumbre sobre el estado microscópico de la sustancia. En la fase gaseosa las moléculas poseen una cantidad considerable de energía cinética, pero se sabe que, por mas grande que sea ésta las moléculas de gas o hacen girar una hélice insertada en un contenedor para que así este dispositivo produzca trabajo. Esto se debe a que tanto las moléculas de gas como su energía están desorganizadas. Probablemente el número de moléculas que en cualquier instante intentan girar la hélice en una dirección es igual al número de las que están intentándolo en la dirección opuesta, causando que la hélice permanezca inmóvil. Por consiguiente, no podemos extraer trabajo útil directamente de la energía desorganizada. Ahora considere un eje rotatorio, en el que en este momento la energía de las moléculas esta completamente organizada porque las moléculas del eje giran juntas en la misma dirección. Esta energía organizada puede usarse para realizar tareas útiles como levantar un peso o generar electricidad. Además, como es una forma organizada de energía, el trabajo esta libre de desorden o aleatoriedad y por lo tanto libre de entropía. No hay transferencia de entropía asociada con la transferencia de energía como trabajo. Por consiguiente, en la ausencia de cualquier tipo de fricción, el proceso de levantar un peso mediante un eje rotatorio (o un volante) no produce entropía. Cualquier proceso que no produzca una entropía neta es reversible y por lo tanto, en el caso del proceso descrito arriba, puede invertirse bajando el peso. Por


consiguiente la energía no se degrada durante este proceso y ningún potencial de realizar trabajo esta perdido. Con otro ejemplo se considera el funcionamiento de una hélice en un recipiente lleno de un gas, en el que el trabajo e la hélice se convierte en energía interna del gas, como lo evidencia un aumenta en la temperatura de este, creando un nivel alto de desorden molecular en el recipiente. Este proceso es bastante distinto a levantar un peso ya que la energía organizada de la hélice se convierte ahora en una forma altamente desorganizada de energía que no puede a su vez convertirse en energía cinética rotacional de la hélice. Solo un porción de esta energía puede convertirse en trabajo, reorganizándola parcialmente mediante el empleo de una máquina térmica. Por consiguiente, la energía se degrada durante este proceso, la habilidad para efectuar trabajo es reducida, se produce desorden molecular y asociado a todo esto se suscita un incremento en la entropía. La cantidad de energía siempre se conserva durante un proceso real (primera ley), pero la calidad esta destinada a disminuir (la segunda ley). Esta disminución en la calida siempre esta acompañada por un incremento en la entropía. Por ejemplo, considere la transferencia de 10 kJ de energía como calor de un medio caliente a otro frió, al final del proceso aún se tendrán los 10 kJ de energía, pero a una temperatura más baja, y por lo tanto, a una menor calidad. En esencia, el calor es una forma de energía desorganizada, y algo de esta desorganización (entropía) fluirá con calor. Como resultado, la entropía y el nivel de desorden molecular o aleatoriedad del cuerpo caliente disminuyen con la entropía mientras que el nivel e desorden molecular del cuerpo frio aumenta. La segunda ley requiere que el incremento en la entropía el cuerpo frio sea mayor que la disminución en la entropía del cuerpo caliente, por lo tanto la entropía neta del sistema combinado (cuerpos frío y caliente) aumenta. Es decir, el sistema combinado se halla en un estado de mayor desorden en el estado final. Se puede concluir entonces que el proceso solo puede ocurrir en la dirección del aumento de entropía global o desorden molecular. Es decir, el universo entero esta volviéndose más caótico todos los días.


La entropía y la generación de entropía en la vida diaria El concepto de entropía también puede aplicarse en otras áreas, y puede verse como una medida de desorden o desorganización en un sistema. Igualmente, la generación de entropía puede considerarse como una medida de desorden o desorganización generada durante pun proceso. En la vida diaria, el concepto de entropía no tiene el uso tan extendido que tiene el de energía, aunque la entropía es aplicable a varios aspectos cotidianos. La extensión de este concepto hacia campos no técnicos no es algo nuevo, ha sido tema de varios artículos e incluso libros. A continuación se presentan varios eventos del ámbito de lo ordinario y se muestra su relevancia respecto a los conceptos de entropía y generación de entropía. Las personas eficientes llevan vidas de baja entropía (es decir, muy organizadas)tiene un lugar para todo (incertidumbre mínima) y emplean la menor energía para localizar algo. Por otro lado, las personas ineficientes llevan vidas de alta entropía: les toma varios minutos (si no es que horas) encontrar algo que necesitan y es probable que creen un desorden mas grande mientras buscan, puesto que probablemente dirigirán su búsqueda de una manera desorganizada. Las personas que llevan estilos de vida de alta entropía siempre están apuradas y nunca parecen ponerse al día. Quizá ha notado (con frustración) que algunas personas parecen aprender rápidamente y recordar bien lo aprendido; a este tipo de aprendizaje lo podemos llamar organizado o aprendizaje de baja entropía. Estas personas hacen un esfuerzo consciente para almacenar adecuadamente la nueva información relacionándola con sus conocimientos previos y creando una red de información sólida dentro de sus mentes. Por otro lado, las personas que arrojan la información en sus mentes cuando estudian, sin hacer esfuerzo para afianzarla, quizá piensan que están aprendiendo, pero se verán obligados a descubrir que no pueden localizar la información cuando la necesiten, por ejemplo durante un examen. No es fácil recuperar la información de una base de datos que esta, en cierto sentido, en fase gaseosa. Los estudiantes que tienen lagunas durante las pruebas deben examinar sus hábitos de estudio. Una biblioteca con un buen sistema de clasificación y categorización puede verse como una biblioteca de baja entropía debido al nivel alto de organización. Del mismo modo, una biblioteca con un sistema pobre puede apreciarse como una biblioteca de alta entropía debido al alto nivel de desorganización. Una biblioteca sin un adecuado sistema de clasificación y categorización no es una biblioteca, porque un libro que no es posible hallar no tiene valor. Considere dos edificios idénticos , cada uno con un millón de libros, en el primero los libros se amontonan unos encima e otros, mientras que en el segundo todos están muy organizados,


clasificados y catalogados para conseguir una referencia fácil: no hay duda sobre cuál preferirá un estudiante. Algunos pueden argumentar, desde el punto de vista de la primera ley, que ambos edificios son equivalentes dado que la masa y el conocimiento albergado son idénticos e los dos, a pesar el nivel alto de desorganización (entropía) en el primero. Este ejemplo ilustra cualquier comparación realista debe involucrar el punto de vista de la segunda ley. Dos libros de texto que parecen ser idénticos porque ambos cubren básicamente los mismos temas y presentan la misma información pueden ser muy diferentes dependiendo de cómo abordan los temas. Después de todo, dos automóviles aparentemente idénticos no lo son si uno recorre la mitad de la distancia que el otro realiza con la misma cantidad de combustible. Del mismo modo, dos libros aparentemente idénticos no lo son tanto si toma el doble de tiempo aprender un tema en uno respecto al otro. Así, las comparaciones hechas con base en la primera ley pueden estar sumamente equivocadas. Tener un ejército desorganizado (entropía alta) es lo mismo que no tener ninguno. No es coincidencia que en la guerra los centros de mando e cualquier fuerza armada se hallen entre los principales blancos. Un ejército que consiste en 10 divisiones es 10 veces más poderoso que 10 ejércitos conformados por una sola división cada uno. Un país que consiste en 10 estados es más poderoso que 10 países, cada uno constituido por u solo estado. Estados Unidos no sería una potencia si estuviera formado por 50 países independientes en lugar de un solo país con 50 estados, de ahí que la Unión Europea tenga el potencial para ser una nueva superpotencia económica y política. El viejo cliché “divide y vencerás” puede ser parafraseado como “aumenta la entropía y vencerás” Sabemos que la fricción mecánica siempre esta acompañada por la generación de entropía, por lo tanto el desempeño se reduce. Esto se puede hacer extensivo para la vida cotidiana: la fricción en el lugar de trabajo, con los compañeros, genera entropía y por lo tanto afecta en forma adversa el desempeño laboral, lo que resulta en una productividad reducida. También sabemos que la expansión libre (o explosión) y el intercambio desordenado de electrones (reacciones químicas) generan entropía y que son muy irreversibles. Igualmente, hablar sin ninguna restricción para esparcir palabras de enojo es latamente irreversible porque genera entropía y puede causar daño considerable. Además, alguien que se instala en el enojo está muy cerca de sufrir una pérdida. Quizás algún día sea posible proponer algunos procedimientos para cuantificar la entropía generada durante las actividades no técnicas e incluso puntualizar sus fuentes primarias y su magnitud.


THE ENTROPY