Page 1

Universidad Fermín Toro Facultad de Ciencias Económicas y Sociales Análisis de Problemas y Toma de Decisiones Escuela de Relaciones Industriales

Técnica e Instrumentos para la Toma Racional de Decisiones

Autor: Gerardo Llamozas C.I: 20.928.651 Cabudare Julio de 2012


Métodos Determinísticos La humanidad hace tiempo que busca, o profesa buscar, mejores maneras de realizar las tareas cotidianas

de

la vida. A lo largo de la historia de la humanidad, se puede observar la larga búsqueda de fuentes más efectivas de alimentos al comienzo y luego de materiales, energía y manejo del entorno físico. Sin embargo, relativamente tarde en la historia de la humanidad, comenzaron a formularse ciertas clases

de

preguntas

generales

de

manera

cuantitativa, primero en palabras y después en notaciones simbólicas. Un aspecto predominante de estas preguntas generales era la búsqueda de lo "mejor" o lo "óptimo". La optimización, también denominada programación matemática, sirve para encontrar la respuesta que proporciona el mejor resultado, la que logra mayores ganancias, mayor producción o felicidad o la que logra el menor costo, desperdicio o malestar.

Programación Lineal

La programación lineal se plantea como un modelo matemático desarrollado durante la Segunda Guerra Mundial para planificar los gastos y los retornos, a fin de reducir los costos al ejército y aumentar las pérdidas del enemigo. Se mantuvo en secreto hasta 1947. En la posguerra, muchas industrias lo usaron en su planificación diaria. Los fundadores de la técnica son George Dantzig, quien publicó el algoritmo simplex, en 1947, John von Neumann, que desarrolló la teoría de la dualidad en el


mismo año, y Leonid Kantoróvich, un matemático ruso, que utiliza técnicas similares en la economía antes de Dantzig y ganó el premio Nobel en economía en 1975. La programación lineal es un método determinista de análisis para elegir la mejor entre muchas alternativas. Cuando esta mejor alternativa incluye un conjunto coordinado de actividades, se le puede llamar plan o programa. Todos los problemas de PL (Programación Lineal) tienen cuatro propiedades en común:

1.

Los problemas de PL buscan maximizar o minimizar una cantidad

(generalmente beneficios o costos). Nos referimos a ello como la Función Objetivo de un PL. El principal objetivo de una empresa tipo es maximizar los beneficios a largo plazo. En el caso de un sistema de distribución, el objetivo puede ser minimizar los costos de transporte. 2.

La presencia de restricciones limita el grado en que podemos perseguir el

objetivo. Por ejemplo, decidir cuántas unidades se deben fabricar para una línea de productos de una empresa está restringido por la disponibilidad de horas de mano de obra y máquinas. Se quiere por tanto, maximizar o minimizar una cantidad (función objetivo) sujeta a las limitaciones de recursos (restricciones). 3.

Deben existir diferentes alternativas donde poder elegir. Por ejemplo, si una

empresa fabrica tres productos, los directivos pueden utilizar PL para decidir cómo asignar entre ellos sus recursos de producción limitados (trabajo, máquinas y demás). Si no existen alternativas evidentes que seleccionar, no necesitaremos la PL. 4.

La función objetivo y las restricciones de un PL deben ser expresadas en

términos de ecuaciones lineales o inecuaciones.


Método Simplex El método Simplex es un algoritmo de solución muy utilizado para resolver programas lineales. Un algoritmo es una serie de pasos para cumplir con una tarea determinada. El método Simplex

es

un

método

secuencial

de

optimización, es un procedimiento iterativo que permite ir mejorando la solución a cada paso. El proceso concluye cuando no es posible seguir mejorando más dicha solución.

Métodos Probalísticos Lógica Bayesiana

La inferencia bayesiana es un tipo de inferencia estadística en la que las evidencias u observaciones se emplean para actualizar o inferir la probabilidad de que una hipótesis pueda ser cierta. El nombre «bayesiana» proviene de uso frecuente que se hace del teorema de Bayes durante el proceso de inferencia. El teorema de Bayes se ha derivado del trabajo realizado por el reverendo Thomas Bayes. Hoy en día, uno de los campos de aplicación es en la teoría de la decisión, visión artificial (simulación de la percepción en general) y reconocimiento de patrones por ordenador. La incertidumbre y la imprecisión son


connaturales en el proceso de razonamiento. La lógica establece unas reglas de inferencia a partir de las cuales se construye el sistema de razonamiento deductivo, en el que una proposición determinada es considerada como cierta o falsa, sin que se admitan grados entre estos dos extremos. Los métodos de razonamiento aproximado, entre los que se encuentran los métodos bayesianos, aportan modelos teóricos que simulan la capacidad de razonamiento en condiciones de incertidumbre, cuando no se conoce con absoluta certeza la verdad o falsedad de un enunciado o hipótesis, e imprecisión, enunciados en los que se admite un rango de variación. La inferencia bayesiana usa un estimador numérico del grado de creencia en una hipótesis aún antes de observar la evidencia y calcula un estimador numérico del grado de creencia en la hipótesis después de haber observado la evidencia. La inferencia bayesiana generalmente se basa en grados de creencia, o probabilidades subjetivas, en el proceso de inducción y no necesariamente declara proveer un método objetivo de inducción.

Teoría de Juegos

Evidentemente definir la Teoría de Juegos es tan absurdo como su lógica, pero la realidad es que la Teoría de Juegos consiste en razonamientos circulares, los cuales no pueden ser evitados al considerar cuestiones estratégicas. Por naturaleza, a los humanos no se les da muy bien pensar sobre los problemas de las relaciones estratégicas, pues generalmente la solución es la lógica a la inversa. La teoría de los juegos es una rama de la matemática con aplicaciones a la economía, sociología, biología y psicología, que analiza las interacciones entre individuos que toman decisiones en un marco de incentivos formalizados (juegos). En un juego, varios agentes buscan maximizar su utilidad eligiendo determinados cursos de acción. La utilidad final obtenida por cada individuo depende de los cursos de acción escogidos por el resto de los individuos. La teoría de juegos es una herramienta que ayuda a analizar problemas de optimización interactiva. La


teoría de juegos tiene muchas aplicaciones en las ciencias sociales. La mayoría de las situaciones estudiadas por la teoría de juegos implican conflictos de intereses, estrategias y trampas. De particular interés son las situaciones en las que se puede obtener un resultado mejor cuando los agentes cooperan entre sí, que cuando los agentes intentan maximizar sólo su utilidad. La Teoría de Juegos fue creada por Von Neumann y Morgenstern en 1944. Otros habían anticipado algunas ideas. Los economistas Cournot y Edgeworth fueron particularmente innovadores en el siglo XIX. Otras contribuciones posteriores mencionadas fueron hechas por los matemáticos Borel y Zermelo. A principio de los años cincuenta, en una serie de artículos muy famosa el matemático John Nash rompió dos de las barreras que Von Neumann y Morgenstern se habían auto-impuesto.

METODO HIBRIDO

Modelo de Transporte El Modelo de transporte es una clase especial de problema de Programación Lineal. Trata la situación en la cual se envía un bien de los puntos de origen (fábricas), a los puntos de destino (almacenes, bodegas, depósitos). El objetivo es determinar las cantidades a enviar desde cada punto de origen hasta cada punto de destino, que minimicen el costo total de envío, al mismo tiempo que


satisfagan tanto los límites de la oferta como los requerimientos de la demanda. El modelo supone que el costo de envío de una ruta determinada es directamente proporcional al número de unidades enviadas en esa ruta. Los datos del modelo son: 1. Nivel de oferta en cada fuente y la cantidad de demanda en cada destino. 2. El costo de transporte unitario de la mercancía a cada destino. El objetivo del modelo es el de determinar la cantidad que se enviará de cada fuente a cada destino, tal que se minimice el costo del transporte total. La suposición básica del modelo es que el costo del transporte en una ruta es directamente proporcional al número de unidades transportadas. La definición de “unidad de transporte” variará dependiendo de la “mercancía” que se transporte.

Método de Monte Carlo El método Montecarlo es un método numérico que permite resolver problemas físicos y matemáticos mediante la simulación de variables aleatorias. l método Montecarlo fue bautizado así por su clara analogía con los juegos de ruleta de los casinos, el más célebre de los cuales es el de Montecarlo, casino cuya construcción fue propuesta en 1856 por el príncipe Carlos III de Mónaco, siendo inaugurado en 1861. La importancia actual del método Montecarlo se basa en la existencia de problemas que tienen difícil solución por métodos exclusivamente analíticos o numéricos, pero que dependen de factores aleatorios o se pueden asociar a un modelo probabilística artificial (resolución de integrales de muchas variables, minimización de funciones, etc.). Gracias al avance en diseño de los ordenadores, cálculos Montecarlo que en otro tiempo hubieran sido inconcebibles, hoy en día se presentan como asequibles para la resolución de ciertos problemas.

Revista Virtual  

Gerardo Llamozas