Page 41

Figure 5.

optics so that was kinda funny. It was like, ‘Oh no,

Gemini legacy image of the Orion bullets which demonstrate the extremely high image quality obtained at Gemini as a result of infrared optimization, thermal control, and adaptive optics. Gemini North Laser Guide Star/Altair/ NIRI image.

she’s been around this too long!’” In the end, Larry Stepp puts the evolution of Gemini into perspective in his usual succinct and crystallizing manner: “When we were involved in building the telescopes, our entire world was telescope building. Of course, the real purpose for the observatory is not to focus on the construction of it but [to] focus on the 50 years of science it’s going to produce. And so it’s quite a different perspective to be on the team that’s building it with the goals of the construction as opposed to the team that then operates it for decades in successful science.” Peter Michaud is the Public Information and Outreach Manager at Gemini Observatory. He can be reached at:

The following scenario illustrates the Gemini operational vision written in 1995 by Rick McGonegal… “It is nightfall on Cerro Pachón and the systems operator and staff astronomer are working through the beginning of the night’s queued observations. While the system operator is watching the satellite weather map to see how long the current conditions will last, the service observer is discussing with his colleague in La Serena which mix of observations will make the best use of tonight’s conditions. They re-run a couple of options through the automatic scheduler since the Hilo crew has asked if Gemini South could run through a few calibration observations to complete last night’s Mauna Kea file. In the same room, an engineer is trouble-shooting an off-line instrument via a videoconference link to the Mauna Kea base facility, where the expert for this instrument is currently working. They compare notes, decide that it is the same problem fixed earlier this month on Mauna Kea, and transfer the patch file. A few hours later, as the Mauna Kea system operator is running through the nightly start-up calibrations of the telescope pointing and image quality, the system operator for Cerro Pachón starts up a video link. She is having problems with the M1 support system and wants to consult. While the Mauna Kea telescope automatically runs through its calibration procedure, the two system operators decide that it is the active actuator system that is causing the problem. As the Mauna Kea system operator has been through this procedure before, he logs into the Cerro Pachón M1 support system, using an engineering display and has a detailed look at the actuator’s performance. Isolating it to a particular actuator which is misbehaving, he advises the Cerro Pachón system operator how to turn that particular actuator off. The Cerro Pachón system operator does so and then logs the problem in a distributed problem reporting system that will be used the next day by the day crew and engineering team to repair or replace the actuator. As the service observer on Cerro Pachón is starting an infrared spectroscopic observation of a high redshift galaxy, it become obvious that there is something peculiar about its emission lines. The service observer decides that it is worth calling the principal investigator in Cambridge, England. After a brief teleconference discussing the different aspects of the spectrum, the PI decides to log on from home and remotely look at the extracted spectrum himself.”



Issue 38 - June 2009