TOPSIS Model Based on Entropy and Similarity Measure for Market Segment Selection and Evaluation

Page 1

ThecurrentissueandfulltextarchiveofthisjournalisavailableonEmeraldInsightat: https://www.emerald.com/insight/2615-9821.htm

TOPSISmodelbasedonentropy andsimilaritymeasureformarket segmentselectionandevaluation

TruongThiThuyDuong VietnamBankingAcademy,Hanoi,Vietnam,and NguyenXuanThao

FacultyofInformationTechnology,VietnamNationalUniversityofAgriculture, Hanoi,Vietnam

Abstract

Purpose – Thepaperaimstoproposeapracticalmodelformarketsegmentselectionandevaluation.The papercarriesoutatechniqueoforderpreferencesimilaritytotheidealsolution(TOPSIS)approachtomakean operationsystematicdealingwithmulti-criteriadecision-makingproblem.

Design/methodology/approach – Introducingamulti-criteriadecision-makingproblembasedonTOPSIS approach.Anewentropyandnewsimilaritymeasureunderneutrosopicenvironmentareproposedtoevaluate theweightsofcriteriaandtherelativeclosenesscoefficientinTOPSISmodel.

Findings – TheoutcomesshowthattheTOPSISmodelbasedonnewentropyandsimilaritymeasureis effectiveforevaluationandselectionmarketsegment.Profitability,growthofthemarket,thelikelihoodof sustainabledifferentialadvantagesarethemostimportantinsightsofcriteria.

Originality/value – Thispaperputforwardaneffectivemulti-criteriadecision-makingdealingwith uncertaininformation.

Keywords Multi-criteriadecision-making,Marketsegmentselection,Neutrosophicset,Entropy, Similaritymeasure Papertype Researchpaper

1.Introduction

Theselectionandevaluationofmarketsegmentsboostthecompetitiveadvantageof companies.Marketsegmentistosplitthecustomermarketintosmallclustersorsegments basedonvariouscharacteristicssuchaslocations,psychographicsandconsumerbehavior. Thecompanythenevaluateswhichclustersorsegmentstobetargetmarketswiththe highestopportunity.Marketsegmentationmakesmoreadvantagescomparedtomass marking,including:(1)expandfirms’ ownmarketthroughimprovingthecustomer satisfaction(Aghdaie etal.,2013),(2)increaseprofitoreffectivenessofthefirms(Chiu etal., 2009),(3)manufacturemoreappropriateproductsorservicefrommarketsegment.

Eversince Smith(1956) presentedthebenefitsofmarketsegment,numerousstudieshave beeninvestigatedinevaluatingandselectingmarketsegments(McDonaldandDunbar,2004; QuinnandDibb,2010; Aghdaie etal.,2013; Ghorabaee etal.,2017; Duong etal.,2020).Witha

JELClassification

©TruongThiThuyDuongandNguyenXuanThao.Publishedin AsianJournalofEconomicsand Banking.PublishedbyEmeraldPublishingLimited.ThisarticleispublishedundertheCreative CommonsAttribution(CCBY4.0)licence.Anyonemayreproduce,distribute,translateandcreate derivativeworksofthisarticle(forbothcommercialandnon-commercialpurposes),subjecttofull attributiontotheoriginalpublicationandauthors.Thefulltermsofthislicencemaybeseenat http:// creativecommons.org/licences/by/4.0/legalcode

ThisresearchisfundedbytheVietnamNationalFoundationforScienceandTechnology Development(NAFOSTED)undergrantnumber502.01 – 2018.09.

Market segment selectionand evaluation

Received23December2020 Revised16January2021 Accepted16January2021

AsianJournalofEconomicsand Banking EmeraldPublishingLimited 2615-9821 DOI 10.1108/AJEB-12-2020-0106

C02,C44,D40,D81

viewtoevaluatingavarietyofmarketsegments,decisionmakersarerequiredtotakeinto accountappropriatecriteriaduringtheselectionprocess. Wind(1978) believedthatthe selectionprocedurewascomplextobeaddressedbymanagerswhocarriedoutsome importantfeaturessuchascustomercharacteristics,competitivepotentialsandfeasibility. FreytagandClarke(2001) suggestedsomemainelementsforthisprocess,includingthe expectedprofitincomparisonwiththerelatedrisk,therivals,technology,thelikelihoodof gainingcustomersinthemarket,technology,governmentalandpublicactions,thepotentials toattainacompetitiveadvantage. Ghorabaee etal. (2017) selectthemarketsegmentsusing thePorter’sfiveforceofcompetition. ThaoandDuong(2019) usedtheaspectsofprofitability, marketsize,attractivenessascriteriaformarketsegments.Hence,theselectionand evaluationofmarketsegmentcanbeviewedasamultiplecriteriadecision-making(MCDM) probleminwhichthevagueandimpreciseinformationofexpertsordecisionmakersshould notbeneglected.

Smarandache(1998) proposedaneutrosophicsets,whichisoneofthemostpowerfultools formodelinguncertaintyindecision-makingproblems.Theneutrosophicsetsisanextension offuzzysetandintuitionisticfuzzysets.Byusingtheneutrosophicsets,theMCDMapproach canhandlenotonlythevague,impreciseandincompleteinformationbutalsothe indeterminateandinconsistentinformation,whereasthefuzzysetandtheintuitionisticfuzzy setfailtowork.

SeveralpopularMCDMapproachesusingfuzzysets,intuitionisticfuzzysetsand/or neutrosophicsetshavebeenproposedinliteraturetosolvethemarketsegmentselectionand evaluationproblemssuchasatechniqueoforderpreferencesimilaritytotheidealsolution (TOPSIS),analytichierarchyprocess(AHP),qualityfunctiondeployment(QFD)(Dat etal., 2015; Aghdaie,2015; Ghorabaee etal.,2017; Tian etal.,2018). Zandi etal. (2012) evaluatedand selectedmarketsegmentationthroughabi-levelmulti-objectiveoptimizationmodel,which combinesthereturnonassets(ROA)andfuzzycooperativen-persongametheory.The impreciseandvaguedatawererepresentedbyatrapezoidalfuzzynumber. Aghdaie etal. (2013) appliedthefuzzyAHPmethodsinthesenseofChang’sextentanalysis(1992)in calculatingtheweightofeachcriterionandsub-criterion.Thecomplexproportional assessmentwithgrayrelations(COPRAS-G)methodwasusedtorankallthealternatives.In otherresearch, Aghdaie(2015) combinedAHPwithTOPSISforselectingtargetmarketwith threeclustercriteria,includingrelatedsegments,financialandeconomic,technological aspects.Forthispurpose, Ghorabaee etal. (2017) approachedthegeneralizationof combinativedistance-basedassessment(CODAS)utilizingtrapezoidalfuzzynumbers. Tian etal. (2018) proposedahybridsingle-valuedneutrosophicQFDtosupportthemarket segmentevaluationandselection.Manycriteriahavebeenusedtoassessthemarket segment,includingsegmentgrowthrate,expectedprofit,competitiveintensity,capital requiredandleveloftechnologyutilization.

Decision-makingproblemisanoperationsystemdealingwithfindingthebestsolution, whichinvolvesconflictingcriteria.Identifyingtheweightsofcriteriaandtherankingof objectswithrespecttocriteriaaretwokeycomponentsofatypicaldecision-makingmodel. Todeterminetheweightsofcriteria,thefuzzyAHPapproachisoneofthemostpopular techniques.ThefuzzyAHPapproachorganizesthepairwisejudgmentsofcriteriaandsubcriteria,withtheaimofmakingtherelativeprioritiesforasetofalternatives.However,the weaknessoffuzzyAHPistime-consumingduetoalargenumberofpairwisecomparisonbe employed.Toovercomethisproblem,thisstudyproposesanewentropyandnewsimilarity measuresforneutrosophicsetstocalculatetheimportanceweightofcriteriainMCDM approach.ThisstudyfurtherdevelopstheTOPSISapproachbasedonthenewentropyand similaritymeasureforevaluatingthemarketsegment.

Therestofpaperworkisdividedintothreeparts.In Section2,somerelatedworksare introducedthoroughlywhichweinvolvetheneutrosophicset,fundamentalofsimilarity,

AJEB

entropyandnewentropy.Additionally,anewsimilarity,entropyintheneutrosophicsetsis proposed.AnewTOPSISapproachispresentedin Section3.Anapplicationforselectingthe bestmarketsegmentisallocatedin Section4,andconclusionisthefinalsection.

2.Anewentropyandsimilaritymeasureontheneutrosophicset

Thissectionrecallssomeconceptsofasingle-valuedneutrosophicset(SVNS),whichwas introducedby Wang etal. (2010) aswellasintroduceanewsimilarityandentropymeasureof amSVNS.

2.1Single-valuedneutrosophicset

AnSVNS A* in X universalsetischaracterizedby TA* ; IA* ; FA*,whichrepresentthetruth–membership,indeterminacy–membership,falsity–membershipfunction,respectively.For eachelement x of X ,then TA* ðxÞ; IA* ðxÞ; FA* ðxÞ ∈ ½0; 1 ,satisfying TA* ðxÞþ IA* ðxÞ þFA* ðxÞ ≤ 3forall x ∈ X Forconvenience,denoteanSVNSby A* ¼ fðx; TA* ðxÞ; IA* ðxÞ; FA* ðxÞÞjx ∈ X g Thesetof SVNSon X isdenotedby SVNS ðX Þ

2.2Similaritymeasureofneutrosophicsets

Asimilaritymeasurerepresentsthesimilardegreeofobjectsdealingwiththeproblemsin reallifesuchasdecision-making,machinelearning,etc.Unlikesimilarity,entropydetermines thefuzzylevelofobjects.IntheMCDMcontext,similaritymeasureisusedasdistance measuretool,andentropycanbeusedtocalculatetheweightsofattributes.Fortwosets A* ; B* ∈ SVNS ðX Þ,thesimilaritymeasureandentropymeasurearedefinedasfollows

Definition1( BroumiandSmarandache,2013 ). Thefunction s* : SVNS ðX Þ 3SVNS ðX Þ → ½0; 1 iscalledasasimilaritymeasureon SVNS ðX Þ if satisfyingthefollowingconditions:

(1)0 ≤ s*ðA* ; B*Þ ≤ 1; (2) s*ðA* ; B*Þ¼ s*ðB* ; A*Þ; (3) s*ðA* ; B*Þ¼ 1ifonlyif A* ¼ B*;and (4)If A* ⊂ B* ⊂ C * then s*ðA* ; C *Þ ≤ s*ðA* ; B*Þ and s*ðA* ; C *Þ ≤ s*ðB* ; C *Þ:

Definition2(ThaoandSmarandache,2020). Anentropyon SVNS ðX Þ isafunction e*: SVNS ðX Þ → ½0; 1 satisfyingallfollowingconditions:

(1) e*ðA*Þ¼ 0if A* isacrispset,i.e. A*i ¼ðTA* ðxi Þ; IA* ðxi Þ; FA* ðxi ÞÞ¼ð1; 0; 0Þ or A*i ¼ðTA* ðxi Þ; IA* ðxi Þ; FA* ðxi ÞÞ¼ð0; 0; 1Þ forall xi ∈ X : (2) e*ðA*Þ¼ 1if A* ¼ fðxi ; 0:5; 0:5; 0:5Þjxi ∈ X g (3) e*ðAÞ¼ e*ðAC Þ; forall A ∈ SVNS ðX Þ (4) e*ðAÞ ≤ e*ðBÞ ifeither TA ðxi Þ ≤ TB ðxi Þ; IA ðxi Þ ≤ IB ðxi Þ; FA ðxi Þ ≤ FB ðxi Þ whenmaxfTB ðxi Þ; IB ðxi Þ; FB ðxi Þg ≤ 0:5or TA ðxi Þ ≥ TB ðxi Þ; IA ðxi Þ ≥ IB ðxi Þ; FA ðxi Þ ≥ FB ðxi Þ whenminfTB ðxi Þ; IB ðxi Þ; FB ðxi Þg ≥ 0:5: 2.3Proposedentropymeasureofthesingle-valuedneutrosphicset ThissectionproposesanewentropymeasureofanSVNSon X asthefollowing:

Market segment selectionand evaluation

Theorem1. Let A ¼fðxi ; TA ðxi Þ; IA ðxi Þ; FA ðxi ÞÞjxi ∈ X g beanSVNSseton X : Then,the entropymeasureoftheSVNS A isdefinedasfollows:

ET ðAÞ¼ 1 1 n X n i ¼1

jTA ðxi Þ 0 5j þ jFA ðxi Þ 0 5j þ jIA ðxi Þ 0 5j þ maxfjTA ðxi Þ 0 5j; jFA ðxi Þ 0 5j; jIA ðxi Þ 0 5jg 4 (1)

Proof

(1)If A isacrispset,thenforall xi ∈ X ; thenA 5 (1,0,0)orA 5 (0,0,1);therefore: Ei T ðAÞ¼ jTA ðxi Þ 0 5j þ jFA ðxi Þ 0 5j þ jIA ðxi Þ 0 5j þ maxfjTA ðxi Þ 0 5j; jFA ðxi Þ 0 5j; jIA ðxi Þ 0 5jg 4 ¼ 1

Itimpliesthat ET ðAÞ¼ 0. (2)If A ¼ fðxi ; 0 5; 0 5; 0 5Þjxi ∈ X g,thenEi T ðAÞ¼ 0 Itimplies ET ðAÞ¼ 1. (3)Itiseasytoverifythat E ðAÞ¼ E ðAC Þ forall A ∈ SVNS ðX Þ: (4)Ifeither TA ðxi Þ ≤ TB ðxi Þ; IA ðxi Þ ≤ IB ðxi Þ; FA ðxi Þ ≤ FB ðxi Þ whenmaxfTB ðxi Þ; IB ðxi Þ; FB ðxi Þg ≤ 0 5 orTA ðxi Þ ≥ TB ðxi Þ; IA ðxi Þ ≥ IB ðxi Þ; FA ðxi Þ ≥ FB ðxi Þ whenminfTB ðxi Þ; IB ðxi Þ; FB ðxi Þg ≥ 0:5, then jTB ðxi Þ 0 5j ≤ jTA ðxi Þ 0 5j; jIB ðxi Þ 0 5j ≤ jIA ðxi Þ 0 5j;jTB ðxi Þ 0 5j ≤ jTA ðxi Þ 0:5j; and IBC ðxi Þ 0 5 ≤ IAC ðxi Þ 0 5 forall xi ∈ X

Itmeansthat ET ðAÞ ≤ ET ðBÞ

2.4Proposedsimilaritymeasureofsingle-valuedneutrosphicsets

ThispartintroducesanotherapproachtobuildthesimilaritymeasureofanSVNS.Todothis, thesimilaritymeasureisdeterminedthroughanentropymeasureontheSVNS.Fortwo given A; B ∈ SVNS ðX Þ; defininganewSVSN N ðA; BÞ asfollowing: TN ðA;BÞ ðxi Þ¼ 1 þ jTA ðxi Þ TB ðxi Þj 2 ; IN ðA;BÞ ðxi Þ¼ 1 þ jIA ðxi Þ IB ðxi Þj 2 ; FN ðA;BÞ ðxi Þ¼ 1 þ jFA ðxi Þ FB ðxi Þj 2 (2) forall xi ∈ X Inparticular, TN ðA;BÞ ðxi Þ ≥ 0:5, IN ðA;BÞ ðxi Þ ≥ 0:5and FN ðA;BÞ ðxi Þ ≥ 0:5forall xi ∈ X : Theorem2(ThaoandSmarandache,2020). Thefunction S ðA; BÞ¼ E ðN ðA; BÞÞ determinesasimilaritymeasureof A and B on SVNS ðX Þ ifEisanentropy.

AJEB

Using equations(1) and (2),thenewsimilaritymeasuresoftwoSVNSs A; B ∈ NS ðX Þ are definedasfollows:

ST ðA; BÞ¼ 1 1 8n X n i¼1

jTA ðxi Þ TB ðxi Þjþ jFA ðxi Þ FB ðxi Þjþ jIA ðxi Þ IB ðxi Þjþ maxfjTA ðxi Þ TB ðxi Þj; jFA ðxi Þ FB ðxi Þj; jIA ðxi Þ IB ðxi Þjg (3)

Ingeneral,if ω ¼ðω1 ; ω2 ;:::; ωn Þ istheweightvectoron X ,thenthesimilaritymeasure generatingfrom equation(3) is:

ST ðA; BÞ¼ 1 X n i¼1

ωi 8 jTA ðxi Þ TB ðxi Þjþ jFA ðxi Þ FB ðxi Þjþ jIA ðxi Þ IB ðxi Þjþ maxfjTA ðxi Þ TB ðxi Þj; jFA ðxi Þ FB ðxi Þj; jIA ðxi Þ IB ðxi Þjg (4)

3.TheexpandofTOPSISmodelbasedonentropyandsimilaritymeasurefor evaluationandselectionmarketsegments

OneofthemostpopularMCDMmodelsisTOPSIS,whichwasproposedby HwangandYoon (1981).ThefundamentalconceptoftheTOPSISmethodisthatthemostalternativeisbyall meansneartothepositiveidealsolutionandsimultaneouslyfarthestnegativeidealsolution. Sofar,thismodelhasgainedattentionofresearchersforitseffectiveness.Theweighted determinationofcriteriaandthedistancemeasurearetwomainstepsintheTOPSISmodel. Inthispart,wecarryoutanextensionoftheTOPSISmodeltocopewiththeMCDMissue. UnlikethetraditionalTOPSISmodelusingtheEuclideanorHammingdistancesfor calculationthedistancefromeachalternativetoidealsolution,thismodelusesthenew similaritymeasureunderaneutrosophicenvironment.Aninnovativeentropyisalsotaken intoconsiderationforaccomplishingtheweightsofcriteria. Initially,consider m marketsegments A ¼ fA1 ; A2 ;:::; Am g versus n criteria C ¼ fC1 ; C2 ;:::; Cn g withthesupportofdecisionmakers.Theprocessofextension TOPSISisoutlinedasfollows:

3.1Determinethedecisionmatrix

Executethesingle-valuedneutrosophicdecisionmatrixofalternativesundercriteriainform of D ¼½xij mn inwhichtheneutrosophicnumber xij ¼ðTij ; Iij ; Fij Þ isusedtoexternalizethe judgmentofalternatives Ai ði ¼ 1; 2;:::; mÞ withrespecttocriteria Cj

3.2Determinetheweight ωj ofcriteriaC j

Thepriorpreferencedeterminationisgivenbydecisionmakersfortherelativeimportanceof criteria,whichcanleadtosubjectiveidentify.Theevaluationofeachalternativeunder featureshaveputforwardtogaintheobjectiveweightsofcriteria.Let Cj ¼ fxj1 ; xj2 ; :::; xjm jj ¼ 1;:::; ng istheimportanceweightofcriteria Cj Using equation(1),theentropy measures ej of Cj ; j ¼ 1; 2;:::; n arecalculated.Theweight ωj ofeachcriterion Cj isdetermined by: ωj ¼ 1 ej P n j¼1 ð1 ej Þ (5) forall j ¼ 1; 2;:::; n.

Market segment selectionand evaluation

3.3Identifythebestsolutionandtheworstsolution

Thebestsolution A* andtheworstsolution A* aretakendependingonthetypeofattribute, costorbenefitcriterion.Theneutrosophicnumbersareusedforrepresentationofthebest andworstsolutionasfollows: A* ¼ n Cj ; T * j ; I * j ; F * j Cj ∈ C o

min i ¼1;:::;m Fij Þ if Cj isabenefitcriterion (7)

3.4Determinetherelativeclosenesscoefficient

ThetraditionalTOPSISapproachesdistancefunctionsuchasHammingdistance,Euclidean distanceforachievementgeometricdistancefromalternativestopositiveidealsolution A* andnegativeidealsolution A*.Inthisstudy,theproposedsimilaritymeasureisapplied. Foreachmarketsegment,thesimilaritymeasuresof S þ i and Si from Ai to A* and A* are calculatedbyusing equation(4).Then,therelativeclosenesscoefficientof Ai ði ¼ 1; 2;:::; mÞ isdefinedasfollows(HwangandYoon,1981):

CCi ¼ S þ i S þ i þ Si (8) S þ i and Si aresimilaritymeasuresfrom Ai to A* and A* forall i ¼ 1; 2;:::; m

3.5Rankingofmarketsegments

Thebestmarketsegmentisnearest A* andfarthest A*,thereforetherankingofmarket segments A ¼ fA1 ; A2 ;:::; Am g with Ai ≻ Ak if CCi ≻ CCk forall i ; k ¼ 1; 2;:::; m:

4.Resultanddiscussion

Inthissection,weapplytheproposedmodelfortheevaluationandselectionmarketsegment infoursegmentations A1, A2, A3, A4.Fordemonstrationoftheproposedmodel,thedatawere gainedby ThaoandDuong(2019) witheightbenefitcriteriaforassessmentmarketsegments, includingidentifyprofitability(C1),thegrowthofthemarket(C2),sizeofmarket(C3),likely customersatisfaction(C4),salesvolume(C5),likelihoodofsustainabledifferentialadvantage (C6),developmentopportunities(C7)andthedifferentiationofproduct(C8).Themodelis implementedasfollows:

Thedecisionmakersdeterminemarketsegmentswithrespecttocriteriausinglinguistic variables.TheSVNSisemployedfortransferringtheratingscaleoflinguisticvariables, whichisshowedin Table1 (Tian etal.,2018).

Fromtheevaluationofeachexpertforeachmarketsegmentusingtheneutrosophic number,theintegratedvalueisimplementedforthefinalassessmentofeachmarketsegment usingthebasicoperatorsin Wang etal. (2010).Theneutrosophicdecisionmatrixisshownin Table2,theintegratedvaluesareshowninthelastcolumnof Table2.

¼
m
m
¼
m
ðCj ; min i¼1;:::;m Tij ; max i¼1;:::;
Iij ; max i¼1;:::;m Fij Þ if Cj isacostcriterion ðCj ; max i¼1;:::;m Tij ; min i¼1;:::;m Iij ; min i ¼1;:::;
Fij Þ if Cj isabenefitcriterion (6) A* ¼ n Cj ; T 0 j ; I 0 j ; F 0 j Cj ∈ C o
ðCj ; min i ¼1;:::;
Tij ; max i¼1;:::;m Iij ; max i¼1;:::;m Fij Þ if Cj isacostcriterion ðCj ; max i ¼1;:::;m Tij ; min i¼1;:::;m Iij ;
AJEB

From Table2,theweightvectoriscalculatedfollowing equations(1) and (5),whichis ω ¼ð0 1549; 0 151; 0 1317; 0 066; 0 0832; 0 159; 0 1278; 0 1264Þ.Accordingtotheweightsof criteria,identifyprofitabilityandlikelihoodofsustainabledifferentialadvantagecriteria, whichareseenasthetwomostheavilyusedcriteriaforselectionmarketsegment,followed bythegrowthofthemarket,sizeofmarket.Intermsofbusinessside,profit,growthandsize ofthemarketarethemostmarketattractivenessfactorsformarketsegment.Theseare consistentwiththefindingof SimkinandDibb(1998)

Using equations(6) and (7),theSVNSbestsolution A* andtheSVNSworstsolution A* are shownin Table3

Thesimilaritymeasures S þ i and Si from Ai to A* and A* aregainedbyusing equation(4), whicharedescribedin Table4.

Therelativeclosenesscoefficientof Ai ; ði ¼ 1; 2;:::; 5Þ using equation(8) isshownin Table5.Foursegmentsarerankedby A3 ≻ A1 ≻ A4 ≻ A2 AccordingtothecharacteristicofTOPSIS,thesegment A3 hasthehighestrelative closenesscoefficientallocatedatthefirstposition,followedby A1, A4, A2.Therefore,the segment A3 isthemostappropriateoneforinvestment.Thisorderissuitablewiththe rankingfourmarketsegmentcomparingtoThaoandDuong’soutcome(2019);thisconfirms toselect A3 withhighdegreeofreliability,anditalsoshowsthatourmodelisvalid.

Market segment selectionand evaluation

LinguisticscaleforperformanalternativesIntervalintuitionisticfuzzyscale

Verylow(Vl)(0.1,0.85,0.9) Low(L)(0.2,0.75.0.8) Medium(M)(0.5,0.5,0.45) Good(H)(0.8,0.2,0.15) Verygood(Vh)(0.9,0.1,0.05)

CriteriaSegment Decision makersAveragedvaluesSegment Decision makersAveragedvalues

C1 A1 Vh,Vh,H,H(0.85,0.15,0.1) A3 H,H,H,Vh(0.825,0.175,0.125) C2 H,H,Vh,Vh(0.85,0.15,0.1)Vh,Vh,Vh, Vh (0.9.0.1.0.05)

C3 H,Vh,H,F(0.75,9.25,0.2)Vh,Vh,H,H(0.85,0.15,0.1) C4 F,H,F,F(0.575,0.425,0.375)H,Vh,Vh,Vh(0.875,0.125,0.075)

C5 H,F,F,F(0.575,0.425,0.375)Vh,Vh,Vh, Vh (0.9,0.1,0.05)

C6 Vh,H,Vh,Vh(0.875,0.125,0.075)H,H,Vh,H(0.825,0.175,0.125)

C7 H,H,Vh,H(0.825,0.175,0.125)H,H,Vh,Vh(0.85,0.15,0.1)

C8 H,H,Vh,Vh(0.85,0.15,0.1)H,Vh,Vh,H(0.85,0.15,0.1)

C1 A2 H,F,H,H(0.725,0.275,0.225) A4 Vh,Vh,H,H(0.85,0.15,0.1)

C2 H,F,F,F(0.575,0.425,0.375)Vh,Vh,H,H(0.85,0.15,0.1)

C3 F,H,H,F(0.65,0.35,0.3)H,H,H,Vh(0.825,0.175,0.125)

C4 F,F,F,F(0.5,0.5,0.45)F,F,F,F(0.5,0.5,0.45)

C5 H,F,F,F(0.575,0.425,0.375)H,F,F,F(0.575,0.425,0.375)

C6 H,H,H,F(0.725,0.275,0.225)Vh,Vh,H,H(0.85,0.15,0.1)

C7 H,H,F,F(0.65,0.35,0.3)F,F,H,H(0.65,0.35,0.3)

C8 H,F,F,H(0.65,0.35,0.3)F,L,L,L(0.275,0.688,0.713)

Table1. Linguisticvariablesfor ratingscaleonmarket segment

Table2. Theneutrosophic decisionmatrix

Table3. Thepositive idealsolution A* andthe negativeideal solution A*

5.Conclusion

Marketsegmentevaluationandselectionisoneofthemostimportantproblemsthatneedto bethoroughlysolvedtodeterminearightmarketingstrategyinroughlycompetitive environments.Itisbettertoutilizeeconomicsegmentationmethodsbeforeusingthecostly marketingmixedpart.SincethefirstdebaseofSmithaboutthebenefitsofmarketsegment, varioussegmentexcogitationswereemployed.However,managershavedifficultieshowto choosethebestappropriatesegmenttoserve.Therefore,amathematicalsystemallows simplechoice,whichbringsmanyadvantages.Themultipleconflictingcriteriaalongwith subjectiveandimpreciseassessmentcausedifficultyinthetargetmarketselectionprocess.In thispaper,wehavescrupulouslyextendedaTOPSISmodelbasedontheentropyand similaritywithintheneutrosophicenvironment.Theneutrosophichasbeenrecognizedasan effectiveandflexibletooltoshedlightonuncertain,inconsistentinformation.Acombination ofneutrosophicsetandMCDMmodelcontributestoimprovethemodelaccuracybothin termsofresearchandpractice.Inthiswork,anovelentropyandnovelsimilaritymeasureis proposedforaneutrosophicset.Entropytacklesandidentifiestheweightsofcriteria; meanwhile,theaforementionedsimilarityallowstherelativeclosenesscoefficientaim.The findingshowsthatprofitability,growthofthemarket,thelikelihoodofsustainable differentialadvantagesarethemostimportantinsightsofcriteria.Fourmarketsegmentsas wellaseightcriteriaareappliedtoselectthebestmarketsegment.Theproposedmodelcan bemodifiedtoapplyforarbitrarymarketsegmentnumberswithvariousconflictingcriteria. Inaddition,themodelextendsthescopenotonlyformarketsegmentbutalsoforotherreal practices.

(0.9,0.1,0.05)(0.575,0.425,0.375) C3 (0.85,0.15,0.1)(0.65,0.35,0.3) C4 (0.85,0.125,0.075)(0.5,0.5,0.45) C5 (0.9,0.1,0.05)(0.575,0.425,0.375) C6 (0.85,0.125,0.075)(0.725,0.275,0.225) C5 (0.85,0.125,0.075)(0.65,0.35,0.3) C6 (0.85,0.15,0.1)(0.275,0.6875,0.7125)

A1 A2 A3
S þ i ¼ S ðAi ; A* Þ
Si ¼ S ðAi ; A* Þ
A
A4
0.93310.77650.98490.8292
0.79300.94970.74130.8970
1 A2 A3 A4 CCi 0.54060.44980.57060.4802 Ranking 2413 A* A* C1 (0.85,0.15,0.1)(0.725,0.275,0.225) C2
Table4. Thesimilarity measures S þ i and Si from Ai to A* byusing equation(5) Table5. Therelativecloseness coefficientof Ai ; ði ¼ 1; 2;:::; 5Þ and theirranking AJEB

References

Aghdaie,M.H.(2015), “Targetmarketselectionbasedonmarketsegmentevaluation:amultiple attributedecisionmakingapproach” , InternationalJournalofOperationalResearch,Vol.24, pp.262-278.

Aghdaie,M.H.,Zolfani,S.H.andZavadskas,E.K.(2013), “Marketsegmentevaluationandselection basedonapplicationoffuzzyAHPandCOPRAS-Gmethods” , JournalofBusinessEconomics andManagement,Vol.14,pp.213-233.

Broumi,S.andSmarandache,F.(2013), “Severalsimilaritymeasuresofneutrosophicsets” , NeutrosophicSetsandSystems,Vol.1No.1,pp.54-62.

Chang,D.Y.(1992), “Extentanalysisandsyntheticdecision” , OptimizationTechniquesand Applicatons,Vol.1,pp.352-355.

Chiu,C.-Y.,Chen,Y.-F.andKuo,I.-T.K.(2009), “Anintelligentmarketsegmentationsystemusing k-meansandparticleswarmoptimization” , ExpertSystemswithApplications,Vol.36, pp.4558-4565.

Dat,L.Q.,Phuong,T.T.,Kao,H.P.,Chou,S.Y.andNghia,P.V.(2015), “AnewintegratedfuzzyQFD approachformarketsegmentsevaluationandselection” , AppliedMathematicalModelling, Vol.39,pp.3653-3665.

Duong,T.T.T.,Phong,L.T.,Hoi,L.Q.andThao,N.X.(2020), “Anovelmodelbasedonsimilarity measureandqualityfunctiondeploymentonintervalneutrosophicsetsforevaluationand selectionmarketsegments” , JournalofIntelligentandFuzzySystems,Vol.38,pp.5203-5214.

Freytag,P.andClarke,A.(2001), “Businesstobusinessmarketsegmentation” , IndustrialMarketing Management,Vol.3No.6,pp.473-486.

Ghorabaee,M.K.,Amiri,M.,Zavadskas,E.K.,Hooshmand,R.andAntuchevicien _ e,J.(2017), “Fuzzy extensionoftheCODASmethodformulti-criteriamarketsegmentevaluation” , Journalof BusinessEconomicsandManagement,Vol.8No.1,pp.1-19.

Hwang,C.L.andYoon,K.(1981), MultipleAttributeDecisionMakingMethodsandApplication:AState oftheArtSurvey,SpringerVerlag.

McDonald,M.andDunbar,I.(2004), MarketSegmentationHowtoDoitHowtoDoProfitfromit, ElsevierButterworth-Heinemann.

Quinn,L.andDibb,S.(2010), “Evaluatingmarket-segmentationresearchpriorities:targeting re-emancipation” , JournalofMarketingManagement,Vol.26Nos13-14,pp.1239-1255.

Simkin,L.andDibb,S.(1998), “Prioritizingtargetmarkets” , MarketingIntelligenceandPlanning, Vol.16,pp.407-417.

Smarandache,F.(1998), Neutrosophy:NeutrosophicProbability,Set,andLogic.AnalyticSynthesis SyntheticAnalysis.AmericanResearchPress.

Smith,W.(1956), “Productdifferentiationandmarketsegmentationasalternativemarketing strategies” , JournalofMarketing,Vol.21No.1,pp.3-8.

Thao,N.X.andDuong,T.T.T.(2019), “Selectingtargetmarketbysimilarmeasuresininterval intuitionisticfuzzyset” , TechnologicalandEconomicDevelopmentofEconomy,Vol.25, pp.934-950.

Thao,N.X.andSmarandache,F.(2020), “Applynewentropybasedsimilaritymeasuresofsingle valuedneutrosophicsetstoselectsuppliermaterial” , JournalofIntelligentandFuzzySystems, Vol.39No.1,pp.1005-1019.

Tian,Z.P.,Wang,J.Q.andZhang,H.Y.(2018), “Hybridsingle-valuedneutrosophicMCGDMwithQFD formarketsegmentevaluationandselection” , JournalofIntelligentandFuzzySystems,Vol.34, pp.177-187.

Wang,H.,Smarandache,F.,Zhang,Y.andSunderraman,R.(2010), “SinglevaluedSVNSsets” , Multisp Multistruct,Vol.4,pp.410-413.

Market segment selectionand evaluation

Wind,Y.(1978), “Issueandadvancesinsegmentationresearch” , JournalofMarketingResearch, Vol.15,pp.317-337.

Zandi,F.,Tavana,M.andO’Connor,A.(2012), “AStrategiccooperativegame-theoreticmodelfor marketsegmentationwithapplicationtobankinginemergingeconomies” , Technologicaland EconomicDevelopmentofEconomy,Vol.18,pp.389-423.

Correspondingauthor

TruongThiThuyDuongcanbecontactedat: thuyduongktv@yahoo.com.vn

Forinstructionsonhowtoorderreprintsofthisarticle,pleasevisitourwebsite: www.emeraldgrouppublishing.com/licensing/reprints.htm

Orcontactusforfurtherdetails: permissions@emeraldinsight.com

AJEB

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
TOPSIS Model Based on Entropy and Similarity Measure for Market Segment Selection and Evaluation by Florentin Smarandache - Issuu