__MAIN_TEXT__

Page 1

Klar for ungdomsskolen er et matematikkhefte som passer for elever på 7. trinn, for lærere som underviser på mellomtrinnet og for foreldre som ønsker å hjelpe barna sine med matematikk. Heftet oppsummerer på en tydelig og tilgjengelig måte det man bør kunne etter sju år på barnesko­ len. Det vil være til stor hjelp for å få oversikt over egen kompetanse i matematikk, for å kunne tilpasse undervisningen til den enkelte og for å sikre en god overgang til ungdomsskolen. Heftet egner seg godt til vurdering, både som under­ veisvurdering og som sluttvurdering. I arbeidet med Klar for ungdomsskolen får elevene bekreftelse på det de allerede kan, og veiledning på det de må øve mer på. Hver enkelt elev har dette hefte for å vise frem sin kompetanse til ny lærer på ungdomsskolen. Under de ulike hovedemnene i heftet er det QR­koder til øvingsoppgaver og gjøremål.

Kristin Sandberg

Klar for ungdomsskolen Dette bør du kunne i matematikk etter Bokmål

ISBN 978-82-11-02880-8

,!7II2B1-aciiai!

7.

trinn


Kristin Sandberg

Klar for ungdomsskolen Dette bør du kunne i matematikk etter Bokmül

7.

trinn


Copyright © 2018 by Vigmostad & Bjørke AS All Rights Reserved ISBN: 978-82-11-02880-8 Grafisk produksjon: John Grieg, Bergen 1. utgave / 1. opplag 2018 Omslagsdesign ved forlaget Grafisk design og sats ved forlaget Bilder og illustrasjoner: s. s. s. s. s. s.

6 7 8 9 17 18

s. 19 s. 20 s. 22 s. 29

(pizza) © shutterstock / balyasina; (barn) © shutterstock / monoo (termometer) © shutterstock / VladisChern (saft) © shutterstock / objectsforall ; (jordbær) © shutterstock / Story (balansevekt) © shutterstock / zendograph (klokke) © shutterstock / kenkuza; (målestokk) © shutterstock / Maxop-Plus (bil) © shutterstock / Mikhail Bakunovich; (vekt) © shutterstock / Africa Studio; (eske) © shutterstock / Irina Fischer; (terning) © shutterstock / tanyaya (dollarseddel) © shutterstock / Prachaya Roekdeethaweesab (kart) © shutterstock / Rainer Lesniewski; (biler) © shutterstock / KREUS; (vinkelmåler) © shutterstock / Valery Brozhinsky (terning) © shutterstock / tanyaya; (biler) © shutterstock / KREUS (pizza) © shutterstock / balyasina

Øvrige figurer er tegnet ved forlaget. Spørsmål om denne boken kan rettes til: Fagbokforlaget Kanalveien 51 5068 Bergen Tlf.: 55 38 88 00 Faks: 55 38 88 01 e-post: fagbokforlaget@fagbokforlaget.no www.fagbokforlaget.no Materialet er vernet etter åndsverkloven. Uten uttrykkelig samtykke er eksemplarfremstilling bare tillatt når det er hjemlet i lov eller avtale med Kopinor.


Om matematikk og dette heftet Matematikk er et fag som hjelper deg med å orientere deg i hverdagen. Selv med alle de tekniske hjelpemidlene vi har i dag, er du stadig avhengig av å kunne regne ut ting: hvor lang tid noe tar, hvor langt det er til et sted, hva noe veier, hvor mye noe koster, om du skal betale noe, eller om noen skal betale deg. Dette heftet er ment å gi deg en oversikt over hva du bør kunne i matematikk før du begynner på ungdomsskolen. Du kan lese dette heftet fra start til slutt, men det kan også være lurt å bla litt mellom de ulike emnene for å se sammenhengene. Bruk tid på hver «bit» og tenk etter om du forstår det du leser. Du oppdager sikkert at det er mye du kan, og sikkert noe du ikke kan eller forstår. Da håper jeg du er aktiv og søker hjelp. Husk: Ingen av spørsmålene dine er for dumme! Det er kun dine spørsmål som gjør at du kan forstå mer! Ikke gi deg, spør til du forstår! Som med ALT annet i livet blir du god på det du trener på. Den som vil bli god fotballspiller, må trene mye. Skal du bli god på fiolin, basketball, rapping, roing, karate, ballett eller langrenn, må du øve, øve, øve. Etter hvert mestrer du, og da får du kjenne GLEDE. Jeg håper du øver og trener på matematikken. Da kan du finne gleden i arbeidet. I arbeid med matematikk trener du hjernen din. Hjernen din trenger trening for å holde seg frisk. Den elsker små daglige utfordringer og treningsøkter. Og heldigvis er det aldri for seint å lære seg noe nytt! Da skjønner du at du har mange muligheter, her er det bare å sette i gang! I arbeid med matematikk og regning løser du små «mysterier». Kunnskapen kan gi deg GLEDE og NYTTE hele livet! Jeg heier på deg! Lykke til! Beste hilsen Kristin Sandberg Bergen 2018 Heftet forteller ikke om ulike digitale verktøy og bruken av dem. Informasjon om slike verktøy og ferdigheter knyttet til dem vil trolig forandre seg veldig raskt i tiden framover, og derfor anbefaler vi at du søker informasjon om dette andre steder.

3


Viktige tips når du skal løse oppgaver Les alltid teksten i alle matematikkoppgaver så grundig at du har forstått hva som er informasjon, og hva som er selve spørsmålet. Ofte kan det hjelpe å «rydde» ved å sette blå strek under informasjonen og rød strek under spørsmålet. Eksempel: Pia og Angelina skulle dele

av en kake. Hvor mye fikk hver av dem?

Det er veldig lurt å tegne oppgaven. Lag helt enkle tegninger som hjelper deg til å få oversikt over hva du vet (informasjonen), og hva du ikke vet / hva du skal finne ut av (spørsmålet).

Føl deg fri til å prøve ulike framgangsmåter for å finne en løsning. Hvis en måte ikke virker, prøv en ny. I matematikk kan problemer løses på mange måter. Iblant kan det være smart å gjøre: 1. Gjett! Og sjekk om gjettingen din kan stemme. 2. Gjør et overslag: Hva kan være et sannsynlig svar? 3. Hvis tallene i oppgaven er vanskelige, bytt dem ut til enklere tall og prøv om du kan finne en løsning da. Bruk så samme metode på de vanskelige tallene. Når du har regnet og tror du har funnet en løsning, vær alltid kritisk til deg selv og spør: Er dette en sannsynlig løsning? Les oppgaven på nytt og sjekk at løsningen din kan være rett. Skriv så forklaringen din med tall, utregninger, ord og setninger. Gjør det klart hvordan du tenkte for å finne svaret. Slik ser du (og læreren din) hvordan du har tenkt. Skriv til slutt svaret ditt med to streker under. Dreier det seg om cm, kg, epler eller kr? Husk å få med riktig enhet i svaret.

4

Klar for ungdomsskolen


tall og algebra

Dette bør du kunne om tall og algebra • Plassverdisystemet Et eksempel: Tallet 562,78 har • • • • •

5 hele hundrer 56 hele tiere 562 hele enere 5627 tideler 56 278 hundredeler

Du må vite at tallsystemet vårt er et titallssystem. Det er bygd opp rundt det vi kaller dekadiske enheter, altså 10, 100, 1000, 10 000 osv. Vi snakker om enere, tiere, hundrer, tusener, titusener, hundretusener. Og vi snakker om tideler, hundredeler, tusendeler osv.

Tall og Tallsystem Verdi 70 000

Et eksempel: Tallet 0,2 har 2 tideler, og det kan du skrive som brøk slik: .

Verdi 3000

Titallsystemet

Verdi 400

Verdi 60

Verdi 1

Verdi 0,8

Verdi 0,02

7 3 4 6 1 ,8 2 en

ss

la

sp

el

ed

n

se

as

pl

n

se

n

se

as

pl

ls

de

dr un

H

Ti

er En

n

se

as

pl

en

ss

en

ss

la

la

er

as

pl

er

dr un

Ti

H

np

se Tu

np

se tu

Ti

Et eksempel: Tallet 0,47 har 47 hundredeler, og det kan du skrive som brøk slik: .

Det er en spesiell sammenheng mellom de dekadiske enhetene: • • • • • •

Det er Det er Det er Det er Det er Det er

10 10 10 10 10 10

tusendeler i en hundredel. hundredeler i en tidel. tideler i 1. enere i 10. tiere i 100. hundrer i 1000.

Og slik fortsetter det … • Hele tall og desimaltall

Tallene 1 og 4 og 17 og 234 er eksempler på hele tall. Tall som ligger mellom to hele tall, kaller vi desimaltall. Midt mellom tallene 2 og 3 ligger tallet 2,5. Midt mellom tallet 2,5 og 2,6 ligger tallet 2,55. I tallet 3,6 står 3 for 3 hele enere og 6 for 6 tideler. Vi kan også skrive det slik: 3 . I tallet 3,67 er det 3 hele og 67 hundredeler, altså 3 . Eller vi kan si det er 3 hele, 6 tideler og 7 hundredeler. Husk også at 4,7 = 4,70 = 4,700 Antall nuller bak den siste desimalen endrer ikke den verdien tallet har.

• Skrive tall på utvidet form

762 = 700 + 60 + 2 Eller litt vanskeligere: 34 578,45 = 30 000 + 4000 + 500 + 70 + 8 + 0,4 + 0,05

Dette bør du kunne om tall og algebra

5


• Tallinjer

Plassering av hele tall, desimaltall og brøk på tallinjer -3 -2

-1

0

1 1,1

1

2

1,3

1,5

1,2

1 1,01

3

1,7

1,4

1,03

1,02

1,6

1,05

1,04

1,07

1,06

• Brøk

1 4 2 4

Klar for ungdomsskolen

1,08 0,75

1 4

2 1 = 4 2

3 4

0,33..

0,66..

1 3

2 3

1

1

0,2

0,4

0,6

0,8

1 5

2 5

3 5

4 5

1

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1 10

2 10

3 10

4 10

5 10

6 10

7 10

8 10

9 10

1

En brøk er en del av noe. Vi skriver brøk slik:

pizza

2 5

TELLER BRØKSTREK

NEVNER

pizza Denne brøken forteller oss at vi har 2 av 5 deler. I eksempelet ovenfor kan vi tenke 2 delt på 5, eller vi kan si 2 deler av 5. En brøk kan være en del av tallet 1, eller det kan være en del av en større mengde. For eksempel: • •

6

1,09 1,1

0,50

0

0

1,8

0,25 0

0

1,9 2

En fjerdedel av en pizza skriver vi slik: . 3 jenter av en klasse på 7 utgjør av elevene. Vi sier 3 av 7 er jenter, eller at tre sjudeler er jenter. Da skjønner vi at må være gutter.


• Uekte brøk og blandet tall

Når telleren er større enn nevneren, kaller vi det en uekte brøk. Eksempel: Vi vet at I

= 1.

har vi en hel = 

og i tillegg

. Vi har altså 1 og

.

Vi kan gjøre en uekte brøk om til blandet tall ved å skrive slik: = 1 • Prosent, og sammenhengen prosent, brøk og desimaltall

Prosent betyr del av hundre. 1 % er en hundredel av en mengde, altså

Noen nyttige eksempler du bør kunne:

1 % av 300 betyr en hundredel av 300. For å finne hvor mye det er, må du dele 300 på 100, altså 300 : 100 = 3

= 0,02

2 % =  10 % = 

=

= 0,1

20 % = 

=

= 0,2

50 % = 

=

= 0,5

av noe.

Sammenhengen prosent, brøk og desimaltall blir slik: 1 % =   = 0,01 (1 står her på hundrededelsplassen). 0

2 10

1 4

20 % 25 % 0,2 0,25

1 2

3 4

50 % 0,5

75 % 0,75

4 5

1

80 % 0,8

Se mer om måter å regne prosent på bak i heftet.

• Primtall, sammensatte tall

Primtall er et tall som bare kan deles med seg selv og 1. Tallene 3–7–11 er eksempler på primtall. Sammensatte tall kan deles med flere tall. For eksempel kan 12 deles med tallene 6, 3, 4 og med 2.

• Faktorisering (ned til primtall)

4 ∙ 5 = 20 Faktor ∙ Faktor = Produkt Når vi faktoriserer et tall, deler vi opp et tall i faktorer, for eksempel slik:

Primtall og Faktorisering

45

a) b) c) d)

5·9 3·3

Primtall

20 = 4 ∙ 5 = 2 ∙ 2 ∙ 5 45 = 9 ∙ 5 = 3 ∙ 3 ∙ 5 55 = 5 ∙ 11 120 = 2 ∙ 60 = 2 ∙ 2 ∙ 30 = 2 ∙ 2 ∙ 2 ∙ 15 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 5

I de endelige svarene her ser du bare primtall.

45 = 3 · 3 · 5 Vi skriver faktorene i stigende rekkefølge

• Negative tall

Negative tall er tall som har lavere verdi enn 0. Negative tall skrives med fortegnet minus foran. De kan fortelle om temperaturer som er under 0 grader, eller om at du har lånt penger i en bank: Kontoen står i –346 kr. Mer om regning med negative tall finner du bak i heftet.

Dette bør du kunne om tall og algebra

7


Klar for ungdomsskolen er et matematikkhefte som passer for elever på 7. trinn, for lærere som underviser på mellomtrinnet og for foreldre som ønsker å hjelpe barna sine med matematikk. Heftet oppsummerer på en tydelig og tilgjengelig måte det man bør kunne etter sju år på barnesko­ len. Det vil være til stor hjelp for å få oversikt over egen kompetanse i matematikk, for å kunne tilpasse undervisningen til den enkelte og for å sikre en god overgang til ungdomsskolen. Heftet egner seg godt til vurdering, både som under­ veisvurdering og som sluttvurdering. I arbeidet med Klar for ungdomsskolen får elevene bekreftelse på det de allerede kan, og veiledning på det de må øve mer på. Hver enkelt elev har dette hefte for å vise frem sin kompetanse til ny lærer på ungdomsskolen. Under de ulike hovedemnene i heftet er det QR­koder til øvingsoppgaver og gjøremål.

Kristin Sandberg

Klar for ungdomsskolen Dette bør du kunne i matematikk etter Bokmål

ISBN 978-82-11-02880-8

,!7II2B1-aciiai!

7.

trinn

Profile for Fagbokforlaget

Klar for ungdomskolen  

Klar for ungdomskolen