Page 254

The Cuisenaire Gattegno Method Of Teaching Mathematics

92 = (4 × 5)2 = 42 + 52 + 2 × (4 × 5) Pupils should now make the patterns for other squares; for example, 52 = (2 + 3)2 = 22 + 32 + 2 × (2 × 3), or any other square of side less than 10 for which single rods may be used. When properly understood, the idea can be applied to find any one of the squares with which we have been dealing; for example: 132 = (10 + 3) 2 = 102 + 32 + 2 × (10 × 3) = 100 + 9 + (2 × 30) = 109 + 60 = 169 or 232 = (20 + 3)2 = 202 + 32 + 2 × (20 × 3) = 400 + 9 + (2 × 60) = 409 + 120 = 529 In a similar way, the relationship involved in (a — b 2 = a2 + b2 — 2 ab can be discovered, for example using 42 and representing it as the square of a difference, say (9 – 5)2.

244

The Cuisenaire Gattegno method of teaching Mathematics  

The Cuisenaire Gattegno method of teaching Mathematics

The Cuisenaire Gattegno method of teaching Mathematics  

The Cuisenaire Gattegno method of teaching Mathematics

Advertisement