Page 250

The Cuisenaire Gattegno Method Of Teaching Mathematics

Pupils are next led to recognize the multiples of 22, 44, 88; of 55 and of 33, 66, and 99. Finally, pupils are asked to multiply mentally such products as

or

32 × 33 = 32 × 3 × 11 = 96 × 11 = 1056 16 × 66 = 16 × 2 × 3 × 11 = 48 × 2 × 11 = 96 × 11 = 1056

It is admitted that in our normal curriculum for mathematics the work which has just been described is usually left for pupils in secondary grades. Teachers have to find out for themselves, by following the sequence of exercises described, whether pupils in lower primary grades can master such ideas. If the reader is already startled by what is normally regarded as difficult arithmetic for third and fourth grade pupils, he will be further astonished at the third source of useful products. 3

Knowing and using squares

The notion of squares has already been introduced in the study of numbers up to 20 and up to 100. Pupils already know, for example, that a square made of four pink rods is called ‘four squared’ and written 42. They have also measured the four pink rods end to end and discovered that 42 = 4 × 4 = 16. Through the discovery of squares up to 100, the idea has been suitably developed for discovering squares up to 1000. These would be squares extending from 12 to 312.

240

The Cuisenaire Gattegno method of teaching Mathematics  

The Cuisenaire Gattegno method of teaching Mathematics

The Cuisenaire Gattegno method of teaching Mathematics  

The Cuisenaire Gattegno method of teaching Mathematics

Advertisement