Page 144

Â

The Cuisenaire Gattegno Method Of Teaching Mathematics

larger ones. For this reason, in Chapter 5, discussion was limited to activities associated with rods no longer than the orange, that is, involving numbers up to ten. In that chapter, moreover, the main problem under consideration was the transfer of experience from names-names to number-names. The stage had not been reached of taking a particular number and considering ways of revealing to pupils the variety of relationships associated with it. This can now be done. With the study of numbers up to 20, one is not passing to a new stage of the course. The child should be led to see that the concepts he has formed and expressed previously apply equally to larger numbers. All the ideas needed for an understanding of arithmetic have already been introduced and the more thoroughly this has been done the less time will be needed now for the study of numbers 11 to 20.

Numbers May Be Studied In Any Order As before, there should be no attempt to organize or systematize work so that number facts are mastered. The aim is still the development of understanding; only incidentally is the knowledge of number facts acquired. Gattegno, in Book I of Mathematics, treats each number seriatim from 11 to 20 but also suggests elsewhere, that they may be introduced by either doubling or trebling from known numbers, e.g. 2, 4, 8, 16; 3, 6,

Â

134

The Cuisenaire Gattegno method of teaching Mathematics  
The Cuisenaire Gattegno method of teaching Mathematics  

The Cuisenaire Gattegno method of teaching Mathematics

Advertisement