Page 82

Números y operaciones

Núm

2

7

3

ero

0,51

3

7

4

2

5115

Re

111. ...

al

Númer

1

os R ac 0,33 io 3.

...

Números

-4

-25

-3

N ú m

-1

4

le

s

-3 4 -0,25

π 5

s

3...

na

te

ra le

23..

-2

0,6

es 3

ro

0

En u

e r o s Na 12 t

Propiedades de las operaciones

s

Cuando se suman o se multiplican dos números naturales se obtiene otro número natural.

Pero, cuando se restan o se dividen dos números naturales no siempre se obtiene un número natural.

1+3 107 x 23 71 + 12

1 - 3 107 ÷ 23 71 - 112

Con números enteros es diferente: se pueden sumar, restar o muItiplicar dos enteros y se obtiene un entero.

Pero, cuando se dividen dos números enteros no siempre se obtiene un número entero.

Los números racionales y los números reales admiten las cuatro operaciones: la suma, la diferencia, el producto o el cociente de dos números racionales o reales es un número racional o real, respectivamente. Bueno, siempre que no se divida entre cero.

-4 x 3 205 - 374 -713 + 250

-5:6 9:4 80 : 132

0,333 : 2 √ 4 - 32 78 x 5,83

Todo número real tiene un número opuesto que también es real.

Todo número racional tiene un número opuesto que también es racional.

Todo número entero tiene un número opuesto que también es entero.

3 tiene a -3

3 tiene a -3 -5 tiene a 5

√ 3 tiene a -√ 3

3 tiene a - 3 4 4

Todo número real no nulo tiene un número inverso que también es real.

Todo número racional no nulo tiene un número inverso que también es racional.

4 tiene a .14 1 2

3 4

tiene a 2

√3 tiene a 13.

tiene a

4 3

.

- 1n tiene a -n

Interesante Los números primos son los 5 bloques de construcción de los 5 números compuestos. Observa tres árboles de factores del número 30.

.

30

. 2

30 6

3

.3

30 2 2

.

. 3

3 15

.

5

.

. 2

10

.

5

.

s

3 tiene a -3; -7 tiene a 7

103.

Ningún número entero, excepto 1 y -1 , tiene inverso.

Pero ningún número natural tiene opuesto. si x es natural -x no es natural. 2 es natural pero -2 no lo es. Ningún número natural, excepto 1, tiene inverso: si x es natural y diferente de 1, entonces 1x no es natural. 2 es natural pero 12 no lo es.

Aunque las ramas de los tres árboles de factores son diferentes, los números primos en la fila inferior son los mismos, sin importar el orden en que aparecen. En cada árbol, el producto de 2, 3 y 5 en cualquier orden es 30. Esto sugirió a Euclides una propiedad muy importante de los números y la incluyó en su obra Los elementos en el año 320 a.C. “Todo número compuesto puede ser expresado como el producto de números primos en exactamente una forma, sin importar el orden de los factores”.

Fundación POLAR • Matemática para todos • Fascículo 11 - El mundo y los NÚMEROS 4

Matemáticas para todos  

Fascículos de matemáticas editados por la Fundación Polar

Matemáticas para todos  

Fascículos de matemáticas editados por la Fundación Polar

Advertisement