Page 294

EJERCICIOS

287

Es suficiente considerar estos casos porque al aplicar una rotación de π/2 se intercambia x con y y se obtienen las otras combinaciones. Si la ecuación general se reduce a la forma (A.14), entonces Φ = 0 y ∆ = −C 00 D 002 6= 0. Como Φ y ∆ son invariantes, aplicados en la ecuación general, nos dice que si Φ = B2 − 4AC = 0 y ∆ = 4ACF + BDE − AE2 − CD2 − FB2 6= 0, entonces tenemos una parábola. Si la ecuación general se reduce a la forma (A.13), entonces Φ = −4A0 C 0 y ∆ = 4A0 C 0 F 0 = −ΦF 0 . Si Φ > 0, la ecuación general solo se puede reducir a la forma (A.13) y en este caso Φ = −4A0 C 0 > 0 nos dice que A0 y C 0 tienen signos opuestos y que F 0 es cero solo cuando ∆ = 0. De acuerdo a nuestra caracterización de cónicas en el caso más simple, la ecuación general representa una hipérbola si Φ = B2 − 4AC > 0 y ∆ 6= 0. Si Φ < 0, la ecuación general solo se puede reducir a la forma (A.13) y en este caso Φ = −4A0 C 0 < 0 nos dice que A0 y C 0 tienen signos iguales y que F 0 es cero solo cuando ∆ = 0. De acuerdo a nuestra caracterización de cónicas en el caso más simple, la ecuación general representa una elipse si Φ = B2 − 4AC < 0, ∆ 6= 0 y F 0 tiene signo opuesto a A0 y C 0 . En resumen, si Φ < 0, la ecuación general corresponde a una elipse si Θ∆ < 0. Toda este análisis se resumen en teorema (A.1).

EJERCICIOS A.1 Determine la ecuación canónica, en el sistema X 0 Y 0 , de las curvas que se dan a conti-nuación. Hacer la representación gráfica en el sistema XY. a) b) c) d) e)

73x2 + 72xy + 52y2 + 74x − 32y − 47 = 0. 3x2 + 6xy + 3y2 − x + y = 0. 2xy − x + y − 3 = 0. 34x2 + 24xy + 41y2 − 20x + 140y + 50 = 0. x2 − 4xy + 4y2 − 6x + 2y = 0.

A.2

Considere la parábola (4x − 3y)2 = 250x − 100. Determine las coordenadas del vértice en el sistema XY.

A.3

Use invariantes para determinar la naturaleza de las curvas de ecuación

√ a) x2 − 4 xy + 4 y2 + 5 y 5 + 1 = 0 √ b) 7 x2 − 6 xy 3 + 13 y2 − 16 = 0 c) x2 − 10 xy + y2 + 1 = 0 A.4 A.5

Muestre que la cónica Bxy + Dx + Ey + F = 0 es una hipérbola si B 6= 0 y F 6= 0. Considere la ecuación A x2 + B xy + C y2 + F = 0. a) Muestre que si a la ecuación le aplicamos una rotación con un ángulo θ que anula el término “xy”, entonces la ecuación se reduce a otra de la forma A0 x 02 + C 0 y02 + F = 0 (F es invariante). b) Muestre que si A = C y B2 − AC = 0, entonces ∆ = 0 y además, si a la ecuación le aplicamos una rotación con un ángulo θ = π/4, la ecuación se reduce a 2Ay2 + F = 0 o 2Ax2 + F = 0 (una cónica degenerada).

Cálculo en varias variables  
Cálculo en varias variables  
Advertisement