Page 293

286

MÁS SOBRE CÓNICAS

Cuando aplicamos a la ecuación general A x2 + B xy + C y2 + D x + E y + F = 0, el cambio de variable (A.5) obtenemos la ecuación A0 x 02 + C 0 y02 + D 0 x 0 + E0 y0 + F 0 = 0, donde A0 = A cos2 θ + B sen θ cos θ + C sen2 θ C 0 = C cos2 θ − B sen θ cos θ + A sen2 θ D 0 = D cos θ + E sen θ E0 = E cos θ − D sen θ F0 = F

(A.11)

Cuando aplicamos el cambio de variable (A.1), del origen al nuevo origen O0 = (h, k), la ecuación general queda A0 x 02 + C 0 y02 + D 0 x 0 + E0 y0 + F 0 = 0, donde A0 = A, B0 = B, C 0 = C, D 0 = 2Ah + Bk + D, E0 = Bh + 2Ck + E, F 0 = Ah2 + Bhk + Ck2 + Dh + Ek + F.

(A.12)

Se observa entonces que si aplicamos una rotación, el coeficiente F no varía y si aplicamos una traslación, no varían los coeficientes A, B y C. También hay combinaciones de coeficientes que no cambian cuando se aplican combinaciones de estas dos transformaciones de coordenadas. Estas combinaciones se llamamos invariantes (respecto a traslación y rotación). Las combinaciones de coeficientes que nos interesan son las que deciden la naturaleza de la cónica, por ejemplo B2 − 4AC. El invariante más simple es la combinación Θ = A + C. En efecto, en el caso de una traslación es obvio, según (A.12), que A + C = A0 + C 0 . En el caso de una rotación, podemos usar (A.18) para establecer que A0 + C 0 = ( A + C ) cos2 θ + ( A + C ) sen2 θ = A + C. Un segundo invariante es Φ = B2 − 4AC. El valor de Φ no cambia si aplicamos una traslación pues no cambian A, B y C. Si aplicamos una rotación, A0 − C 0 = ( A − C ) cos 2θ + B sen 2θ, y entonces

( A 0 − C 0 )2 + B 02 = ( A − C )2 + B2 , Ahora, agregamos 2AC − 2AC en el miembro izquierdo y 2A0 C 0 − 2A0 C 0 en el miembro derecho para obtener

( A0 + C 0 )2 − 4A0 C 0 + B02 = ( A + C )2 − 4AC + B2 , finalmente, como Θ es invariante, B02 − 4A0 C 0 = B2 − 4AC. Un tercer invariantes es ∆ = 4ACF + BDE − AE2 − CD2 − FB2 . La prueba es similar. Ahora vamos aplicar estos invariantes para identificar cónicas a partir de la ecuación general. Como hemos visto, la ecuación general A x2 + B xy + C y2 + D x + E y + F = 0, se puede reducir a alguna de las formas A0 x2 + C 0 y2 + F 0 = 0, con A0 , C 0 no nulos.

(A.13)

C 00 y2 + D 00 x = 0, con C 00 6= 0 y D 00 6= 0.

(A.14)

Cálculo en varias variables  
Cálculo en varias variables  
Advertisement