Page 291

284

MÁS SOBRE CÓNICAS

cónica es (h0 , k0 ), entonces, en el sistema XY, (h, k ) se puede obtener como    cos α h = sin α k

− sen α cos α

  0 h . k0

Y en general, si ( x 0 , y0 ) es un foco o un vértice de la cónica en el sistema X 0 Y 0 , entonces el respectivo foco o vértice en el sistema XY sería 

cos α sin α

− sen α cos α

  0 x y0

Si B2 − 4AC 6= 0, el centro (de la elipse o hipérbola) en el sistema XY también se puede calcular (como vimos antes) con la fórmula, h = (2CD − BE)/( B2 − 4AC ), k = (2AE − BD )/( B2 − 4AC ). Si B2 − 4AC = 0, se dice que el centro de la cónica está "en el infinito". Si ya tenemos la ecuación sin rotación, el resto de la información la calculamos de la manera usual y luego aplicamos una rotación para ubicarla en el sistema XY.

Ejemplo A.4 Identifique la cónica 3x2 −2xy + 5y2 − 10x − 10y − 4 = 0, determine su ecuación canónica en el sistema X 0 Y 0 y trazar su gráfica. Solución: Primero calculamos el ángulo de rotación tan(2α) =

B = 1 =⇒ α = π/8. A−C

Y

La nueva ecuación es A0 x 02 + C 0 y02 + D 0 x 0 + E0 y0 + F 0 = 0.

Y’ X’

donde A0 = A cos2 α + B sen α cos α + C sen2 α ≈ 2.585 C 0 = C cos2 α − B sen α cos α + A sen2 α ≈ 5.414 D 0 = D cos α + E sen α ≈ −13.065 E0 = E cos α − D sen α ≈ −5.411 F 0 = F = −4. La cónica en el sistema X 0 Y 0 tiene ecuación (con coeficientes aproximados)

X

2.585x 02 + 5.414y02 − 13.065x 0 − 5.411y0 − 4 = 0. Se trata de una elipse con ecuación canónica

( x 0 − 2.527)2 (y0 − 0.499)2 + = 1. 8.456 4.037 Para hacer la representación gráfica, podemos dibujar los ejes X 0 , Y 0 en el sistema estándar (rotando los ejes π/8 contra-reloj) y dibujar respecto a estos ejes usando la ecuación canónica.

Cálculo en varias variables  
Cálculo en varias variables  
Advertisement