Page 1

Repaso ¿Qué aprendimos y qué nos olvidamos? ¿Se puede considerar que algo está realmente aprendido si no lo recordamos en 2 años?

Expresiones algebraicas. Son expresiones algebraicas las combinaciones de números y letras que representan números. Estas combinaciones se pueden hacer con las operaciones de suma, resta, producto, cociente y potencia de exponente natural. Se llaman expresiones algebraicas enteras a aquellas que no contienes denominadores algebraicos. Por ejemplo, son expresiones algebraicas 8x-78z, (3x-1)/(9x-2), 3 naranjas + 4 papas, 8x/3y. Son expresiones algebraicas, pero no enteras (3x-1)/(9x-2) y 8x/9y No son expresiones algebraicas log(2x+1) ni cos (9x-5). A continuación trataremos las expresiones algebraicas enteras.

Operaciones: Suma. Para sumar dos expresiones algebraicas, estas tienen que tener la misma parte literal. Por supuesto que no se pueden sumar 3 naranjas más 4 papas, porque daría 7 ........... ¿7 qué? Pero se puede hacer: 3 naranjas + 4 papas + 10 naranjas + 2 papas = 13 naranjas + 6 papas. Entonces se puede sumar: 3 xz + 4 x³ + 10 xz + 2 x³ = 13 xz + 6 x³. Para sumar dos expresiones algebraicas, tienen que tener la misma parte literal. Sumamos papas con papas y naranjas con naranjas. Se deja la parte literal igual, intacta, y se suman sus coeficientes. Cuidado entonces que x + x NO es x². x + x = 2x.


1 naranja + 1 naranja no es una naranja cuadrada!!!! Si no que son 2 naranjas. Esto parece muy obvio, muy fácil, pero la experiencia indica que se sabe hoy, y se olvida mañana.

Sigamos: veamos los monomios y polinomios. Se llama monomio a una expresión algebraica entera en la cual la variable, por ejemplo x, y o z, esta afectada solamente por operaciones de potencia de exponente natural y multiplicación por números reales. Por ejemplo, son monomios 4xz, 17 x² , -12 x³yz².

La suma algebraica, esto es, suma o resta de monomios, se llama polinomio. B(x) = 5x³-8x²+14x-7 es una expresión algebraica con 4 términos. Más precisamente, es un polinomio de tercer grado. Está formado por 4 monomios o términos; 5x³ es un término de grado 3, -8x² es el término de segundo grado,14x es de primer grado y -7 es el término independiente, de grado cero. En el monomio 5x³ la parte literal es x³ y el coeficiente es 5 . En el monomio -8x² la parte literal es x² y el coeficiente es -8. Repasemos el repaso. Esto sería un repaso al cuadrado !!!! Cuidado que si las partes literales son diferentes, no se pueden sumar. Veamos. Es claro que 3x + 4 x² no se puede "sumar". Esta expresión ya está reducida a su mínima expresión. En cambio 2x + 4 x² + 6 - 9x + x² se puede reducir y ordenar, quedando 5x² - 7x +6

Producto: Recordemos ahora que para multiplicar potencias de la misma base, se deja esa base y se suman los exponentes. 4 x². 5 x = 20 x³ Hemos multiplicado 4 por 5 = 20 y hemos sumado exponentes 2 + 1 = 3 Recordemos que en el término 5 x, el coeficiente es 5 y el exponente de x es 1. También debemos recordar la regla de los signos:


Veamos algunos ejemplos de multiplicación de monomios: link: http://www.x.edu.uy/repaso1.swf

Multiplicación de dos expresiones algebraicas: Propiedad distributiva. link: http://www.x.edu.uy/distribu.swf Ahora: un caso particular de multiplicación de dos binomios. ¿Qué pasa si los dos binomios a multiplicar son iguales?

a.a=a² b.b=b²

(ax+b).(ax+b) = (ax+b)² Vamos a ver dos formas diferentes de desarrollar un cuadrado de un binomio. La primera, es la que ya sabemos, aplicando la propiedad distributiva. link: http://www.x.edu.uy/binomio.swf Vemos que siempre que aplicamos la propiedad distributiva para desarrollar el cuadrado de un binomio, el resultado es un polinomio con 3 términos. Este resultado se aprovecha en este segundo método.


Fórmula de desarrollo del cuadrado de un binomio. link: http://www.x.edu.uy/binomio2.swf Ahora veamos otro caso particular de multiplicación de polinomios.

Producto notable = producto de binomios conjugados. link: http://www.x.edu.uy/notable.swf En resumen: (a+b).(a-b) = a² - b²

Funciones logarítmica Los números 2, 3 y 8 están relacionados de la forma [http://www.x.edu.uy/loga1.gif] Si conocemos el 2 y el 3, la operación es la potencia:

Si conocemos el 8 y el 3, la operación es la radicación:

Si conocemos el 2 y el 8, la operación es la logaritmación:

link: http://www.x.edu.uy/loga5.swf La función logarítmica se puede definir, de una forma sencilla, cómo una de la operaciones inversas de la potencia. Empecemos a hacer un primer intento de definición:


link: http://www.x.edu.uy/loga6.swf

Ejercicios sencillos para el comienzo. link: http://www.x.edu.uy/loga8.swf Para continuar, necesitamos repasar algunas propiedades de la potencia: link: http://www.x.edu.uy/loga11.swf

MĂĄs ejercicios: Âż te gustan las fracciones ? link: http://www.x.edu.uy/loga9.swf Veamos ahora algunas propiedades de los logaritmos: link: http://www.x.edu.uy/loga10.swf Aprendiendo a usar la calculadora: link: http://www.x.edu.uy/calculadora.swf


Recordemos que cuando la base es 10, esta no se escribe. Se sobrentiende. Hagamos otro ejemplo cuyo resultado ya conocemos por otro camino.

Otra vez la fórmula de cambio de base nos ayudó. Por supuesto que tiene que dar lo mismo, no ? Y ahora que sabemos tantas propiedades, quizás podamos deducir estas otras: (al pasar el mouse por encima, verás la respuesta) link: http://www.x.edu.uy/loga12.swf ¿Cómo se podrían demostrar? PARTE 2

Repaso algebra  

Este material es para recordar los saberes previos

Read more
Read more
Similar to
Popular now
Just for you