Page 1

∞ T H E

I N F I N I T Y

B O O K


This book is dedicated to my family as well as the great makers and thinkers who constantly inspire, enrich, and support me through everything that I do. Thank you. Eric Carranza, Andrés Guzmán, Tomás Villaseñor, Patricia Healy McMeans, & Erik Brandt


Da Haunted Attic (Studio). Powderhorn, Minneapolis, MN U.S.A.


S. MPLS, MN

The Infinity Book by Eric Gorvin 2013

1st Edition

U.S.A.


Introduction M o tiv e In my late MCAD education, I took a class called Linear Perspectives with Katharine Kindervater as my professor. Towards the end of the semester, she assigned readings from Brian Rotman's Ad Infinitum and my fixation with infinity began. From then on, I began compiling leagues of readings that I could relate to infinity in its many areas of study. This project is the compilation of a good majority of my research and experiments. As an artist, I find it very important to convert ideas into visual and sonic work to aid in new ways of understanding our world, ourselves, and others. Nothing is worse than perfectly good knowledge that has no vehicle for the world to really understand it. Though I am not a scientist, nor a mathematician, nor an astronomer, I believe that the facts I have found in these fields of study have the potential to elucidate new ideas and new ways of thinking about infinity and our universal relationship to it. So it follows that many shortcomings encountered in our everyday lives have something to do with our inability to see outside of ourselves. We develop a strong relationship with our ego, our singularity(1), and it becomes harder and harder to leave it as the years pass. It’s this relationship that hypnotizes us into feeling that we are the only things in this Universe, or, the only things to which we should devote thought. My argument is quite the contrary. I believe that the inherent truths embedded in the many observables we have at the other end of our senses are a working display of the true nature of our Universe. The only thing preventing us from absorbing these many attributes of our world and then being able to interpret them into usable ontological ideas, is the fact that we are finite and cannot get over it. This overwhelming feeling of being finite causes us to become increasingly self-centered and in turn creates an unwillingness to fully acknowledge our true size, or consider our interpretation of time. Every day each person on earth knows that they are going to die – that they are finite. It is this fact that drives each and every one of us to get absorbed in the finite and thus forget about the infinite counterpart that makes all of our material world possible. It has been my intention with this book to adjust your focus from the finite world and liberate you into a much more exciting infinite realm. We get easily locked up in ourselves, in finitude, enslaving us to a finite Earth created by man...not one that is the beautiful product of any kind of connected Universe. Learning just a few things about the evidence of infinity will help develop an ability to see both the infinite and the finite in perfect harmony. I hope that you enjoy this book. Sometimes all it takes is being able to see it all at once.


In f inity In Ev e ry Day Drawing relationships between bits of data to create a whole vision is very important in our quest for the infinite. The relationships we make here decide the way we interpret things and understand them. With that being said, it is important to keep an open mind towards everything, allowing for all these connections to become realized ideas. In this way, we can start to see the relationships that are happening around us at all times. This includes observables that are not only in our every day encounters, intents and feelings, but also in nature and the cosmos. It is my intention to have these priorities at the forefront of my discussion. I hope that all data and visual information presented can help in aiding you in your own understanding of infinity.

Expla na tio n This project was born of my own interest in infinity. As you will notice, among other excerpts found in this book, I have included a significant amount of quotations and excerpts from Brian Rotman’s Ad Infinitum. This is the book that initially interested me in this conquest. I have always been perplexed and perhaps somewhat haunted by the obvious and evident balance to things. From the macro to the micro, there are many observations that can be made about the relationships of the different elements of our Universe. This book is not intended to pontificate, nor is it intended that s/he who handles it should take it for a finite set of facts. I have been as accurate as I can in my explorations and experiments, and have gone through all that is possible for me to make the information and facts contained legible and accurate. The amount of information that is available on just one of the many areas covered in this book is vast to say the least. I like to think of this as an overview and an experiment. All parts of the book, from the readings to the illustrations, come from my quest to understand infinity — my personal exploration hybrid with formal research. The way that this book navigates is through a conduit of language, symbology, and imagery. It is loosely arranged to allow the ability to connect the dots for yourself with the given material. I have done my best in creating a breadth of work to reflect my ever growing interest in the concepts of infinity as well as including the words of extraordinary thinkers from the fringe of recorded history to the present. My only hope is to get you thinking about infinity. With the same credence you give darkness to lightness, hot to cold, I hope that you can apply the same notions of duality to infinite and finite. If we can understand that our own finite quality is infinite in magnitude, we will be able to move toward a new era of positive growth, peace, and enlightenment.


How It Works Bo o k This book includes excerpts from an array of different authors, thinkers, philosophers, mathematicians, etc... All sources are cited using the footnotes I have included on each page.

Text typed in this font is previously published work and should not be taken as my own. Text typed in this font is either myself speaking or cited information. I've covered many different subjects in this book, I understand that some of the information found here is not directly related to infinity to some people. But please try something; let it be related. As I just said on the previous page, these various findings should be thought of in light of infinity to help bring clarity and sense to our views of the Universe. There is also a wide array of imagery. I've authored some of this imagery and tried my best to note and cite an image if it was from an outside source.

Video I performed a number of video "experiments" for this project. Half of their volume consisted of exploring the act of counting in some respect. The other half were related to water, because water was a driving force for me in my meditations on infinity as well as a convenient visual aid for it in our everyday. The playback format of the videos is in a loop structure that echos that of a sine wave. The model of the sine wave (pg. 50) was something that permeated the entire project and generated a lot of my interest in investigating infinity in a sonic realm as well.

Sound Accompanying the video experiments, I explored the audio/music side of this project with my good friend and collaborator, Eric Carranza. The conversations we had at that time (in 2012) heavily informed the sound we created. Having these conversations with Eric provided another human being to convey some of these complex ideas to, and one who would understand and expand with me. Having already spent the better part of our twenties making music together, the process came very naturally to us once I realized that it absolutely must be a component of the project. We ended up completing an eight-song record titled "Through All The Windows, I Only See Infinity". It is meant to be listened to while experiencing the project (this is available on the Internet via Soundcloud or Bandcamp).


15

On Infinity

25

On Number

31

On Water

47

On Sound

59

On Physics

69

On Mathematics

89

On Nature

99

On Paradox

111

On Time

129

On Space


14

FIGURE 1.1 Gorvin, Eric. "Moleskine Entry". The Infinity Project. 2012.


On Infinity

15


16

FIGURE 1.2 Gorvin, Eric. "Potential vs. Actual Infinity. The Infinity Project. 2012.


Ad Infinitum1 A B r ie f His t or y & Ov erv ie w Of In f inity A century ago the mathematician Leopold Kronecker

notably about infinitesimal magnitudes, that emerged within

declared that “God made the integers, the rest is the work

these theories. The attempt to eliminate these produced a

of Man.” This much cited remark was intended as a call for

movement toward rigor at the beginning of the nineteenth

constructivist rigor, a polemic against the contemporary

century associated with Carl Friedrich Gauss and Augustin

embrace of infinitism, a Pythagorean reaffirmation of the

Cauchy which repudiated the use or mention of an actual or

originating and privileged status of the whole numbers.

completed infinity in any acceptable mathematical context.

And so it has been interpreted. It was not, one feels, meant

In less than a century the repudiation (despite Kronecker’s

with any theological literalness. And yet . . . is there not

Pythagorean campaign for constructivist renewal) was

in the very idea of their endlessness, their continuation ad

swept aside with the acceptance of Richard Dedekind’s

infinitum, something strange and other about the whole

description of the continuum and Georg Cantor’s theoriza-

numbers, the imprint or trace of some disembodied, tran-

tion of the actual infinite—the set of all integers, all subsets

scendental maker, perhaps?

of integers, all fractions, all points on a line, and so on—as

2

bona fide mathematical objects.

Potential/Actual The history of mathematics and the history of “the endless”

The third crisis, whose “resolution” forms the horizon

intertwine. Issues of the infinite, of the nonfinishing, that

of present day thinking about the mathematical infinite,

which cannot be limited, bound, or traversed, arise as soon

emerged from the upheaval in the logic and ontology of

as mathematics takes quantity and length as its constituting

number and the paradoxes that occurred in relation to

abstractions and is obliged to make self-reflective sense of

Cantor’s theory of infinite sets. Within this horizon two

the questions “how many numbers?” and “how long, how

opposed accounts of mathematics emerged: the dominat-

divisible a line?”

ing orthodoxy of a Platonism inspired by Gottlob Frege and Joan Brouwer’s anti-Platonic constructivism.

There have been various moments of conflict and dislocation in the history of mathematics when the question of

For most mathematicians (and, one can add, most scien-

the infinite­— what it means and how one is to think it—has

tists) mathematics is a Platonic science, the study of time-

pushed itself to the foreground of mathematical discourse.

less entities, pure forms that are somehow or other simply

Each such moment arose in the wake of a speculative mobi-

“out there,” preexistent objects independent of human

lization of infinitary reasoning which had resulted in obscu-

volition or of any conceivable human activity; mathemati-

rity and absurdity intolerable to mathematical thought.

cians discover but never in any sense invent their presence and their properties. Accordingly the integers exist—out

The earliest crisis, associated with Zeno’s infamous paradox-

there—in their entirety as a single set, an unproblematic

es centered on whether one could assume space and time

completed infinity; likewise the set of all subsets of the inte-

3

were endlessly divisible or whether, on the contrary, they

gers, the set of all subsets of these, and so on, ad infinitum.

were composed of ultimate and indivisible quanta. Zeno,

Mathematics is thus seen to be organized as an infinite hier-

attempting to establish the unreality of motion and plurality

archy of infinite sets within a rigorously axiomatic framework

in the name of Parmenides’ changeless and indivisible One,

by means of which all doubts, circularities, and antinomies

forced each of the possible alternatives into a contradiction.

have been swept away.

The effect of his arguments on classical thought was twofold: an avoidance of any appeal to motion or to the “endless”

Against this there is the constructivist dissent. Brouwer

with in their reasoning on the part of Greek mathematicians;

disputed the coherence of classical, Platonic logic—reject-

and Aristotle’s distinction, arising out of his engagement

ing the law of excluded middle that dictates that for any

with Zeno’s paralogisms and fundamental in all subsequent

mathematical object, 0, either 0 exists or 0 doesn’t exist—

discussions, between a safe and legitimate potential infinite,

by insisting that any mathematical proof of the existence of

an endless coming into being, and a dangerous, paradox-

an object had to be in the form of instructions for arriving

infested completed or actual infinite.

at it—that is, a finitely specifiable procedure that could “in principle” be executed in the mind. The progression of inte-

During the sixteenth and seventeenth centuries Aristotle’s

gers for Brouwer was a potential and not an actual infinity,

interdiction of actual infinity was set aside in the develop-

available in principle as an endlessly producible sequence

ment of the theory of infinite series and the infinitesimal

of purely mental acts, constructions to be performed deep

calculus. The second major problematic of the mathemati-

inside our Kantian-intuition of time.

cal infinite then arose out of inconsistencies and absurdities, 1 Rotman, Brian. “Abstract.” Ad Infinitum - The Ghost in Turing’s Machine. Stanford, CA: Stanford UP, 1993. 3+. Print 2 See chapter “On Number” pg. 25 3 See chapter “On Paradox” pg. 99

17


∞4 His t or y of t h e ∞ sy mbo lo gy

Infinity Signifiers

John Wallis is credited with introducing the infinity symbol, ∞ (Figure 1.5), in 1655 in his De sectionibus conicis. One conjecture about why he chose this symbol is that he derived it from a Roman numeral for 1000 that was in turn derived from the Etruscan numeral for 1000, and was sometimes used to mean "many." Another conjecture is that he derived it from the Greek letter ω (omega), the last letter in the Greek alphabet. The infinity symbol is also sometimes depicted as a special variation of the ancient ouroboros snake symbol (Figure 1.8). The snake is twisted into the horizontal eight configuration, or circle, while engaged in eating its own tail, a uniquely suitable symbol for endlessness.

FIGURE 1.3

FIGURE 1.4

Self-Reference5 FIGURE 1.5

FIGURE 1.6

De finitio n Self-reference occurs in natural or formal languages when a sentence, idea or formula refers to itself (Figure 1.7). The reference may be expressed either directly—through some intermediate sentence or formula—or by means of some encoding. In philosophy, it also refers to the ability of a subject to speak of or refer to himself, herself, or itself: to have the kind of thought expressed by the first person pronoun, the word “I” in English. Self-reference is studied and has applications in mathematics, philosophy, computer programming, and linguistics. Self-referential statements are sometimes paradoxical.

FIGURE 1.7

18

4 "Infinity Symbol." Wikipedia. Wikimedia Foundation, 13 Mar. 2012. Web. 20 Apr. 2012. 5 ”Self-reference.” Wikipedia. Wikimedia Foundation, 20 Mar. 2012. Web. 27 Mar. 2012. FIGURE 1.3 – Used in mathematics as well as language (e.g. 3.33... or etc...) FIGURE 1.4 – Found in mathematics, where "x" is any number and the dash over the integer signifies its infinite repeat. FIGURE 1.5 – Universal infinity symbol, see ∞ - History at top of page FIGURE 1.7 — The Treachery Of Images (1928-29) by René Magritte depicts a pipe along with text stating “This is not a pipe.”


Ouroboros6 The Serpent The Ouroboros (or Uroborus) (Figure 1.8) is an ancient symbol depicting a serpent or dragon eating its own tail. The name originates from within Greek language; οὐρά (oura) meaning “tail” and βόρος (boros) meaning “eating”, thus “he who eats the tail”. The Ouroboros represents the perpetual cyclic renewal of life and infinity, the concept of eternity and the eternal return, and represents the cycle of life, death and rebirth, leading to immortality, as in the phoenix.

In Egypt

FIGURE 1.8

The first known appearance of the ouroboros motif is in the Enigmatic Book of the Netherworld, an ancient Egyptian funerary text in the tomb of Tutankhamun, in the 14th century BC. The text concerns the actions of the god Ra and his union with Osiris in the underworld. In an illustration from this text, two serpents, holding their tails in their mouths, coiled around the head and feet of an enormous god, who may represent the unified Ra-Osiris. Both serpents are manifestations of the deity Mehen, who in other funerary texts protects Ra in his underworld journey. The whole divine figure represents the beginning and the end of time.

In Greec e Plato described a self-eating, circular being as the first living thing in the universe—an immortal, mythologically constructed beast7 (pg. 23).

In India Ouroboros symbolism has been used to describe Kundalini energy. According to the 2nd century Yoga Kundalini Upanishad, “The divine power, Kundalini, shines like the stem of a young lotus; like a snake, coiled round upon herself she holds her tail in her mouth and lies resting half asleep as the base of the body”. Another interpretation is that Kundalini equates to the entwined serpents of the Caduceus, the entwined serpents representing commerce in the west or, esoterically, human DNA (Figure 1.9).

FIGURE 2.1 FIGURE 1.9

6 ”Ouroboros.” Wikipedia. Wikimedia Foundation, 28 Mar. 2012. Web. 20 Feb. 2012. 7 Plato, Timaeus FIGURE 1.8, 1.9 Gorvin, Eric. "DNA Strand". The Infinity Project. 2012.

19


Infinity in Context8 Th e His t or y o f Inf in ity As there is no record of earlier civilizations regarding, conceptualizing, or discussing infinity, we will begin the story of infinity with the ancient Greeks. Originally the word apeiron meant unbounded, infinite, indefinite, or undefined. It was a negative, even pejorative word. For the Greeks, the original chaos out of which the world was formed was apeiron. Aristotle thought being infinite was a privation not perfection. It was the absence of limit. Pythagoreans had no traffic with infinity. Everything in their world was number. Indeed, the Pythagoreans associated good and evil with finite and infinite. Yet, to the Greeks, the concept of infinity was forced upon them from the physical world by three traditional observations:

That time appears to have no end is not too curious. Perhaps, owing to the non-observability of worldending events as in our temporal world of life and death, this seems to be the way the universe is. The second, the apparent conceivability of unending subdivisions of both space and time, introduces the ideas of the infinitesimal and the infinite process. In this spirit, the circle can be viewed as the result of a limit of inscribed regular polygons with increasing numbers of sides. These two have had a lasting impact, requiring the notion of infinity to be clarified. Zeno, of course, formulated his paradoxes by mixing finite reasoning with infinite and limiting processes. The third was possibly not an issue with the Greeks as they believed that the universe was bounded. Curiously, the prospect of time having no beginning did not perplex the Greeks, nor other cultures to this time. With theorems such that the number of primes is without bound and thus the need for numbers of indefinite magnitude, the Greeks were faced with the prospect of infinity. Aristotle avoided the actuality of infinity by defining a minimal infinity, just enough to allow these theorems, while not introducing a whole new number that is, as we will see, fraught with difficulties. This definition of potential, not actual, infinity worked and satis-

20

fied mathematicians and philosophers for two millennia. So, the integers are potentially infinite because we can always add one to get a larger number, but the infinite set (of numbers) as such does not exist. Aristotle argues that most magnitudes cannot be even potentially infinite because by adding successive magnitudes it is possible to exceed the bounds of the universe. But the universe is potentially infinite in that it can be repeatedly subdivided. Time is potentially infinite in both ways. Reflecting the Greek thinking, Aristotle says the infinite is imperfect, unfinished and unthinkable, and that is about the end of the Greek contributions. In geometry, Aristotle admits that points are on lines but points do not comprise the line and the continuous cannot be made of the discrete. Correspondingly, the definitions in Euclid’s The Elements reflect the less than clear image of these basic concepts. In Book I the definitions of point and line are given thusly:

The attempts were consistent with other Greek definitions of primitive concepts, particularly when involving the infinitesimal and the infinite (e.g. the continuum). The Greek inability to assimilate infinity beyond the potential-counting infinity had a deep and limiting impact on their mathematics. Nonetheless, infinity, which is needed in some guise, can be avoided by inventive wording. In Euclid’s The Elements, the very definition of a point, a point is that which has no part, invokes ideas of the infinite divisibility of space. In another situation, Euclid avoids the infinite in defining a line by saying it can be extended as far as necessary. The parallel lines axiom requires lines to be extended indefinitely, as well. The proof of the relation between the area of a circle and its diameter is a limiting process in the clock of a finite argument via the method of exhaustion. Archimedes proved other results that today would be better proved using calculus.

8 Allen, Donald G. "The History of Infinity." Diss. Texas A&M University, 1999. The History of Infinity. Texas A&M University. Web.


These theorems were proved using the method of exhaustion, which in turn is based on the notion of “same ratio�, as formulated by Eudoxus. We say:

This definition requires an infinity of tests to validate the equality of the two ratios, though it is never mentioned explicitly. With this definition it becomes possible to prove the Method of Exhaustion. It is:

The Greeks were reluctant to use the incommensurables to any great degree. One of the last of the great Greek mathematicians, Diophantus, developed a new field of mathematics being that of solving algebraic equations for integer or rational solutions. This attempt could be considered in some way a denial of the true and incommensurable nature of the solutions of such equations.

FIGURE 1.10 Gorvin, Eric. "Untitled Study". The Infinity Project. 2013.

21


22

FIGURE 1.11 Gorvin, Eric. "The Universe Without Legs Or Feet". The Infinity Project. 2012.


“The living being had no need of eyes when there was nothing remaining outside him to be seen; nor of ears when there was nothing to be heard; and there was no surrounding atmosphere to be breathed; nor would there have been any use of organs by the help of which he might receive his food or get rid of what he had already digested, since there was nothing which went from him or came into him: for there was nothing beside him. Of design he was created thus, his own waste providing his own food, and all that he did or suffered taking place in and by himself. For the Creator conceived that a being which was self-sufficient would be far more excellent than one which lacked anything; and, as he had no need to take anything or defend himself against any one, the Creator did not think it necessary to bestow upon him hands: nor had he any need of feet, nor of the whole apparatus of walking; but the movement suited to his spherical form was assigned to him, being of all the seven that which is most appropriate to mind and intelligence; and he was made to move in the same manner and on the same spot, within his own limits revolving in a circle. All the other six motions were taken away from him, and he was made not to partake of their deviations. And as this circular movement required no feet, the universe was created without legs and without feet.� —Plato, Timaeus 23


FIGURE 2.1

24

FIGURE 2.1 Bergamini, David. Mathematics. New York: Time, 1963. Print.


On Number

25


26


“The Pythagoreans spoke of two causes in the same way, but added, as an idiosyncratic feature, that the limited and the unlimited and the one were not separate natures, on a par with fire or earth or something, but the unlimited itself and the one itself were taken to be the substance of the things of which they are predicated. This is why they said that number was the substance of everything.�—Aristotle, Metaphysics

27


Ad Infinitum9 Th e Na t u r al N umbers Now, as far as the purely logical engendering of the hierarchy of infinities is concerned, Kronecker’s Pythagorean point is well put: evidently all infinities, potential as well as actual, whatever differences in psychology, logical coherence, meaning, and ontology constructivism and Platonism might attach to them, are rooted in the integers, the progression of objects that mathematicians, Platonists, and constructivists alike, call the natural numbers. “Natural” because they are given at the outset, taken for granted as a founding, unanalyzable intuition, outside any critique that might demand an account of how they come or came—potentially or actually—to “be.” Indeed, for Platonism the very call for such critique would be senseless, whilst for constructivism the issue is essentially dodged—sold short by constructivism’s immersion in an unexaminedly ideal mentalism. Evidently, if we are to understand the numbers’ relation to God, it is precisely their “endlessness,” as natural and given or as the result of an ideal construction, that needs to be interrogated. But faced with Platonist orthodoxy’s inability to question the integers’ engenderment and the complicity of its constructivist critics, how are we to escape from the sedimented legitimacy and beguiling immediacy of the “natural”? How refuse the claim that numbers are elemental, mathematical or constituents of the actual or potential order of things? How deny that producing or perceiving the endless progression of them is inextricable from the apparatus of rational thought itself? Where do numbers come from? If not from Kant’s transcendental intuition or Kronecker’s God, then where? What seems universally accepted is that numbers are inconceivable­ — practically, experientially, conceptually, semiotically, historically—in the absence of counting... Counting, whether with fingers, pebbles, notches, tally marks, abacus beads, or notations on chalkboards, paper, and computer screens, is an activity involving signs. And, as an activity, counting works through—it is—significant repetition. How are we–through what discursive apparatus and technology of symbolic persuasion–to imagine a business of repeating the selfsame signifying act without end, of iterating for ever? Or, which will come to the same, what would it mean to deny the possibility of endlessly repeating a signifying act? Is it in fact possible to coherently imagine an activity of iterating that did not—by definition of the very abstracted purity of the repetition that furthers it—go on forever?

28

9 Rotman, Brian. “Abstract.” Ad Infinitum - the Ghost in Turing’s Machine. Stanford, CA: Stanford UP, 1993. 3+. Print. FIGURE 2.2 Gorvin, Eric. The Infinity Project. 2013.


The Pythagoreans10 A L ife Of N umber At the same time [as Leucippus ami Democritus] and earlier than them were the so-called Pythagoreans, who were interested in mathematics. They were the first to make mathematics prominent, and because this discipline constituted their education they thought that its principles were the principles of all things. Now, in the nature of things, numbers are the primary mathematic principals; they also imagined that they could perceive in numbers many analogues to things that are and that come into being (more analogues than fire and earth and water reveal) -such-and-such an attribute of numbers being justice, such-and-such an attribute being soul and mind, due season another, and so on for pretty well everything else; moreover, they saw that the attributes and ratios of harmonies depend on numbers. Since, then, the whole natural world seemed basically to be an analogue of numbers, and numbers seemed to be the primary facet of the natural world, they concluded that the elements of numbers are the elements of all things, and that the whole universe is harmony and number. They collected together all the properties of numbers and harmonies which were arguably conformable to the attributes and parts of the universe, and to its organization as a whole, and fitted them into place; and the existence of any gaps only made them long for the whole thing to form a connected system. Here is an example of what I mean: ten was, to their way of thinking, a perfect number, and one which encompassed the nature of numbers in general, and they said that there were ten bodies moving through the heavens; but since there are only nine visible heavenly bodies, they came up with a tenth, the counter-earth... They hold that the elements of number are the even and the odd, of which the even is unlimited and the odd limited; one is formed from both even and odd, since it is both even and odd; number is formed from one and, as I have said, numbers constitute the whole universe. Other members of the same school say that there are ten principles, which they arrange in co-ordinate pairs: limit and unlimited; odd and even; unity and multiplicity; right and left; male and female; still and moving; straight and bent; light and darkness; good and bad; square and oblong.11 …

10 11 12 13

Waterfield, Aristotle, Aristotle, Bergamini,

The Pythagoreans spoke of two causes in the same way, but added, as an idiosyncratic feature, that the limited and the unlimited and the one were not separate natures, on a par with fire or earth or something, but the unlimited itself and the one itself were taken to be the substance of the things of which they are predicated. This is why they said that number was the substance of everything.11 … The Pythagoreans, as a result of observing that many properties of numbers exist in perceptible bodies, came up with the idea that existing things are numbers, but not separate numbers: they said that existing things consist of numbers. Why? Because the properties of numbers exist in musical harmony, in the heavens, and in many other cases.11 … The Pythagoreans also claim that there is such a thing as a void. According to them, it enters the universe from the infinite breath because the universe breathes in void as well as breath. What void does, they say, is differentiate things; they think of void as being a kind of separation and distinction when one thing comes after another. This happens first among the numbers, because on their view it is the void that distinguishes one number from another.12

Computing13 Fro m Hu man Fingers to Man-made Brains Counting is an intricate process; of all the earth's creatures only man can do it. Early humans probably formed numbers with their fingers, as some primitive peoples still do. As society became more complicated, man had to make fairly elaborate calculations involving subtraction, multiplication and division, and the devices he used to assist him grew more advanced. By the time of the ancient Greeks, mechanical calculators were in use—and in the 2,000 years since then an array of increasingly sophisticated computing machines has been developed. The culmination was the electronic computer, that wonderful "brain" that can do difficult mathematical problems in a split second and is slowly changing our very civilization. There may indeed be some kernel of truth in the exuberant claim of the great mathematician-philosopher Auguste Comte: "There is no inquiry which is not finally reducible to a question of numbers."

Robin. The First Philosophers: The Presocratics and Sophists. Oxford: Oxford UP, 2000. Print. Metaphysics. Physics. David. Mathematics. New York: Time, 1963. Print.

29


30


On Water

31


The Power In Water14 Th e U n p re d ict a b le Wate r M o le cule If water, the most common substance on earth, suddenly began to behave as its molecular make-up suggests, life would be overwhelmed by a series of unparalleled disasters. Blood would boil in the body, plants and trees would either and die, and the world would be transformed into an arid waste. But water molecules are bound together in ways unlike those of any other compound; for this reason they possess properties that are unique and paradoxical. For example, water is one of the very few substances that are heavier as liquids than as solids. As a liquid, it can creep uphill despite the force of gravity. Water is so benign that immensely diversified forms of life can thrive within it—and so corrosive that, given sufficient time, it will disintegrate the toughest metal. Although it seems to change its form with miraculous ease—sometimes existing simultaneously as a solid, a liquid and a gas around the same river or lake—water actually must yield or absorb prodigious amounts of energy to produce these transformations. In fact, the energy it would take to melt even a small iceberg could drive a large ship across the Atlantic 100 times.

Wa t e r In Three Fo rms Water appears in all three of its physical states as a hot stream of liquid sculpts a jagged hole in a block of ice. Some of the water molecules immediately disperse to form an invisible gas, then quickly cool and condense into tiny water droplets that make up the cloud of mist rising above the ice block . Whenever water takes the form of ice, some liquid and gas are always present.

FIGURE 3.2

32

14 Leopold, Luna B., and Kenneth Sydney Davis. Water. New York: Time, 1966. Print. FIGURE 3.2, 3.4, 3.5 Leopold, Luna B., and Kenneth Sydney Davis. Water. New York: Time, 1966. Print. FIGURE 3.3 Gorvin, Eric. "Three Forms". The Infinity Project. 2013.


An Iro nclad Molec ular Bond Hydrogen and oxygen have so great an affinity for one another that, given even the slightest nudge, they come together violently, forming water and releasing great quantities of energy. In 1937 the huge dirigible Hindenburg exploded over Lakehurst, New Jersey, when its hydrogen, ignited by a spark, fused with the oxygen in the air; amid the explosive release of energy, water was produced.

FIGURE 3.4

Conversely, it takes a great deal of energy to split water into its components. In fact, in ancient times water was considered a basic, indestructible element of the universe. Not until Henry Cavendish startled the scientific community in 1783 by synthesizing the water molecule did it become clear that the substance is actually a compound made up of one part oxygen and two parts hydrogen. The reason water was long thought to be a single element was that the sturdy water molecule remains intact even when frozen solid or heated to temperatures at which many other compounds disintegrate. For the atoms of the water molecule are laced together by powerful bonds, which can be severed only by the most aggressive agents—such as electrical energy or certain chemicals. One such chemical is potassium; when even a small lump of potassium is dropped into water, it pulls the molecules apart so violently that the container of water may actually explode.

Tensio n at the Rim of a Water Tap The powerful tension that hydrogen bonds, create on a water surface can be seen most clearly at a dripping tap. The horizontal film of water that first appears at the tap's opening acts as if it were a circular piece of very thin transparent rubber. Like an elastic membrane, it slowly bulges as the weight of water it encloses grows greater. But it does not break. Instead, it seems at last to tear itself away from the rim of the tap and to snap around a freely falling drop which, if it were not distorted by air pressure, would be a perfect sphere. Of all possible shapes the sphere is the one having the smallest surface per unit volume. It is the shape in which the falling drop can most tightly, closely pull itself together.

FIGURE 3.5

There, in the homely shape of a falling drop, are demonstrated the molecular forces that give water its peculiar properties—those rare qualities that make it the one substance most important to the affairs of this planet.

33


34


35


36


Entry M editatio n s On Wa te r For the whole duration of my studies, the observation of water has played a steady and important part. As our source of life it has undeniable clout as an element. A stream's seamless endlessness was among my first realizations of our very human formed view of infinity — a truly potential infinity. In fact, it drove me to the depths of thought regarding if anything could be infinite when all things we know of have an end. In observing a waterfall, river, or creek, you accept the endless state of it, hence its serene effect. However, geology and geography have shown that no matter if it is a river, creek, waterfall, or ocean, there was a time when it did not exist the way it does now. Some bodies of water dry up, and some might expand into massive oceans. But what are we to do? We cannot simply observe this river or creek forever. So, according to the rest of our logic, is it safe to say that we accept it as an infinite system for we cannot conceive its end? Does that make anything we cannot conceive the end or limit to infinite? Furthermore, I admire and respect the interesting relationships between water and the rest of the Universe. It's celestial nature makes me think of stars and planets differently, and their relationship to us. It's unusual strength as a chemical bond is oddly in line with it's priority in our lives. It makes us up and some say it to even have the ability to absorb energy from humans, creating crystals that echo the output and quality of energy15. The implications are endless. I think it has a lot to offer us beyond the obvious.

The next four pages are meditations on water out of my Moleskine while I was visiting Two Harbors, MN in the spring of 2011. This is when my ideas as water being a metaphor for, not only a potential but actual, infinity were conceived. I think that when we pull water out of our context with it, and examine what we feel when we see it, and why we are feeling that...it becomes very interesting. Is it because it is a significant part of us (50-60% of our whole body on average, 70% of our brain) that we gain an intense connection to it? Or is it the hypnotizing nature that represents something of an endless object to us? Is it because we need it to survive, so as an organism we have a longing and endless affinity for it? I am interested in the connections able to be developed here.

15 Emoto, Masaru. The Hidden Messages in Water. Hillsboro, Or.: Beyond Words Pub., 2004. Print.

37


38

FIGURE 4.2-4.5 Gorvin, Eric. "Moleskine Entries In Two Harbors". The Infinity Project. 2011.


39


40


41


42


“If the doors of perception were cleansed, everything would appear to man as it is, infinite.”—Robert Irwin, Seeing Is Forgetting The Name Of The Thing One Sees

43


44

FIGURE 4.6 Gorvin, Eric. The Infinity Project. 2012.


FIGURE 4.7 NASA Apollo 17. The Blue Marble. December 7, 1972.

45


46


On Sound

FIGURE 4.1 Stevens, S. S., and Fred Warshofsky. Sound and Hearing. [Amsterdam]: Time-Life International (Nederland), 1965. Print.

47


48


“The eyes are made for astronomy, and by the same token the ears are presumably made for the type of movement that constitutes music.”—Plato, Republic

49


On Sound The Sine Wa v e It’s important to note, at this point, how integral sound was to my studies and experiments on infinity. I have always found certain attributes of sound to be extra spectacular. It seems to be one of the only things that can consistently bring people of all sorts together for seemingly no tangible reason. And, by that fact alone, I believe it deserves further dissection. One does not need to wander far into the world of sound before being confronted by one of its most basic attributes, the sine wave. The sine wave is a very simple self-reflective wave that can be combined with others to create complex sounds, or chords (read more on opposite page). The sine wave was very inspirational for me in developing the various video experiments I created for Through All The Windows I Only See Infinity, (2012). It seemed to me that this very model — a display of the necessary characteristic of sound to create music — was also a fantastic model of infinity. The process of how a sound even comes into being is a function that necessitates a symbiotic relationship of air compressions that result in the creation of a sound. But in all forms of it, the sound absolutely needs a return sequence in order for it to be audible. This fact within the origin of sound leaves room for questions and ideas to emerge concerning music, it’s attributes, and our universal connection to it.

50

FIGURE 4.2 Gorvin, Eric. The Infinity Project. 2012.


Sound Experience S ou n d & Pre ssu re 16 The experience we call sound results from our detection of pressure changes in a medium such as air. In a diagram of a pressure wave, peaks represent moments of relatively high pressure or compression of the air molecules. Valleys represent low pressure or partial vacuum, which is called rarefaction. A vibrating string in a piano produces alternating zones of compression and rarefaction in the air, resulting in sound. The distance from one peak to the next is a single cycle. A single cycle per second is called one Hertz (abbreviated Hz) after the German physicist Heinrich Hertz.

A S u m Of Sine Wa v es 17 The role of sine waves as the building blocks of complex sounds was first made clear in 1801 by a brilliant French mathematician, Jean Baptiste Fourier, who was not even studying sound at the time. Fourier was investigating the way heat flows through an object. This led him to a powerful mathematical technique—Fourier analysis—which reduces any series of waves, no matter how complex, to a series of simple sine waves. The sum of the sine waves equals the original complex wave.

Fourier’s resolution of sounds into their constituent sine waves moved a giant step farther. The sine waves that make up a musical note turn out to bear a most simple relationship to one another. Each is an overtone, or harmonic, of the fundamental note—i.e., the lowest note—and the frequency of each harmonic is a multiple of the fundamental frequency. Bowing the A string of a violin, for example, generates not only the fundamental A note of 440 vibrations per second—but also the second harmonic, one octave higher, of 880 vibrations, the third harmonic of 1,320 vibrations, and so on. The connection between harmonic frequencies and the length of a vibrating string can be seen by shaking a rope tied to a tree. Shake the rope slowly and a single wave runs along the rope. That single wave represents the fundamental frequency of vibration—the first harmonic. Then shake the rope twice as rapidly and two short waves will travel to the tree. With the frequency of vibration now twice as great, the length of each wave is halved. Shaking the rope three times as fast, at triple the fundamental frequency, will generate the third harmonic three distinct waves, each one-third the length of the fundamental (Figure 4.3).

Fourier’s great achievement lay in relating the complexity of wave motion-any wave, whether of radio, heat, light, sound or water—to a mathematical idea as old as ancient Greece. More than 2,000 years before Fourier’s time, the Greek mathematician Pythagoras had discovered a simple numerical relationship in the sounds of music. He pointed out that the lengths of the plucked strings whose vibrations gave the notes of the scale can be expressed as ratios of whole numbers. Thus if one string sounds the note C, another string 16/15 as long will sound the next lower note, B, one 18/15 as long will sound the A below that, one 20/15 as long will sound G, and so on down the scale. A string twice as long as the original will sound C again, but one octave lower.

FIGURE 4.3

FIGURE 4.4

16 Dewey, Russ. “Sound and the Auditory Waveform | in Chapter 04: Senses | from Psychology: An Introduction by Russ Dewey.” Table of Contents for Psychology: An Introduction by Russ Dewey. 2007. Web. 21 Apr. 2012. 17 Stevens, S. S., and Fred Warshofsky. Sound and Hearing. [Amsterdam]: Time-Life International (Nederland), 1965. Print. FIGURE 4.3-4.4 Stevens, S. S., and Fred Warshofsky. Sound and Hearing. [Amsterdam]: Time-Life International (Nederland), 1965. Print.

51


Waveform as Color18 Th e E le ct ro Magn e tic S pe ctrum The electromagnetic spectrum is the totality of light emitted from the sun (Figure 4.5). It consists of different wavelengths of electromagnetic radiation, including light, radio waves, and X-rays. We name regions of the spectrum rather arbitrarily, but the names give us a general sense of the energy of the radiation; for example, ultraviolet light has shorter wavelengths than radio light. However, the only region in the entire electromagnetic spectrum that our eyes are sensitive to is the visible region. Gamma rays have the shortest wavelengths, < 0.01 nanometres (about the size of an atomic nucleus). This is the highest frequency and most energetic region of the electromagnetic spectrum. Gamma rays can result from nuclear reactions and from processes taking place in objects such as pulsars, quasars, and black holes. X-rays range in wavelength from 0.01 – 10 nm (about the size of an atom). They are generated, for example, by super-heated gas from exploding stars and quasars, where temperatures are near one million to ten million degrees Fahrenheit. Ultraviolet radiation has wavelengths of 10 – 310 nm (about the size of a virus). Young, hot stars produce a lot of ultraviolet light and bathe interstellar space with this energetic light. Visible light covers the range of wavelengths from 400 – 700 nm (from the size of a molecule to a protozoan). Our sun emits the most of its radiation in the visible range, which our eyes perceive as the colors of the rainbow. Our eyes are sensitive only to this small portion of the electromagnetic spectrum.

FIGURE 4.5

Infrared wavelengths span from 710 nm – 1 millimeter (from the width of a pinpoint to the size of small plant seeds). At a temperature of 37 degrees Celsius, our bodies give off infrared wavelengths with a peak intensity near 900 nm. Radio waves are longer than 1 mm. Since these are the longest waves, they have the lowest energy and are associated with the lowest temperatures. Radio wavelengths are found everywhere: in the background radiation of the universe, in interstellar clouds, and in the cool remnants of supernovae explosions, to name a few. Radio stations use radio wavelengths of electromagnetic radiation to send signals that our radios then translate into sound. Radio stations transmit electromagnetic radiation, not sound. The radio station encodes a pattern on the electromagnetic radiation it transmits, and then our radios receive the electromagnetic radiation, decode the pattern and translate the pattern into sound.

52

18 "The Electromagnetic Spectrum." HubbleSite. N.p., n.d. Web. 03 Feb. 2013. FIGURE 4.5 Gorvin, Eric. "Electromagnetic Spectrum / The Spectrum of Light". The Infinity Project. 2013.


The Spectrum of Light

10-6 nm

Gamma Rays

1 nm

X Rays

Violet Ultraviolet Radiation

1 µm

Blue Green Yellow

Infrared Radiation

400 nm

Visible Light (Entire Color Spectrum)

Orange Red

700 nm

1 mm 1 cm

Microwaves

1m

UNITS

Radio Waves

nm = µm = mm = cm = m= km =

Nanometer Micrometer Millimeter Centimeter Meter Kilometer

1 km

100 km

53


54

FIGURE 4.6 Gorvin, Eric. The Infinity Project. 2012.


Entry This day was very productive. It is a Friday so the most of my day was spent doing research and exploration for the infinity project. I had a very successful day. I showed Erik what I had been making with my infinitely divisible circle and the pencil being whittled video and he was very excited about the initial power of the pencil video. I hope to produce more work like this. After the success with the pencil experiment (this concept <><><>...) I went to my music library to find my recent acquisitions: BBC sound libraries. I recently ripped in a handful of them just to have on my computer, and among them are sounds from Africa as well as a whole mess of nice field recordings of thunderstorms and rain. So I grabbed a few samples and dropped them into my computer to edit. I was wondering what the effects would be on performing the same experiment with sound. I started with the thunderstorm tracks and was instantly enthused. The thunder, rain, and all other natural features of the recording sounded almost identical backwards as they did forwards. I had a moment of thinking about nature being independent of time (whoa!) and got very excited about what else in the world was similar in this way. I found through more experiments that even the sounds of animals share this characteristic, and I theorize that with no concept of language, we might feel the same about our voices. After creating this shape (<>) with the field sound (the front half forward and the back half reversed to meet back up with the forward part ad infinitum) I began trying this concept on an entire musical composition, or rather half of a composition, playing it forward and then looping it back on itself. A completely symmetrical song19. I am excited thinking about the further implications of these ideas. I am also excited that my good friend and long-time collaborator, Eric Carranza, is helping me in an effort to conquer the sonic realm of this infinite odyssey. There is still much to explore.

19 Experiments In Finite. Through All The Windows I Only See Infinity. Tracks "Lament" and "Tents". 2012.

55


56


57


58


On Physics

59


60

FIGURE 5.2 Gorvin, Eric. The Infinity Project. 2012.


â&#x20AC;&#x153;For there are two ways in which distance and time (and, in general, any continuum) are described as infinite: they can be infinitely divisible or infinite in extent. So although it is impossible to make contact in a finite time with things that are infinite in quantity, it is possible to do so with things that are infinitely divisible, since the time itself is also infinite in this way. And so the upshot is that it takes an infinite rather than a finite time to traverse an infinite distance, and it takes infinitely many rather than finitely many nows to make contact with infinitely many things.â&#x20AC;? â&#x20AC;&#x201D;Aristotle, Physics

61


The Physical World20 Classical VS Quantum Mechanics In current scientific debate, scientists and

the motion of these dynamic variables in the

bystanders alike are trying to answer the

system to then tell us what happens to a given

loaded question, 'what are our physical laws

system when something is done to it. In other

and how do they work?' For the last 100 years,

words, this is a deterministic world which

the two sides of the argument stood as Newto-

answers

nian,

our

questions

with

formulaic

and

Quantum

most often predictable answers. In 1927, every-

Mechanics. The differences in the two sides

thing changed for this classical vision of

of

science. The scientific published works of Nieles

or

this

Classical debate

Mechanics,

lie

within

and

the

notions

of

observables and unobservables, entering into

Bohr

amplify

preliminary

conversations with realism and anti-realism

and make the problem of Quantum Mechanics a

as well an established discourse with chance

real debate.

and the question of determinism in our world.

This debate can be found at the heart of much

Where classical mechanics describe our world

scientific discourse that occurs. There is even

on a very macro scale, it is restricted to

a movement to create a universal concept that

those things which are directly observable

encompasses both classical and quantum mechan-

objects. It does not, however, delve into the

ics, called quantum field theory. The problem

wild world of the quanta. When the laws of

that most scientists find with it, however, is

classical mechanics are applied in our new

that the two players have characteristics that

atomic and sub-atomic world, problems occur

undoubtedly negate the other. They disagree

almost

upon investigation into their dependent attri-

cal system, we can see millions of particles,

butes making them whole, concise theories. The

summed together by objects that create the

following paragraphs will explain classical

view we have of our world and how it functions.

mechanics, quantum mechanics, the exchange and

The bizarre part is that when you zoom in

somewhat cosmic relativity that they have with

to the quantum level, all the particles that

one another, as well as how we are supposed to

make up these so-called solid bodies of mass

understand all of this.

are completely non-deterministic... without a

instantly.

Upon

work

by

observing

Einstein

a

classi-

set position or state! The discovery of these Classical Mechanics

anomalies and their relation (or lack there of)

Classical mechanics was introduced by Isaac

to the hard cold laws of classical mechanics

Newton in 1687 in what is one of the most

spurred the birth of quantum theory that began

significant

really addressing this problem.

scientific

books

ever

written,

Philosophiæ Naturalis Principia Mathematica. Newton wrote of our world, or universe as being

Quantum Mechanics

a system with static properties. These static

To start, in quantum mechanics, the state of a

properties are things that do not change with

system on the microscopic atomic level is not

time, such as the mass of an object or the

characterized by a set of dynamic variables.

density of something. It is important that we

On the contrary, it is defined with a state

are clear that this is a known system with

function. The state function has a functional

unchanging properties.

dependence, however, on the “possible position” of the particle. Where state function is

62

Continuing onward, we have dynamic variables

denoted with z and possible position is denoted

which are things that can change, but are

with x, our equation would read z(x). How the

set with initial conditions. Then there are

state of this particle then changes with time

actions taken on these dynamic variables that

(denoted with t) would read z(x, t). The product

then determine how the system changes with

of this equation is where we witness the occur-

time. To articulate this further, we need an

rence of a “wave function” which hits the nerve

equation

time-

of our debate on indeterminism and we begin to

dependence of the system. Mathematically, this

understand the nature of this particle. Is it

is solved with the equation that determines

a particle or a wave?

of

motion

that

governs

the

20 Eric Gorvin, The Physical World, 2011. Print. *All sources listed below. Tang, C. L. Fundamentals of Quantum Mechanics: For Solid State Electronics and Optics. Cambridge, UK: Cambridge UP, 2005. Print. “Combining Relativity and Quantum Theory.” Physics. N.p., n.d. Web. 20 Apr. 2011. “Quantum Mechanics vs. Relativity? - Yahoo! Answers.” Yahoo! Answers. N.p., n.d. Web. 23 Apr. 2011. “Quantum gravity - Wikipedia, the free encyclopedia.” Wikipedia. N.p., n.d. Web. 20 Apr. 2011. “Quantum indeterminacy - Wikipedia, the free encyclopedia.” Wikipedia. N.p., n.d. Web. 20 Apr. 2011. “Quantum mechanics - Wikipedia, the free encyclopedia.” Wikipedia. N.p., n.d. Web. 20 Apr. 2011.


The “famous double slit experiment” (Figure

photon is in an indeterministic state. When it

5.3)

performed originally by Thomas Young in a

is being observed, it, as all other tests on

paper entitled, “Experiments and Calculations

electrons, etc. chooses to behave like a deter-

Relative to Physical Optics,” published in 1803

ministic particle, baffling scientists and the

was one of the first understandings of photons

world alike.

as having wave-like properties as well as what

led to the building blocks of quantum theory. In

Conclusions

a classical double-slit experiment, particles

Conclusively, there is no conclusion and there

(in

is

our

case

photons-elementary

particles,

every

conclusion.

Einstein

went

to

his

the quanta of light) are propelled toward a

deathbed trying to crack the quantum code. He

wall with two slits in it, ultimately ending

had debates with Bohr that lasted for years,

up on a different wall behind it, quantifying

neither ever being able to accept one anoth-

the results.

er’s respective theories. Erwin Schrödinger went to great lengths to even illustrate how

Upon initial observation, the photons created

ridiculous the idea was by devising his famous

an

wall,

thought experiment involving a cat sealed in

showing that photons behave like waves. A good

a box with a radioactive compound that had

way of conceptualizing this is to think about

a 50/50 chance of decaying and mixing with

dropping two rocks, side by side, in a pond

cyanide to kill the cat. So probabilistically

and observing the waves. Two concentric waves

the cat has a 50/50 chance of living, but on

interfere and create a number of concentra-

the quantum level, the cat should be consid-

tion points on the wall where the crests of

ered both alive, dead, and neither. Without our

the two circles interfere with each other. In

observation, the cat and every particle depen-

this experiment, the wall displayed a pattern

dent on it is in an indeterministic state.

much like if you were to push an actual wave

We can see the absurdity in this, obviously,

through those 2 slits.

because upon opening the door, we will expe-

interference

pattern

on

the

back

rience an alive cat or a dead cat, never an Scientists

were

baffled

by

the

notion

of

a

in-between cat.

particle behaving like a wave, but Young as

well as hundreds of scientists preceding him

So, how are we to think of this today? As

weren’t satisfied with such odd results for some-

the

thing that was assumed to have properties of a

conversations have not stopped happening, the

particle just like everything else. In the next

discourse is still very much alive. I believe

experiment, they devised a way to shoot one

that there has to, and must be, a solution that

photon at a time in intervals, hypothesizing

involves both classic and quantum mechanics.

that was no way for a wave pattern to be made

It seems to me that the cosmic, vague evasive-

without a mass of particles to create a wave-like

ness of our sub-atomic world and the explain-

impact. They were wrong. After an hour or so,

able, macro nature of our observable world

it was evident that the particles were still

must be in a conversation with each other. Is

making an interference pattern.

it too crazy to think that the same apparent

quantum

field

theory

builds

steam,

the

“free-thinking” particle could be fabricating Unsatisfied, scientists put a detection device

the laws of classical mechanics? Is it too

at the mouth of the slits to observe how a

wild to think that all we know — gravity, laws

particle could possibly interfere with itself

of motion, and the behavior of light — could

to create such a pattern. Upon trying to observe

be determined by particles reacting to our

these photons, they went back to behaving like

observation? And from our observations, do we

regular particles, leaving two concentration

ascribe them value? Perhaps these two sides of

points on the back wall just as you would get

physics have more in common than they think.

from firing tennis balls through two slits in a

It may be that both the chaotic nature of the

wall. So the action of observing the particle

quanta and the determinism of our day-to-day

made it behave differently. This, obviously

physical experience are intimately connected,

being an unexplainable phenomenon, has been

allowing for everything in the universe to be

tested and re-tested to know conclusive avail.

as it is.

We can only understand this as follows: When the photon behaves like a wave, it is actually going through both slits and neither. The

63


FIGURE 5.3

64


“When the province of physical theory was extended to encompass microscopic phenomena through the creation of quantum mechanics, the concept of consciousness came to the fore again. It was not possible to formulate the laws of quantum mechanics in a fully consistent way without reference to the consciousness.”—Eugene Wigner, Remarks on the Mind-Body Question

65


String Theory21 Th e C om p on e n t s o f S trin g Th e o ry Within the framework of string theory, the familiar fundamental particles such as electrons and quarks are not really particles at all - they are actually tiny vibrating strings of about the Planck length (about 10-33 cm). As such, they are undetectable to our particle accelerators, which would have to utilize energies about a million billion times greater than those accessible at present in order to determine that what seems to be a point particle is in reality a string. Strings may represent the “bottom layer” of the universe’s fundamental constituents. That is to say, although strings have extent in space, they are not made up of anything else—they are the last level of the sub-structure of the universe. However, there are subtle theoretical suggestions that strings may in fact have a substructure in their own right, thereby simultaneously destroying their chance at being the “fundamental” components of the universe and opening fascinating new doors of intricate theoretical physics. Either way, string theory seems capable of either providing itself as a final theory or leading us to a more complete theory that is a TOE (Theory Of Everything). It should be noted here that string theory provides for many different types of strings. There are both open and closed strings, with closed strings forming a loop and open strings, logically, having both ends free—a cut loop. For reasons that will later become apparent, the universe seems to incorporate closed strings, although open strings may also be present. Recent research has also revealed that “strings” may actually have many different dimensions, from the one-dimensional strings originally postulated to a two-dimensional membrane to many analogous structures in higher dimensions. Physicists have taken to calling strings “branes,” and defining each’s dimensional extent with a number, i.e. a one-brane is a one-dimensional string. These will also be explored later in the text.

66

S trin g Th e o ry ’s Power of Unification String theory postulates the existence of tiny vibrating strings that correspond to the observed elementary particles. Strings can undergo an infinite number of different vibrational patterns, called resonances, whose evenly-spaced peaks and troughs fit exactly along its spatial extent. By analogy, the strings of a guitar can similarly undergo an infinite number of vibrational patterns that meet the same requirement, though we only come in contact with a few of them. These recognizable vibrations are perceived by human ears as different musical notes. Similarly, the vibrations which strings undergo not only correspond to, but actually create, the different masses and charges observed in the various elementary particles. In other words, an elementary particle’s precise properties are caused by the vibrations of its string. This connection is best illustrated for the mass of a particle. A vibrational pattern’s energy is related to its amplitude, or the maximum height of a wave peak (or depth of a trough) and the wavelength, or the distance between one peak and the next. Greater amplitude and greater wavelength correlate with greater energy - that is, the more frenetic the vibrations of the string, the greater energy it has. Since energy is related to mass by Einstein’s famous equation E=mc2, high vibrational energies correspond to high-mass particles.

Entry I feel like it is generally difficult to think about something like this [infinity] because of its non-relevance to the daily comings and goings of humans. And I understand this. I understand it well from studying quantum and classic mechanics. The quantum level requires a bit of imagination to understand. To think about such a chaotic system that is in fact indeterminate but it is somehow orchestrating a system that is determinate, means that all of the things happening from day to day that seem so sure, operate by chance, not because it is law. So in the same light, thinking of this infinitely erratic system being the "solid" world you live in is a challenging nugget of knowledge to ruminate on.

21 "Introduction to String Theory." Thinkquest. Oracle Foundation. Web. 21 Apr. 2012.


FIGURE 5.4 Gorvin, Eric. The Infinity Project. 2012.

67


68

FIGURE 6.1 Gorvin, Eric. "Moleskine Entry on Pi". The Infinity Project. 2012.


On Mathematics

69


Ad Infinitum22 P rob le m s In Ma th e matics

70

Across the span of Western thought, infinity has been a notoriously troublesome idea, difficult to pin down, full of paradox, and seemingly connected in some way or other with the divine. But whatever its philosophicotheological obscurities and contradictions, infinity in mathematics, as a phenomenon and an effect, is neither difficult to pin down nor hard to come by. One meets it immediately in elementary situations when, for example, one tries to divide a number by zero or compute the tangent of 90 degrees or express the fraction 1/3 as a decimal, or fundamentally, when one writes the ideogram, ” . . . “ of mathematical continuation to signal that the progression of whole numbers 1, 2, 3, . . . be continued without end. And one meets it just as immediately in non-elementary mathematics. It is at work in the very idea of the geometrical continuum of points on a line and their integer-based real number descriptions—two linked abstractions which ground all post-Renaissance mathematics. And it is the founding signified, the crucial ontological term, in contemporary mathematics’ description of itself as an infinite hierarchy of infinite sets.

century mathematical scene. A century ago, as part of the initiating phase of this axiomatics, Richard Dedekind asked how numbers were to be defined. And he did so by means of a double question—”Was sind und was sollen die Zahlen?”—what are [sind] the numbers and what might/should [sollen] they be? Dedekind’s answer—that numbers were a certain sort of sets—is now part of the very picture of a ‘’naturalized” infinity of numbers that will be put into question here. Nevertheless, we might adapt his question, replacing his modality of being by a modality of being thought, and ask, “What is the infinite and how are we to think it?”

How, one might ask, has mathematics so successfully tamed and incorporated the infinite? Incorporated it moreover at such a basic, elemental level, in so allpervasive a way? How does infinity get to be an exact, rigorously specified mathematical object—an object about which mathematics delivers “true” and “objective” knowledge? Mathematics starts from the integers. Its entire formalism opens out from the sequence 1, 2, 3, ... that mathematicians call the “natural” numbers. The question can therefore be particularized: What does it mean to say of these numbers that they are infinite, that they form a progression which is endless? In what sense are they natural, that is to say, before, independent, and outside of us? Precisely this question frames the present essay.

at the same time a play of imagination and a discourse of written symbols. Should we not then pose the question of the mathematical infinite as a question of language, as part of an overall study of the nature and practice of mathematical signs—as part, that is, of a semiotics of mathematics? The answer is that we should, but that— obviously enough—we need to develop a semiotics of mathematics in order to do so.

Of course, part of any answer is historical. The presentday interpretation of the mathematical infinite has a long story behind it; from Anaximander and Zeno, through Euclid, Aristotle, Carl Friedrich Gauss, culminating in Gottlob Frege’s logic and Georg Cantor’s infinities articulated within an axiomatics that dominates the twentieth

To pursue zero further would be to have to say more about its role at the origin of this formalism. But such a project would require a critique of mathematical logic. In particular, one would need to unravel the assumptions behind the claim that is made for Boolean logic, with its referential appa-

But, as we shall see, being thought in mathematics always comes woven into and inseparable from being written. We are never presented with the pure idea of infinity as such. How could we be? Instead, we meet only with certain mathematical inscriptions that in turn are connected to other inscriptions through a complex and openended spread of sense and interpretation. Thinking in mathematics is always through, by means of, in relation to the manipulation of inscriptions. Mathematics is

In this sense this book [Ad Infinitum] starts where a previous one on mathematical signs—Signifying Nothing— felt itself able to sign off. In that text, having chased zero and zero-like signs across different cultural codes, I called a halt at its presence within the binary formalism of Boolean logic governing the contemporary computer:

Rotman, Brian. “Preface.” Ad Infinitum -- the Ghost in Turing’s Machine. Stanford, CA: Stanford UP, 1993. 3+. Print

22


ratus of truth and falsity, to be the grammar of all mathematical, hence all scientific-technical, hence all supposedly neutral, culturally invariant, objective, true/false assertions about some prior “real” world. To do this would require a semiotics that went beyond zero to the whole field of mathematical discourse. A semiotics which, in order to begin at all, would have to demolish the widely held metaphysical belief that mathematical signs point to, refer to, or invoke some world, some supposedly objective eternal domain, other than that of their own human—time bound, changeable, subjective and finite—making. What I present here is not a further stalking of zero but a pursuit of infinity. However, the intimacy—both historical and conceptual—of the coupling between the two, between nothing/zero and all/infinity, manifest for example in the immediate production of infinity as the reciprocal of zero, makes any explication of the mathematical infinite a supplement to that of zero. Neither is what follows a philosophical critique of the metaphysical system, the rampant Platonism, that threads its way through the contemporary interpretation of mathematics—though, naturally, I cannot avoid engaging with Platonism, given its near universal acceptance. Rather it is a critique, in the form of an interrogation from first principles, of what seems to me an altogether more subtle metaphysical principle that permeates the entire subject. This is the principle of ad infinitum continuation that is inseparable from the mathematical community’s wholesale-acceptance of the view that the numbers are “natural,” and its failure to ask the question of where these numbers could possibly come from. With this failure comes its inability to perceive either the need or the point of asking what the infinite is and how we are to think of it.

FIGURE 6.2 Gorvin, Eric. The Infinity Project. 2012.

71


72

FIGURE 6.3 Gorvin, Eric. The Infinity Project. 2012.


â&#x20AC;&#x153;Mathematics are the result of mysterious powers which no one understands, and which the unconscious recognition of beauty must play an important part. Out of an infinity of designs a mathematician chooses one pattern for beautyâ&#x20AC;&#x2122;s sake and pulls it down to earth.â&#x20AC;?-Marston Morse

73


History in Math23 A n In t e r vie w W ith Rev iel N etz How do mathematicians define infinity? Something which is equal to some of its parts. That's really the technical definition. Is there a difference between the mathematical concept of infinity and infinity in terms, say, of space or time— the philosophical concept? That's the curious thing. Infinity became a really clear and well-defined quantity mathematically in the late 19th century, which it wasn't before and which makes it rather different from what we ordinarily talk about when we talk about infinity, namely, about something very, very big. In mathematics nowadays, when we think about infinity, we think about a set whose properties are different from those of ordinary sets. Can you explain? Well, the defining property of infinity today is that a set's cardinality [the number of elements in a given mathematical set] is equal to the cardinality of some real subset of that set. The thread that links the technical notion of infinity and the more popular/philosophical notion of infinity is the sense that infinity's hugeness being beyond reach endows it with certain paradoxical properties. A standard example would be what was taken to be something rather paradoxical, the fact that you can take, say, the number 1 and correlate it with the number 2, take the number 2 and correlate it with the number 4, take the number 3 and correlate it with the number 6. In this way you can gradually, step by step, correlate all integer numbers (1, 2, 3, 4, etc.) with all even numbers (2, 4, 6, 8, etc.). And that's funny, because this would imply at first glance that the number of integers is equal to the number of even integers. That's the paradoxical property of infinity.

This discomfort with infinity lasted until the invention of the calculus. How did that change things? What happens with the calculus is that you find ways to calculate infinitely long series. I've mentioned that in order to get from Point A to Point B, you first have to cross half the way, then half of the half, which is a quarter, then half of the half of the half, which is an eighth. This seems paradoxical, because it looks like we can define it this way: Let's have a series, and the series is 1/2 plus 1/4 plus 1/8, etc., going on to infinity. It would appear that the series that has infinitely many terms should be infinitely large. What you find with the calculus is that there are ways of dealing with infinitely large objects in some ways that are still finite in other ways. There are ways of calculating with infinitely large objects. To start with, this was done on a rather intuitive basis. It was just a series of observations that things could be done and seem to work properly. It was only in the 19th century that precise techniques for dealing with infinitely large magnitudes emerged. They found that once you allow yourself to do those things in practice, then you can do as a matter of calculation—real calculation with numbers—things that before you'd done purely by operating with geometrical configurations. You can think not in the qualitative terms of geometrical configurations, but in the quantitative terms of dealing with numbers and series of numbers. That's very powerful, because numbers are very powerful. They are precise and manageable in ways that geometrical configurations are not. Essentially, then, you now had a tool that is much more useful for science. So what appears to be a quaint, paradoxical realm—the realm of infinite magnitude—is actually very practical. It's something that allows you to extend operations with numbers to any domain whatsoever. That's what happened from the 17th century onward. How did Georg Cantor's set theory refine mathematicians' thinking about infinity? Well, the essence of the calculus is that you deal with infinitely large objects. But you never had to define infinity itself, and you never had to worry about the nature of infinity, primarily because you always dealt with the very same kind of infinity—roughly speaking, the infinity of points making up a line, the infinity of all the real numbers between, let's say, 0 and 1. That's the type of thing they were worried about in the calculus from the 17th century to the 19th century.

74

23 Netz, Reviel. "Working With Infinity." Interview. PBS/NOVA. Public Broadcast System, 30 Sept. 2003. Web. Edited by Peter Tyson FIGURE 6.4 Gorvin, Eric. The Infinity Project. 2012.


But they didn't think about what infinity is, because for one thing they didn't think about what a set is. What is a set? And then what would be the difference between a finite and an infinite set? This is something that Cantor did in the late 19th century. Cantor developed the notion of a set, and the notion of an infinite set, a set that has infinitely many objects.

In finity To da y So is infinity an active field of study for mathematicians today? Oh, infinity is what mathematics is about. Infinity always was what mathematics is about. It's just that there are many different ways of dealing with it. In the Greek context, you dealt with situations that give rise to infinity by transforming them into geometrical representations. So, for example, you effectively dealt with how many lines it takes to fill a certain rectangle by looking at various geometrical configurations. You never called infinity by its name.

FIGURE 6.5

0

Cardinal Number24 D efinition In mathematics, cardinal numbers, or cardinals for short, are

In the Scientific Revolution, you did those things with the recognition that you're dealing with infinity, and from the 19th century onwards you began dealing with actual infinite setsâ&#x20AC;&#x201D;a mathematics of infinity. The kinds of infinity that are allowed into the game define the kind of mathematics you're doing even today. That's the fundamental division between different kinds of mathematics. Do you allow in infinities beyond the first, most simple infinity or not? There are different kinds of mathematics dependent on that. Primarily you're dealing with various situations arising from various different kinds of infinity.

a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural numberâ&#x20AC;&#x201D;the number of elements in the set. The transfinite cardinal numbers describe the sizes of infinite sets. Cardinality is defined in terms of bijective functions. Two sets have the same cardinal number if and only if there is a bijection between them. In the case of finite sets, this agrees with the intuitive notion of size. In the case of infinite sets, the behavior is more complex. A fundamental theorem due to Georg Cantor shows that it is possible for infinite sets to have different cardinalities, and in particular the set of real numbers

Finite thingsâ&#x20AC;&#x201D;yes, of course, there are important fields of mathematics that deal with finite situations, and these are fascinating fields in their own right. But the fundamental thrust of mathematics is dealing with infinite situations.

and the set of natural numbers do not have the same cardinal number. It is also possible for a proper subset of an infinite set to have the same cardinality as the original set, something that cannot happen with proper subsets of finite sets.

24 "Cardinal Number." Wikipedia. Wikimedia Foundation, 04 Mar. 2013. Web. 12 Jan. 2013. FIGURE 6.5 is the first and smallest infinite cardinal. 0

75


Mathematical Induction De fin itio n 25 Mathematical induction can be informally illustrated by reference to the sequential effect of falling dominoes. Mathematical induction is a method of mathematical proof typically used to establish that a given statement is true for all natural numbers (positive integers). It is done by proving that the first statement in the infinite sequence of statements is true, and then proving that if any one statement in the infinite sequence of statements is true, then so is the next one.

E n t ry By using mathematical induction, could one assume something that is within the same system (i.e. molecules, cosmos, and humans) will have the same properties as the next thing, no matter how big or how small?

In fin it e De sce n t 26 Another variant of mathematical induction—the method of infinite descent—was one of Pierre de Fermat’s favorites. This method of proof works in reverse, and can assume several slightly different forms. For example, it might begin by showing that if a statement is true for a natural number n it must also be true for some smaller natural number m (m < n). Using mathematical induction (implicitly) with the inductive hypothesis being that the statement is false for all natural numbers less than or equal to m, we can conclude that the statement cannot be true for any natural number n.

76

25 "Mathematical Induction." Wikipedia. Wikimedia Foundation, 10 Mar. 2012. Web. 20 Apr. 2012. 26 “Infinite Descent.” Wikipedia. Wikimedia Foundation, 20 Mar. 2012. Web. FIGURE 6.6-6.7 Gorvin, Eric. The Infinity Project. 2012.


d Approximating Pi27 A rc h im e de s's M eth o d Around 250 B.C., the Greek mathematician Archimedes

diameter

calculated the ratio of a circle's circumference to its diameter. A precise determination of pi, as we know this ratio today, had long been of interest to the ancient Greeks, who strove for precise mathematical proportions in their architecture, music, and other art forms. Close approximations of pi had been known for over 1,000 years. Archimedes’ value, however, was not only more accurate, it was the first theoretical, rather than measured, calculation of pi.

Circumference 1

2 2 1

3 2 3

π=

C d

1 M illion D igits of π

FIGURE 6.8

π28 C alcu la t in g π Co n tempo rarily When a circle's diameter is 1 unit, its circumference is π units. In Euclidean plane geometry, π is defined as the ratio of a circle's circumference C to its diameter d.  The ratio C/d is constant, regardless of a circle's size. For example, if a circle has twice the diameter d of another circle it will also have twice the circumference C, preserving the ratio C/d. This definition depends on results of Euclidean geometry, such as the fact that all circles are similar, which can be a problem when π occurs in areas of mathematics that otherwise do not involve geometry. For this reason, mathematicians often prefer to define π without reference to geometry, instead selecting one of its analytic properties as a definition. A common choice is to define π as twice the smallest positive x for which the trigonometric function cos(x) equals zero.

3.14 1592 6535 8... diameter

Circumference

Continued on the next 6 pages.

27 Groleau, Rick. "Approximating Pi." PBS. PBS, 01 Sept. 2003. Web. 02 Jan. 2013. 28 "Pi." Wikipedia. Wikimedia Foundation, 04 Jan. 2012. Web. 18 Feb. 2012. FIGURE 6.8 Gorvin, Eric. "Illustration of Archimedes's method." The Infinity Project. 2013.

77


7932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799 6274956735188575272489122793818301194912983367336244065664308602139494639522473719070217986094370277053921717629317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495343014654958537105079227968925892354201995611212902196086403441815981362977477130996051870721134999999837297804995105973173281609631859502445945534690830264252230825334468503526193118817101000313783875288658753320838142061717766914730359825349 0428755468731159562863882353787593751957781857780532171226806613001927876611195909216420198938095257201065485863278865936153381827968230301952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855889075098381754637464939319255060400927701671139009848824012858361603563707660104710181942955596198946767837449448255379774726847104047534646208046684259069491293313677028989152104752162056966024058038150193511253382 4300355876402474964732639141992726042699227967823547816360093417216412199245863150302861829745557067498385054945885869269956909272107975093029553211653449872027559602364806654991198818347977535663698074265425278625518184175746728909777727938000816470600161452491921732172147723501414419735685481613611573525521334757418494684385233239073941433345477624168625189835694855620992192221842725502542568876717904946016534668049886272327917860857843838279 6797668145410095388378636095068006422512520511739298489608412848862694560424196528502221066118630674427862203919494504712371378696095636437191728746776465757396241389086583264599581339047802759009946576407895126946839835259570982582262052248940772671947826848260147699090264013639443745530506820349625245174939965143142980919065925093722169646151570985838741059788595977297549893016175392846813826868386894277415599185592524595395943104997252468084 5987273644695848653836736222626099124608051243884390451244136549762780797715691435997700129616089441694868555848406353422072225828488648158456028506016842739452267467678895252138522549954666727823986456596116354886230577456498035593634568174324112515076069479451096596094025228879710893145669136867228748940560101503308617928680920874760917824938589009714909675985261365549781893129784821682998948722658804857564014270477555132379641451523746234364 5428584447952658678210511413547357395231134271661021359695362314429524849371871101457654035902799344037420073105785390621983874478084784896833214457138687519435064302184531910484810053706146806749192781911979399520614196634287544406437451237181921799983910159195618146751426912397489409071864942319615679452080951465502252316038819301420937621378559566389377870830390697920773467221825625996615014215030680384477345492026054146659252014974428507325 1866600213243408819071048633173464965145390579626856100550810665879699816357473638405257145910289706414011097120628043903975951567715770042033786993600723055876317635942187312514712053292819182618612586732157919841484882916447060957527069572209175671167229109816909152801735067127485832228718352093539657251210835791513698820914442100675103346711031412671113699086585163983150197016515116851714376576183515565088490998985998238734552833163550764791 8535893226185489632132933089857064204675259070915481416549859461637180270981994309924488957571282890592323326097299712084433573265489382391193259746366730583604142813883032038249037589852437441702913276561809377344403070746921120191302033038019762110110044929321516084244485963766983895228684783123552658213144957685726243344189303968642624341077322697802807318915441101044682325271620105265227211166039666557309254711055785376346682065310989652691 8620564769312570586356620185581007293606598764861179104533488503461136576867532494416680396265797877185560845529654126654085306143444318586769751456614068007002378776591344017127494704205622305389945613140711270004078547332699390814546646458807972708266830634328587856983052358089330657574067954571637752542021149557615814002501262285941302164715509792592309907965473761255176567513575178296664547791745011299614890304639947132962107340437518957359 6145890193897131117904297828564750320319869151402870808599048010941214722131794764777262241425485454033215718530614228813758504306332175182979866223717215916077166925474873898665494945011465406284336639379003976926567214638530673609657120918076383271664162748888007869256029022847210403172118608204190004229661711963779213375751149595015660496318629472654736425230817703675159067350235072835405670403867435136222247715891504953098444893330963408780 7693259939780541934144737744184263129860809988868741326047215695162396586457302163159819319516735381297416772947867242292465436680098067692823828068996400482435403701416314965897940924323789690706977942236250822168895738379862300159377647165122893578601588161755782973523344604281512627203734314653197777416031990665541876397929334419521541341899485444734567383162499341913181480927777103863877343177207545654532207770921201905166096280490926360197 5988281613323166636528619326686336062735676303544776280350450777235547105859548702790814356240145171806246436267945612753181340783303362542327839449753824372058353114771199260638133467768796959703098339130771098704085913374641442822772634659470474587847787201927715280731767907707157213444730605700733492436931138350493163128404251219256517980694113528013147013047816437885185290928545201165839341965621349143415956258658655705526904965209858033850 7224264829397285847831630577775606888764462482468579260395352773480304802900587607582510474709164396136267604492562742042083208566119062545433721315359584506877246029016187667952406163425225771954291629919306455377991403734043287526288896399587947572917464263574552540790914513571113694109119393251910760208252026187985318877058429725916778131496990090192116971737278476847268608490033770242429165130050051683233643503895170298939223345172201381280 6965011784408745196012122859937162313017114448464090389064495444006198690754851602632750529834918740786680881833851022833450850486082503930213321971551843063545500766828294930413776552793975175461395398468339363830474611996653858153842056853386218672523340283087112328278921250771262946322956398989893582116745627010218356462201349671518819097303811980049734072396103685406643193950979019069963955245300545058068550195673022921913933918568034490398 2059551002263535361920419947455385938102343955449597783779023742161727111723643435439478221818528624085140066604433258885698670543154706965747458550332323342107301545940516553790686627333799585115625784322988273723198987571415957811196358330059408730681216028764962867446047746491599505497374256269010490377819868359381465741268049256487985561453723478673303904688383436346553794986419270563872931748723320837601123029911367938627089438799362016295 1541337142489283072201269014754668476535761647737946752004907571555278196536213239264061601363581559074220202031872776052772190055614842555187925303435139844253223415762336106425063904975008656271095359194658975141310348227693062474353632569160781547818115284366795706110861533150445212747392454494542368288606134084148637767009612071512491404302725386076482363414334623518975766452164137679690314950191085759844239198629164219399490723623464684411 7394032659184044378051333894525742399508296591228508555821572503107125701266830240292952522011872676756220415420516184163484756516999811614101002996078386909291603028840026910414079288621507842451670908700069928212066041837180653556725253256753286129104248776182582976515795984703562226293486003415872298053498965022629174878820273420922224533985626476691490556284250391275771028402799806636582548892648802545661017296702664076559042909945681506526 5305371829412703369313785178609040708667114965583434347693385781711386455873678123014587687126603489139095620099393610310291616152881384379099042317473363948045759314931405297634757481193567091101377517210080315590248530906692037671922033229094334676851422144773793937517034436619910403375111735471918550464490263655128162288244625759163330391072253837421821408835086573917715096828874782656995995744906617583441375223970968340800535598491754173818 8399944697486762655165827658483588453142775687900290951702835297163445621296404352311760066510124120065975585127617858382920419748442360800719304576189323492292796501987518721272675079812554709589045563579212210333466974992356302549478024901141952123828153091140790738602515227429958180724716259166854513331239480494707911915326734302824418604142636395480004480026704962482017928964766975831832713142517029692348896276684403232609275249603579964692 5650493681836090032380929345958897069536534940603402166544375589004563288225054525564056448246515187547119621844396582533754388569094113031509526179378002974120766514793942590298969594699556576121865619673378623625612521632086286922210327488921865436480229678070576561514463204692790682120738837781423356282360896320806822246801224826117718589638140918390367367222088832151375560037279839400415297002878307667094447456013455641725437090697939612257 1429894671543578468788614445812314593571984922528471605049221242470141214780573455105008019086996033027634787081081754501193071412233908663938339529425786905076431006383519834389341596131854347546495569781038293097164651438407007073604112373599843452251610507027056235266012764848308407611830130527932054274628654036036745328651057065874882256981579367897669742205750596834408697350201410206723585020072452256326513410559240190274216248439140359989 5353945909440704691209140938700126456001623742880210927645793106579229552498872758461012648369998922569596881592056001016552563756785667227966198857827948488558343975187445455129656344348039664205579829368043522027709842942325330225763418070394769941597915945300697521482933665556615678736400536665641654732170439035213295435291694145990416087532018683793702348886894791510716378529023452924407736594956305100742108714261349745956151384987137570471 0178795731042296906667021449863746459528082436944578977233004876476524133907592043401963403911473202338071509522201068256342747164602433544005152126693249341967397704159568375355516673027390074972973635496453328886984406119649616277344951827369558822075735517665158985519098666539354948106887320685990754079234240230092590070173196036225475647894064754834664776041146323390565134330684495397907090302346046147096169688688501408347040546074295869913 8296682468185710318879065287036650832431974404771855678934823089431068287027228097362480939962706074726455399253994428081137369433887294063079261595995462624629707062594845569034711972996409089418059534393251236235508134949004364278527138315912568989295196427287573946914272534366941532361004537304881985517065941217352462589548730167600298865925786628561249665523533829428785425340483083307016537228563559152534784459818313411290019992059813522051 1733658564078264849427644113763938669248031183644536985891754426473998822846218449008777697763127957226726555625962825427653183001340709223343657791601280931794017185985999338492354956400570995585611349802524990669842330173503580440811685526531170995708994273287092584878944364600504108922669178352587078595129834417295351953788553457374260859029081765155780390594640873506123226112009373108048548526357228257682034160504846627750450031262008007998 0492548534694146977516493270950493463938243222718851597405470214828971117779237612257887347718819682546298126868581705074027255026332904497627789442362167411918626943965067151577958675648239939176042601763387045499017614364120469218237076488783419689686118155815873606293860381017121585527266830082383404656475880405138080163363887421637140643549556186896411228214075330265510042410489678352858829024367090488711819090949453314421828766181031007354 7705498159680772009474696134360928614849417850171807793068108546900094458995279424398139213505586422196483491512639012803832001097738680662877923971801461343244572640097374257007359210031541508936793008169980536520276007277496745840028362405346037263416554259027601834840306811381855105979705664007509426087885735796037324514146786703688098806097164258497595138069309449401515422221943291302173912538355915031003330325111749156969174502714943315155 8854039221640972291011290355218157628232831823425483261119128009282525619020526301639114772473314857391077758744253876117465786711694147764214411112635835538713610110232679877564102468240322648346417663698066378576813492045302240819727856471983963087815432211669122464159117767322532643356861461865452226812688726844596844241610785401676814208088502800541436131462308210259417375623899420757136275167457318918945628352570441335437585753426986994725 4703165661399199968262824727064133622217892390317608542894373393561889165125042440400895271983787386480584726895462438823437517885201439560057104811949884239060613695734231559079670346149143447886360410318235073650277859089757827273130504889398900992391350337325085598265586708924261242947367019390772713070686917092646254842324074855036608013604668951184009366860954632500214585293095000090715105823626729326453738210493872499669933942468551648326 1134146110680267446637334375340764294026682973865220935701626384648528514903629320199199688285171839536691345222444708045923966028171565515656661113598231122506289058549145097157553900243931535190902107119457300243880176615035270862602537881797519478061013715004489917210022201335013106016391541589578037117792775225978742891917915522417189585361680594741234193398420218745649256443462392531953135103311476394911995072858430658361935369329699289837 9149419394060857248639688369032655643642166442576079147108699843157337496488352927693282207629472823815374099615455987982598910937171262182830258481123890119682214294576675807186538065064870261338928229949725745303328389638184394477077940228435988341003583854238973542439564755568409522484455413923941000162076936368467764130178196593799715574685419463348937484391297423914336593604100352343777065888677811394986164787471407932638587386247328896456 4359877466763847946650407411182565837887845485814896296127399841344272608606187245545236064315371011274680977870446409475828034876975894832824123929296058294861919667091895808983320121031843034012849511620353428014412761728583024355983003204202451207287253558119584014918096925339507577840006746552603144616705082768277222353419110263416315714740612385042584598841990761128725805911393568960143166828317632356732541707342081733223046298799280490851 4094790368878687894930546955703072619009502076433493359106024545086453628935456862958531315337183868265617862273637169757741830239860065914816164049449650117321313895747062088474802365371031150898427992754426853277974311395143574172219759799359685252285745263796289612691572357986620573408375766873884266405990993505000813375432454635967504844235284874701443545419576258473564216198134073468541117668831186544893776979566517279662326714810338643913 7518659467300244345005449953997423723287124948347060440634716063258306498297955101095418362350303094530973358344628394763047756450150085075789495489313939448992161255255977014368589435858775263796255970816776438001254365023714127834679261019955852247172201777237004178084194239487254068015560359983905489857235467456423905858502167190313952629445543913166313453089390620467843877850542393905247313620129476918749751910114723152893267725339181466073 0008902776896311481090220972452075916729700785058071718638105496797310016787085069420709223290807038326345345203802786099055690013413718236837099194951648960075504934126787643674638490206396401976668559233565463913836318574569814719621084108096188460545603903845534372914144651347494078488442377217515433426030669883176833100113310869042193903108014378433415137092435301367763108491351615642269847507430329716746964066653152703532546711266752246055 1199581831963763707617991919203579582007595605302346267757943936307463056901080114942714100939136913810725813781357894005599500183542511841721360557275221035268037357265279224173736057511278872181908449006178013889710770822931002797665935838758909395688148560263224393726562472776037890814458837855019702843779362407825052704875816470324581290878395232453237896029841669225489649715606981192186584926770403956481278102179913217416305810554598801300 4845629976511212415363745150056350701278159267142413421033015661653560247338078430286552572227530499988370153487930080626018096238151613669033411113865385109193673938352293458883225508870645075394739520439680790670868064450969865488016828743437861264538158342807530618454859037982179945996811544197425363443996029025100158882721647450068207041937615845471231834600726293395505482395571372568402322682130124767945226448209102356477527230820810635188 9915269288910845557112660396503439789627825001611015323516051965590421184494990778999200732947690586857787872098290135295661397888486050978608595701773129815531495168146717695976099421003618355913877781769845875810446628399880600616229848616935337386578773598336161338413385368421197893890018529569196780455448285848370117096721253533875862158231013310387766827211572694951817958975469399264219791552338576623167627547570354699414892904130186386119 4391962838870543677743224276809132365449485366768000001065262485473055861598999140170769838548318875014293890899506854530765116803337322265175662207526951791442252808165171667766727930354851542040238174608923283917032754257508676551178593950027933895920576682789677644531840404185540104351348389531201326378369283580827193783126549617459970567450718332065034556644034490453627560011250184335607361222765949278393706478426456763388188075656121689605 0416113903906396016202215368494109260538768871483798955999911209916464644119185682770045742434340216722764455893301277815868695250694993646101756850601671453543158148010545886056455013320375864548584032402987170934809105562116715468484778039447569798042631809917564228098739987669732376957370158080682290459921236616890259627304306793165311494017647376938735140933618332161428021497633991898354848756252987524238730775595559554651963944018218409984 1248982623673771467226061633643296406335728107078875816404381485018841143188598827694490119321296827158884133869434682859006664080631407775772570563072940049294030242049841656547973670548558044586572022763784046682337985282710578431975354179501134727362577408021347682604502285157979579764746702284099956160156910890384582450267926594205550395879229818526480070683765041836562094555434613513415257006597488191634135955671964965403218727160264859304 9039787489589066127250794828276938953521753621850796297785146188432719223223810158744450528665238022532843891375273845892384422535472653098171578447834215822327020690287232330053862163479885094695472004795231120150432932266282727632177908840087861480221475376578105819702226309717495072127248479478169572961423658595782090830733233560348465318730293026659645013718375428897557971449924654038681799213893469244741985097334626793321072686870768062639 9193619650440995421676278409146698569257150743157407938053239252394775574415918458215625181921552337096074833292349210345146264374498055961033079941453477845746999921285999993996122816152193148887693880222810830019860165494165426169685867883726095877456761825072759929508931805218729246108676399589161458550583972742098090978172932393010676638682404011130402470073508578287246271349463685318154696904669686939254725194139929146524238577625500474852 9547681479546700705034799958886769501612497228204030399546327883069597624936151010243655535223069061294938859901573466102371223547891129254769617600504797492806072126803922691102777226102544149221576504508120677173571202718024296810620377657883716690910941807448781404907551782038565390991047759414132154328440625030180275716965082096427348414695726397884256008453121406593580904127113592004197598513625479616063228873618136737324450607924411763997 5974619383584574915988097667447093006546342423460634237474666080431701260052055928493695941434081468529815053947178900451835755154125223590590687264878635752541911288877371766374860276606349603536794702692322971868327717393236192007774522126247518698334951510198642698878471719396649769070825217423365662725928440620430214113719922785269984698847702323823840055655517889087661360130477098438611687052310553149162517283732728676007248172987637569816 3354150746088386636406934704372066886512756882661497307886570156850169186474885416791545965072342877306998537139043002665307839877638503238182155355973235306860430106757608389086270498418885951380910304235957824951439885901131858358406674723702971497850841458530857813391562707603563907639473114554958322669457024941398316343323789759556808568362972538679132750555425244919435891284050452269538121791319145135009938463117740179715122837854601160359 5540286440590249646693070776905548102885020808580087811577381719174177601733073855475800605601433774329901272867725304318251975791679296996504146070664571258883469797964293162296552016879730003564630457930884032748077181155533090988702550520768046303460865816539487695196004408482065967379473168086415645650530049881616490578831154345485052660069823093157776500378070466126470602145750579327096204782561524714591896522360839664562410519551052235723 9739512881816405978591427914816542632892004281609136937773722299983327082082969955737727375667615527113922588055201898876201141680054687365580633471603734291703907986396522961312801782679717289822936070288069087768660593252746378405397691848082041021944719713869256084162451123980620113184541244782050110798760717155683154078865439041210873032402010685341947230476666721749869868547076781205124736792479193150856444775379853799732234456122785843296 8466475133365736923872014647236794278700425032555899268843495928761240075587569464137056251400117971331662071537154360068764773186755871487839890810742953094106059694431584775397009439883949144323536685392099468796450665339857388878661476294434140104988899316005120767810358861166020296119363968213496075011164983278563531614516845769568710900299976984126326650234771672865737857908574664607722834154031144152941880478254387617707904300015669867767 9576090996693607559496515273634981189641304331166277471233881740603731743970540670310967676574869535878967003192586625941051053358438465602339179674926784476370847497833365557900738419147319886271352595462518160434225372996286326749682405806029642114638643686422472488728343417044157348248183330164056695966886676956349141632842641497453334999948000266998758881593507357815195889900539512085351035726137364034367534714104836017546488300407846416745 2167371904831096767113443494819262681110739948250607394950735031690197318521195526356325843390998224986240670310768318446607291248747540316179699411397387765899868554170318847788675929026070043212666179192235209382278788809886335991160819235355570464634911320859189796132791319756490976000139962344455350143464268604644958624769094347048293294140411146540923988344435159133201077394411184074107684981066347241048239358274019449356651610884631256785 2977697346843030614624180358529331597345830384554103370109167677637427621021370135485445092630719011473184857492331816720721372793556795284439254815609137281284063330393735624200160456645574145881660521666087387480472433912129558777639069690370788285277538940524607584962315743691711317613478388271941686066257210368513215664780014767523103935786068961112599602818393095487090590738613519145918195102973278755710497290114871718971800469616977700179 1391961379141716270701895846921434369676292745910994006008498356842520191559370370101104974733949387788598941743303178534870760322198297057975119144051099423588303454635349234982688362404332726741554030161950568065418093940998202060999414021689090070821330723089662119775530665918814119157783627292746156185710372172471009521423696483086410259288745799932237495519122195190342445230753513380685680735446499512720317448719540397610730806026990625807 6020292731455252078079914184290638844373499681458273372072663917670201183004648190002413083508846584152148991276106513741539435657211390328574918769094413702090517031487773461652879848235338297260136110984514841823808120540996125274580881099486972216128524897425555516076371675054896173016809613803811914361143992106380050832140987604599309324851025168294467260666138151745712559754953580239983146982203613380828499356705575524712902745397762140493 1820146580080215665360677655087838043041343105918046068008345911366408348874080057412725867047922583191274157390809143831384564241509408491339180968402511639919368532255573389669537490266209232613188558915808324555719484538756287861288590041060060737465014026278240273469625282171749415823317492396835301361786536737606421667781377399510065895288774276626368418306801908046098498094697636673356622829151323527888061577682781595886691802389403330764 4191240341202231636857786035727694154177882643523813190502808701857504704631293335375728538660588890458311145077394293520199432197117164223500564404297989208159430716701985746927384865383343614579463417592257389858800169801475742054299580124295810545651083104629728293758416116253256251657249807849209989799062003593650993472158296517413579849104711166079158743698654122234834188772292944633517865385673196255985202607294767407261676714557364981210 5677716893484917660771705277187601199908144113058645577910525684304811440261938402322470939249802933550731845890355397133088446174107959162511714864874468611247605428673436709046678468670274091881014249711149657817724279347070216688295610877794405048437528443375108828264771978540006509704033021862556147332117771174413350281608840351781452541964320309576018694649088681545285621346988355444560249556668436602922195124830910605377201980218310103270 4178386654471812603971906884623708575180800353270471856594994761242481109992886791589690495639476246084240659309486215076903149870206735338483495508363660178487710608098042692471324100094640143736032656451845667924566695510015022983307984960799498824970617236744936122622296179081431141466094123415935930958540791390872083227335495720807571651718765994498569379562387555161757543809178052802946420044721539628074636021132942559160025707356281263873 3106005891065245708024474937543184149401482119996276453106800663118382376163966318093144467129861552759820145141027560068929750246304017351489194576360789352855505317331416457050499644389093630843874484783961684051845273288403234520247056851646571647713932377551729479512613239822960239454857975458651745878771331813875295980941217422730035229650808917770506825924882232215493804837145478164721397682096332050830564792048208592047549985732038887639 1601995240918938945576768749730856955958010659526503036266159750662225084067428898265907510637563569968211510949669744580547288693631020367823250182323708459790111548472087618212477813266330412076216587312970811230758159821248639807212407868878114501655825136178903070860870198975889807456643955157415363193191981070575336633738038272152798849350397480015890519420879711308051233933221903466249917169150948541401871060354603794643379005890957721180 8044657439628061867178610171567409676620802957665770512912099079443046328929473061595104309022214393718495606340561893425130572682914657832933405246350289291754708725648426003496296116541382300773133272983050016025672401418515204189070115428857992081219844931569990591820118197335001261877280368124819958770702075324063612593134385955425477819611429351635612234966615226147353996740515849986035529533292457523888101362023476246690558164389678630976 2736550472434864307121849437348530060638764456627218666170123812771562137974614986132874411771455244470899714452288566294244023018479120547849857452163469644897389206240194351831008828348024924908540307786387516591130287395878709810077271827187452901397283661484214287170553179654307650453432460053636147261818096997693348626407743519992868632383508875668359509726557481543194019557685043724800102041374983187225967738715495839971844490727914196584 5930083942637020875635398216962055324803212267498911402678528599673405242031091797899905718821949391320753431707980023736590985375520238911643467185582906853711897952626234492483392496342449714656846591248918556629589329909035239233333647435203707701010843880032907598342170185542283861617210417603011645918780539367447472059985023582891833692922337323999480437108419659473162654825748099482509991833006976569367159689364493348864744213500840700660 8835972350395323401795825570360169369909886711321097988970705172807558551912699306730992507040702455685077867906947661262980822516331363995211709845280926303759224267425755998928927837047444521893632034894155210445972618838003006776179313813991620580627016510244588692476492468919246121253102757313908404700071435613623169923716948481325542009145304103713545329662063921054798243921251725401323149027405858920632175894943454890684639931375709103463 3271415316223280552297297953801880162859073572955416278867649827418616421878988574107164906919185116281528548679417363890665388576422915834250067361245384916067413734017357277995634104332688356950781493137800736235418007061918026732855119194267609122103598746924117283749312616339500123959924050845437569850795704622266461900010350049018303415354584283376437811198855631877779253720116671853954183598443830520376281944076159410682071697030228515225 0573126093046898423433152732131361216582808075212631547730604423774753505952287174402666389148817173086436111389069420279088143119448799417154042103412190847094080254023932942945493878640230512927119097513536000921971105412096683111516328705423028470073120658032626417116165957613272351566662536672718998534199895236884830999302757419916463841427077988708874229277053891227172486322028898425125287217826030500994510824783572905691988555467886079462 8053712270424665431921452817607414824038278358297193010178883456741678113989547504483393146896307633966572267270433932167454218245570625247972199786685427989779923395790575818906225254735822052364248507834071101449804787266919901864388229323053823185597328697809222535295910173414073348847610055640182423921926950620831838145469839236646136398910121021770959767049083050818547041946643713122996923588953849301363565761861060622287055994233716310212 7845744646398973818856674626087948201864748767272722206267646533809980196688368099415907577685263986514625333631245053640261056960551318381317426118442018908885319635698696279503673842431301133175330532980201668881748134298868158557781034323175306478498321062971842518438553442762012823457071698853051832617964117857960888815032960229070561447622091509473903594664691623539680920139457817589108893199211226007392814916948161527384273626429809823406 3200244024495894456129167049508235812487391799648641133480324757775219708932772262349486015046652681439877051615317026696929704928316285504212898146706195331970269507214378230476875280287354126166391708245925170010714180854800636923259462019002278087409859771921805158532147392653251559035410209284665925299914353791825314545290598415817637058927906909896911164381187809435371521332261443625314490127454772695739393481546916311624928873574718824071 5039950094467319543161938554852076657388251396391635767231510055560372633948672082078086537349424401157996675073607111593513319591971209489647175530245313647709420946356969822266737752099451684506436238242118535348879893956731878066061078854400055082765703055874485418057788917192078814233511386629296671796434687600770479995378833878703487180218424373421122739402557176908196030920182401884270570460926225641783752652633583242406612533115294234579 6556950250681001831090041124537901533296615697052237921032570693705109083078947999900499939532215362274847660361367769797856738658467093667958858378879562594646489137665219958828693380183601193236857855855819555604215625088365020332202451376215820461810670519533065306060650105488716724537794283133887163139559690583208341689847606560711834713621812324622725884199028614208728495687963932546428534307530110528571382964370999035694888528519040295604 7346131138263878897551788560424998748316382804046848618938189590542039889872650697620201995548412650005394428203930127481638158530396439925470201672759328574366661644110962566337305409219519675148328734808957477775278344221091073111351828046036347198185655572957144747682552857863349342858423118749440003229690697758315903858039353521358860079600342097547392296733310649395601812237812854584317605561733861126734780745850676063048229409653041118306 6710818930311088717281675195796753471885372293096161432040063813224658411111577583585811350185690478153689381377184728147519983505047812977185990847076219746058874232569958288925350419379582606162118423687685114183160683158679946016520577405294230536017803133572632670547903384012573059123396018801378254219270947673371919872873852480574212489211834708766296672072723256505651293331260595057777275424712416483128329820723617505746738701282095755443 0596839555568686118839713552208445285264008125202766555767749596962661260456524568408613923826576858338469849977872670655519185446869846947849573462260629421962455708537127277652309895545019303773216664918257815467729200521266714346320963789185232321501897612603437368406719419303774688099929687758244104787812326625318184596045385354383911449677531286426092521153767325886672260404252349108702695809964759580579466397341906401003636190404203311357 9336542426303561457009011244800890020801478056603710154122328891465722393145076071670643556827437743965789067972687438473076346451677562103098604092717090951280863090297385044527182892749689212106670081648583395537735919136950153162018908887484210798706899114804669270650940762046502772528650728905328548561433160812693005693785417861096969202538865034577183176686885923681488475276498468821949739729707737187188400414323127636504814531122850990020 7424092558592529261030210673681543470152523487863516439762358604191941296976904052648323470099111542426012734380220893310966863678986949779940012601642276092608234930411806438291383473546797253992623387915829984864592717340592256207491053085315371829116816372193951887009577881815868504645076993439409874335144316263303172477474868979182092394808331439708406730840795893581089665647758599055637695252326536144247802308268118310377358870892406130313 3647737101162821461466167940409051861526036009252194721889091810733587196414214447865489952858234394705007983038853886083103571930600277119455802191194289992272235345870756624692617766317885514435021828702668561066500353105021631820601760921798468493686316129372795187307897263735371715025637873357977180818487845886650433582437700414771041493492743845758710715973155943942641257027096512510811554824793940359768118811728247215825010949609662539339 5380922195591918188552678062149923172763163218339896938075616855911752998450132067129392404144593862398809381240452191484831646210147389182510109096773869066404158973610476436500068077105656718486281496371118832192445663945814491486165500495676982690308911185687986929470513524816091743243015383684707292898982846022237301452655679898627767968091469798378268764311598832109043715611299766521539635464420869197567370005738764978437686287681792497469 4384274652563163230055513041742273416464551278127845777724575203865437542828256714128858345444351325620544642410110379554641905811686230596447695870540721419852121067343324107567675758184569906930460475227701670056845439692340417110898889934163505851578873534308155208117720718803791040469830695786854739376564336319797868036718730796939242363214484503547763156702553900654231179201534649779290662415083288583952905426376876689688050333172278001858 8506973623240389470047189761934734430843744375992503417880797223585913424581314404984770173236169471976571535319775499716278566311904691260918259124989036765417697990362375528652637573376352696934435440047306719886890196814742876779086697968852250163694985673021752313252926537589641517147955953878427849986645630287883196209983049451987439636907068276265748581043911223261879405994155406327013198989570376110532360629867480377915376751158304320849 8720920280929752649812569163425000522908872646925284666104665392171482080130502298052637836426959733707053922789153510568883938113249757071331029504430346715989448786847116438328050692507766274500122003526203709466023414648998390252588830148678162196775194583167718762757200505439794412459900771152051546199305098386982542846407255540927403132571632640792934183342147090412542533523248021932277075355546795871638358750181593387174236061551171013123 5256334858203651461418700492057043720182617331947157008675785393360786227395581857975872587441025420771054753612940474601000940954449596628814869159038990718659805636171376922272907641977551777201042764969496110562205925024202177042696221549587264539892276976603105249808557594716310758701332088614632664125911486338812202844406941694882615295776253250198703598706743804698219420563812558334364219492322759372212890564209430823525440841108645453694 0496927149400331978286131818618881111840825786592875742638445005994422956858646048103301538891149948693543603022181094346676400002236255057363129462629609619876056425996394613869233083719626595473923462413459779574852464783798079569319865081597767535055391899115133525229873611277918274854200868953965835942196333150286956119201229888988700607999279541118826902307891310760361763477948943203210277335941690865007193280401716384064498787175375678118 5321328408216571107549528294974936214608215583205687232185574065161096274874375098092230211609982633033915469494644491004515280925089745074896760324090768983652940657920198315265410658136823791984090645712468948470209357761193139980246813405200394781949866202624008902150166163813538381515037735022966074627952910384068685569070157516624192987244482719429331004854824454580718897633003232525821581280327467962002814762431828622171054352898348208273 4516801861317195933247110746622285087106661177034653528395776259977446721857158161264111432717943478859908928084866949141390977167369002777585026866465405659503948678411107901161040085727445629384254941675946054871172359464291058509099502149587931121961359083158826206823321561530868337308381732793281969838750870834838804638847844188400318471269745437093732983624028751979208023218787448828728437273780178270080587824107493575148899789117397461293 2035108143270325140903048746226294234432757126008664250833318768865075642927160552528954492153765175149219636718104943531785838345386525565664065725136357506435323650893679043170259787817719031486796384082881020946149007971513771709906195496964007086766710233004867263147551053723175711432231741141168062286420638890621019235522354671166213749969326932173704310598722503945657492461697826097025335947502091383667377289443869640002811034402608471289 9000746807764844088711341352503367877316797709372778682166117865344231732264637847697875144332095340001650692130546476890985050203015044880834261845208730530973189492916425322933612431514306578264070283898409841602950309241897120971601649265613413433422298827909921786042679812457285345801338260995877178113102167340256562744007296834066198480676615805021691833723680399027931606420436812079900316264449146190219458229690992122788553948783538305646 8648816555622943156731282743908264506116289428035016613366978240517701552196265227254558507386405852998303791803504328767038092521679075712040612375963276856748450791511473134400018325703449209097124358094479004624943134550289006806487042935340374360326258205357901183956490893543451013429696175452495739606214902887289327925206965353863964432253883275224996059869747598823299162635459733244451637553343774929289905811757863555556269374269109471170 0216541171821975051983178713710605106379555858890556885288798908475091576463907469361988150781468526213325247383765119299015610918977792200870579339646382749068069876916819749236562422608715417610043060890437797667851966189140414492527048088197149880154205778700652159400928977760133075684796699295543365613984773806039436889588764605498387147896848280538470173087111776115966350503997934386933911978988710915654170913308260764740630571141109883938 8095481437828474528838368079418884342666222070438722887413947801017721392281911992365405516395893474263953824829609036900288359327745855060801317988407162446563997948275783650195514221551339281978226984278638391679715091262410548725700924070045488485692950448110738087996547481568913935380943474556972128919827177020766613602489581468119133614121258783895577357194986317210844398901423948496659251731388171602663261931065366535041473070804414939169 3632623737677770958503132559900957627319573086480424677012123270205337426670531424482081681303063973787366424836725398374876909806021827857862165127385635132901489035098832706172589325753639939790557291751600976154590447716922658063151110280384360173747421524760851520990161585823125715907334217365762671423904782795872815050956330928026684589376496497702329736413190609827406335310897924642421345837409011693919642504591288134034988106354008875968 2005440836438651661788055760895689672753153808194207733259791727843762566118431989102500749182908647514979400316070384554946538594602745244746681231468794344161099333890899263841184742525704457251745932573898956518571657596148126602031079762825416559050604247911401695790033835657486925280074302562341949828646791447632277400552946090394017753633565547193100017543004750471914489984104001586794617924161001645471655133707407395026044276953855383439 7550548871099785205401175169747581344926079433689543783221172450687344231989878844128542064742809735625807066983106979935260693392135685881391214807354728463227784908087002467776303605551232386656295178853719673034634701222939581606792509153217489030840886516061119011498443412350124646928028805996134283511884715449771278473361766285062169778717743824362565711779450064477718370221999106695021656757644044997940765037999954845002710665987813603802 3141268369057831904607927652972776940436130230517870805465115424693952651271010529270703066730244471259739399505146284047674313637399782591845411764133279064606365841529270190302760173394748669603486949765417524293060407270050590395031485229213925755948450788679779252539317651564161971684435243697944473559642606333910551268260615957262170366985064732812667245219890605498802807828814297963366967441248059821921463395657457221022986775997467381260 6936706913408155941201611596019023775352555630060624798326124988128819293734347686268921923977783391073310658825681377717232831532908252509273304785072497713944833389255208117560845296659055394096556854170600117985729381399825831929367910039184409928657560599359891000296986446097471471847010153128376263114677420914557404181590880006494323785583930853082830547607679952435739163122188605754967383224319565065546085288120190236364471270374863442172 7257879503428486312944916318475347531435041392096108796057730987201352484075057637199253650470908582513936863463863368042891767107602111159828875539940120076013947033661793715396306139863655492213741597905119083588290097656647300733879314678913181465109316761575821351424860442292445304113160652700974330088499034675405518640677342603583409608605533747362760935658853109760994238347382222087292464497684560579562516765574088410321731345627735856052 3582363895320385340248422733716391239732159954408284216666360232965456947035771848734420342277066538373875061692127680157661810954200977083636043611105924091178895403380214265239489296864398089261146354145715351943428507213534530183158756282757338982688985235577992957276452293915674775666760510878876484534936360682780505646228135988858792599409464460417052044700463151379754317371877560398159626475014109066588661621800382669899619655805872086397 2117699521946678985701179833244060181157565807428418291061519391763005919431443460515404771057005433900018245311773371895585760360718286050635647997900413976180895536366960316219311325022385179167205518065926351803625121457592623836934822266589557699466049193811248660909979812857182349400661555219611220720309227764620099931524427358948871057662389469388944649509396033045434084210246240104872332875008174917987554387938738143989423801176270083719 6053094383940063756116458560943129517597713935396074322792489221267045808183313764165818269562105872892447740035947009268662659651422050630078592002488291860839743732353849083964326147000532423540647042089499210250404726781059083644007466380020870126664209457181702946752278540074508552377720890581683918446592829417018288233014971554235235911774818628592967605048203864343108779562892925405638946621948268711042828163893975711757786915430165058602 9652174595819888786804081103284327398671986213062055598552660364050462821523061545944744899088390819997387474529698107762014871340001225355222466954093152131153379157980269795557105085074738747507580687653764457825244326380461430428892359348529610582693821034980004052484070844035611678171705128133788057056434506161193304244407982603779511985486945591520519600930412710072778493015550388953603382619293437970818743209499141595933963681106275572952 7800425486306005452383915106899891357882001941178653568214911852820785213012551851849371150342215954224451190020739353962740020811046553020793286725474054365271759589350071633607632161472581540764205302004534018357233829266191530835409512022632916505442612361919705161383935732669376015691442994494374485680977569630312958871916112929468188493633864739274760122696415884890096571708616059814720446742866420876533479985822209061980217321161423041947 7754990738738567941189824660913091691772274207233367635032678340586301930193242996397204445179288122854478211953530898910125342975524727635730226281382091807439748671453590778633530160821559911314144205091447293535022230817193663509346865858656314855575862447818620108711889760652969899269328178705576435143382060141077329261063431525337182243385263520217735440715281898137698755157574546939727150488469793619500477720970561793913828989845327426227 2886471088832701737232588182446584362495805925603381052156062061557132991560848920643403033952622634514542836786982880742514225674518061841495646861116354049718976821542277224794740335715274368194098920501136534001238467142965518673441537416150425632567134302476551252192180357801692403266995417460875924092070046693403965101781348578356944407604702325407555577647284507518268904182939661133101601311190773986324627782190236506603740416067249624901 3743321724645409741299557052914243820807609836482346597388669134991978401310801558134397919485283043673901248208244481412809544377389832005986490915950532285791457688496257866588599917986752055455809900455646117875524937012455321717019428288461740273664997847550829422802023290122163010230977215156944642790980219082668986883426307160920791408519769523555348865774342527753119724743087304361951139611908003025587838764420608504473063129927788894272 9189727169890575925244679660189707482960949190648764693702750773866432391919042254290235318923377293166736086996228032557185308919284403805071030064776847863243191000223929785255372375566213644740096760539439838235764606992465260089090624105904215453927904411529580345334500256244101006359530039598864466169595626351878060688513723462707997327233134693971456285542615467650632465676620279245208581347717608521691340946520307673391841147504140168924 1213198268815686645614853802875393311602322925556189410429953356400957864953409351152664540244187759493169305604486864208627572011723195264050230997745676478384889734643172159806267876718380052476968840849891850861490034324034767426862459523958903585821350064509981782446360873177543788596776729195261112138591947254514003011805034378752776644027626189410175768726804281766238606804778852428874302591452470739505465251353394595987896197789110418902 9294381856720507096460626354173294464957661265195349570186001541262396228641389779673332907056737696215649818450684226369036784955597002607986799626101903933126376855696876702929537116252800554310078640872893922571451248113577862766490242516199027747109033593330930494838059785662884478744146984149906712376478958226329490467981208998485716357108783119184863025450162092980582920833481363840542172005612198935366937133673339246441612522319694347120 6417375491216357008573694397305979709719726666642267431117762176403068681310351899112271339724036887000996862922546465006385288620393800504778276912835603372548255793912985251506829969107754257647488325341412132800626717094009098223529657957997803018282428490221470748111124018607613415150387569830918652780658896682362523937845272634530420418802508442363190383318384550522367992357752929106925043261446950109861088899914658551881873582528164302520 9392852580779697376208456374821144339881627100317031513344023095263519295886806908213558536801610002137408511544849126858412686958991741491338205784928006982551957402018181056412972508360703568510553317878408290000415525118657794539633175385320921497205266078312602819611648580986845875251299974040927976831766399146553861089375879522149717317281315179329044311218158710235187407572221001237687219447472093493123241070650806185623725267325407333248 7575448296757345001932190219911996079798937338367324257610393898534927877747398050808001554476406105352220232540944356771879456543040673589649101761077594836454082348613025471847648518957583667439979150851285802060782055446299172320202822291488695939972997429747115537185892423849385585859540743810488262464878805330427146301194158989632879267832732245610385219701113046658710050008328517731177648973523092666123458887310288351562644602367199664455 47276083101187883891511493409393447500730258558147561908813987523578123313422798665035227253671712307568610450045489703600795698276263923441071465848957802414081584052295369374997106655948944592462866199635563506526234053394391421112718106910522900246574236041300936918892


9563562993377947392209785110406721664480320531067091303759488434578734398473707653747404793080903438244339705830532695856299847938304808177975089019323978819644747281348548648563997367907690393025212859195095945330313797518529818662620117612609532139263391827182563275830591189372106915776438388722784228529009122612514080523150812027262477370667161537297962365171711830918171522805265375933737558128234864296932266784713386959887691580950811504993 6337356905900842892007054825254617689541647107780117586071432866240448305523642593775798552448696080726730590765024885140814761891799989629290795406069165098627507033091008866119931836534781106895005532321232310409943156697571284321105892729075626652983068346126881743502763445734873130812787853966825948045024450899453850626222815657206656259080710600907194741580643428961731315157060558113998960765684277239548120624654927922466441086739301705267 8406522475041053604323508688152543821884057815229519878956064995606982745328922732703853758452092709242946673468959337778965806769512859044905739913079487625397989989468534486708427632847644098046534885512094360642889373837105351559587950751036819995860092479405220515488077774998306131379026412827371575710612817362497836474502072277561952126743273581685496119698882583112616695052224021881146693062574953847086995865745998878927868473871986438379 0480463746222816126871276345113094783166175997075950853325746028493740010436450345565804494429503453183381290785088833385837869771084982066510206279570766983344517793452718037691141020755747743154293290326295321149788262035159874125464228843952777954992895647543471058985851590055084900569690369399463805412744078272079588120610950182666750528291004286440115969091560260245872117456045510940768469797368274814597904045521904841801154566347833534380 8815341403723981788190775763064723383684807661718788752544407318658305011864756320301713983390078987542441102627774925945578726315160874870250480620381626062841567542997110084572360794368388317756971160717747601977362998608470922561241903344303868060751607783650278916662836093176759695530149368127979354666523938986549220821261327763789820294679958162439870593623917051175070504939244293712287520721004790036952035305417470268810031314275311744562 4640735452001303351544161161284530636382206203182714120347105733305706095610419997744129437897233361952936807116294649741746746061619442841957715064212449115406707312213842064141269671545664389159471777969493519583468433678322141303743107342917437343763544159073773807768335545452204160755832450014127128997410149470548864724341589912960922829862407455160589149631021000595871347192097972398368312801101752643186861118351701735867540649265791513740 5821629724201883751029772027692280780173235365852486610373552463605197417587182349087381977451996041351604688086082725590610482822257576746358191662903439070547597034809044004304333317413461423454127456779872589232409091510873059202427900149673701513477215142571480238781897278909931923211885180400304976289387311988687633977056903190741451762975055829507905515712897726034354672225187519472277750347806298881580276408830585887321140899356256544526 3256262930428543993328255032950289369907770549029470796220083902932214441126573820895685434478522535584373126933754793765994306991005699082156031450819886494389488679597736520237763805269495558714542706585174744459646823526941056851933737004914486237606597957437429493137628495423747696298423620404069903223286254828223354201652282912884434215751270602021538317845218564841150669394364364463390329462869215001200331737223159459937024404665464401070 9546377862736676904564259977586034142337627592585363126437089730757955269968503132069091830679132654203064003148245598623926575975731775912862530894654125166228407163370149790267384325301619010137297886469540342569455726305220387629423264806499623816308550031265168054478855681997310896795755442683922048513091902688240337712017786398604639800256037206069295346015367351300935166490475996904153484422840649464357839627395979697011999599689705500713 9802671431539123914611613581834068087605346672553050422397928096566221091111847789650335190031281930814047064787403671555521140340703039890722323391594235126529717112144915912874696964544557092280434733841013858874280507251493201836765498654426190687675030397956939024213437475259202844493707032198240950852874392941278159586475430366953365464650438122955385696018708146303600068102231935356775884221706627177875228953937497394498460688195899260579 0426632428181883297682570878308901643540546417536779752140149169816134993044910420427417299073183796985131245595860639919965966899610800504940072963970989595175746349501131523954054363842477157673057968997809351123101270006068315601347056168842081862105906584385468535226530994080955068645181964310455005698528640369722726449640722091072805065651759005363319425718826190168520911094446230493872762260130096650980181502161161893149917554486648451019 3964089242453518586296685358807237025208629039637513544240841676796106254077453543971872022038982925881504881746263214401932459126384677645387821490032187360528840161581467693409724342496695967974551295215247541300383824175967755422515486890349846758461066315941988121179713345250927530701408561426350301527147370879790229663568300178799028808419389392249188448911767008038038758887801697701113453349115348021065850875700255173632568820097595527487 1225357182551697875315095569086898546483794843035187061492313573402963136527912761526230610431409239565352297493261018023574144940020107575292488958929324580351889348336232266211070472227951789643113533222151331112813026996570565423666607124273606758337678351910125109944370304629076346614964495599673032125852284006812886320601384391535239320911579060473413936297323492759180894233656526093948313364810290643586311830825965878597847150234490787476 7879956674248520510401039997571039402206306917347420208969917560052888987367593966293674017209821954183371282339328624773171964386256653145512699222367766777081986434967998415260451946404590163957896049279139291043490275683817268404705229814089067131491526250441754527101123578680129893682849339139638336607814229179455434491680970664913188453781202579621552321288398882948309602541545158301556456231328450317418576979979910789556567996082529165537 5861223383807006921957963941983742611767676910050735750147104127391778359634794411592416074096491892386416231443150984337999995741238608455687906501796604659040119009310649145976455087441691709361597805467174658993017041375390468254441984930697739630336143300403226370441388424564853196000910240359148604341956718891985856156554657750890144317771286164568621900128459460742160742957104583140046201246390110210193236887462318746390639051846090824746 6122225868317169890636064025404893508750600193538323584777977777184156692711224004455167705419310730388369438797889046242175900466660910401636227006450671672563298135619169577585613333903982775996522509904038709327898622159549437997063064807096494177080058122705593309162118440046358937856324358641910615400682047879016214044578771739810295260717300099121797113754243334882266618671805934535003597940626101694558948798528738239461925927383005865786 2369012719296382659263937819596877763449192781383915273468510317128350116775412896963401763368803347613242500654794483551600242312566460801078670258603760993908004517562600906555541309840427357430050066877433135282061707299033893705322254670042058896404652393614283079185404169666783240709559587709423200941561095553433443491385438840861082486242898596197412565717042400678767123685935372271091567040606219434726020409941395472013175524491583459442 7491919291350235583440418720697434588605383370185897657206225466863899147406171384409111405424448924181252805873784443759903370271443232078520464193147559475831429194169719062976979044988213080192587590485875701028049890092764667431817419312738798791908667056460174141045183654736392112018312726421352990750753167418604113908507917404417265800928896640035085618299372472136843413149569295704019813001606087541279574664190317973325939240210741676702 4235351742211828571516183297681422260730902963694871330880778555666323972833422527065650730725189030903950229751455450814134444281654143644104921750622706436286101757171120483665814970582463578007550456264537446280525932841567885798506901058045279756262857220830478354366813133031723323813526470752577952330152891663952865431899957317457801678267281460222640381899566937994842421098248974200882331114001341044095160930831309054655031595551547397748 0221462406761105271613757998628354396966578355245670079360497518767958500434785944448348747345525999632392588201044528789576723339110852081379948423471531895261281875108905121354654969246066557673451857177405113980900507493228007094056920655442879928976809138532882392312742649637907197997852490903046095850203281301188191897987538612770509831126796867211781006094288603341607408020448532441414457945472105469892916649981941599750811708399758552531 2534793070723771948237383367606554185021133373575357116049840886306962649890151155629827792230433349844936783915198562685043252008447985546296912629978831302936306463370450331552637520404739224157072857779988029635328900698400767818969756354021766194294424753725649845722655067873590934057238979378191460803198271139248049794110049229814317594991993103280897957472533768146061745433132644892480370134626426692631734244357427051774756506755634133360 0591783137637375920389020426517169186542244841360946598636267754333221729097280677212181229450177664232716733109192752337724245059080858927565564344115484438889532132702856054060064352403401177439426383149269420366767731249233446046152792228711747373206820737950407753807024875139736974872208079418362724579267158605875684373825696601528845015936360579976487955466689796317276414458267140983930260584443731183219527357824299238053046097925321759529 4376466967178599565547975260104811160900192559877031603692890535464219693617900985472078551257259753257687803418428239419301167647127802001324490541706871940608748642509924900412437779902567236238752134487546868018057002677165904571741675093585374663278466147170222912775381648935814037542041316317966204626016830058358402780842508470610285632146763492164415596565399512441115272252098855763180788086283744439537336386628913943990459186935629799316 9132074310849123878269670817379838027600732835237130570383538812019217807455705392131250482197669340639428023453350969805452191964164969664205192232229332522498099068094382986082393386867739544526736321944401598659040665286702065100494097867130245089605063631147497897543186327376379320227953001087717684402618218003859090607702934597864093296951123385326149456558596771175442461946208674178988143477802702378918386547507367250701231645954210423036 8253015499272923049706500688744552908893664655148193848056374554470319717186422720965870630049834366571830309458525285629892546132607901723746233601382089476404721767102107836353063283918528942630970835241842688066639724543519498745949527236882351106475938370531361494523326299006061354420207900800784435918514238109540624635928800749174723260142829150664735646949149075313040411948746127584251725422993376561913228344136159688451230509792290809347 7806100012024307933675460695671886784758902916716281510479109848199687950537574761034383928929818347559135337283428884922853939659501645942296849021635769846036566677068849790614937895866238978513950301955252071159479162430380571339104412351279771742589499718132089939724094576305043817654202377493729292366664085826356304701889428471366217962807794758141064720396869005733588378323839385156436769291095321263095302372341887763775951325585719886841 5635114346544492134618362582001773911196356597362091748028951071191193121616150493566140019891540677191474060450200848900785210448984071558724913181424123745314739095859285491926195512752815404555548948605304395183055163865296351143585542678957884332247030322398462969403700363866705975518962282166849472155167994010237260527619206175045604966371707626384595300533444387899443285436630146414207515026765299871484148385924204684351505285892648354129 5999641906383622255006162029851790807999551716142892743322162806963512162902965050345455980024292038066113122499875748777814543334957813655800830045879054556552375964308994728294156584689806294311272597554693021887912731035300216864227633661031890511086335963986070974737419552934178507801365337868776791151473833252513002371910235875886798039385529704998321830389985333735331510345804434025730422758682609723983422315017640803327317622631967565989 7729718394229716522776196734085734441374759147793179333989243599405813960322813465924785587565505751594286116131767395528348150808518520715479514392667287510574413867697189020877761195924593592908638396962005768650996293038181454912807341809720403203633667664994439199362641452271450735037059076093857524400009474822971362377215926308360221391588559094614074069763012970865696906676244218618363552047279035331753093607797787984708023902185958744878 9607452374905628374741893102680628048174338130019822127770609218470081525232714598672343785431049783904364930586076453575602598382816254098496399831811297188143863954265440828008619305729179956888798818257244092308607770862635131360946309767740997028472766829666854290845405202291900303432247189820499382480607516387279456689408497366651622813369488285833953135050217053611181750210101696093737288217468389261806871887211712203206733649831281254572 6927631056482587901068575208080633928751364817583758109695596993384841991062692241136561171129547967778123862393493414008547053784583782851512327987308840937357211004586036545449453018681073293761108679782828034366133339780538614863594371635008771193119559848021828992677797694091393084926892397161087516259813646427951911630339179612919001760953221655734911037471209457900418602899221551175915683036249471608650518632279742956136519830351897142876 0223750716059990468522702848242025700962993827914781801540664169179259696502306167496772478419474142009242977297138883251166552227303389644473052704902414772756471540923768066416528226112216605519035104953216953829995701741146510299848982516439056990939459868204985525831287644568389843421093658943105114075558384927893699740950138919882124799162098883924355873655545237536238906410726631365733868871501437667657439282983207346131403949526170953084 4896580056558463095232963187124518366166304277498527362023490678591557693622053472426111253263891430252893766737392628606460991664258399987464743414163952677732246933313408989228213523671609562825134923485926804073551815360719656739502706913535763434376744311724908455377670326669884144911480888480132493025843817701187856663572935398781140646588369417283873657084337575104479912359736597243445574271838473362051640986039310219592121122572034365100 1396389064945296714205608908617698288316388283825229707658189611895457298258107339454017277497834540687764110778004407429296639807958026689312946890891500618618418921853041643322169492782133921182771902167520208059672627494630028053887779459621856830743842989256463024089063366760647389704968736267734714319346437826952783760286146583892789336232361603686965888599440717090143857650085623703570747288123004277647474703779463200055437274736584724026 1839025081850203994131095039708124812210776128324595639956407303784228294941790417991353653370609295358041284490195677174363265587334302844014814990754651032818138782109072143398374541509572180872332163931411848854048824761331564993540303113131971438856668338021766683608295032360405951367759271551656796802958597338036134406930781375730116130026579702426559178634319436264662301868725879630575563660782899695363498145223886600730147718791986416066 1439080577725519244870708291097673554991120061231753618478131765439557295038545292365366941334856217878926154740456150452308853118438978335074806994480208158304780292913950274218678869198017655546818144544307419110229272193186444074979031725993977136218099711176146890001377240700923484996330832030429732196758278940008466523507115511183481032014483529474488518863241330396067639585766239272743538647655332592611391601058972069491216041943843627692 2502040836018348118271585534392555374582362825523726253314359699646366678255933821009175987444402718522512906425157453594796130527189599488847824353172256275413109599850442774753526388871189264977071705502201056823253071154389564758303122551162876396883514326272862981524075588799596209804394659688932951904490105741914199814985879000053348961206916311175468253485829007683953766264145205273936078651380572241506897185582776538952151358565897640730 1488111133738692458889098227602297339512441350751003872589482066478544539290551160492546556830179223635263775546268409049478003726847161026495088262069357484631643968978962700833763037430175619457389078848104243092855236310298355174517454466065297670819947432059951652915960087156521154612967354139573277516784434848645983391375848562505546017507922098835877193386013948967514833763802139034152904283626453763745808782815379047085445759676142103772 3612329619640229202289514696881144705828930980357001504103694841705472869227519704469469729203495196976621766414362032109874971729908144000371573928189152840831974229437336774778258709218717225298406930555693522583678625387769903710832987797950516916962995760702662487725611153210245228717970309373800563354059293108901874004957513305645755468645881925344372271704841107604583450525724291768442356100139456682456604288000474072926191657544095336500 0544583331333348665819727492760012423238225171846893069408572324615542392813887422027661693797935663441045037115598236757714312491279623141150164528880440942390051734645637803629395327787801636044104275918642025167711823591081249478448954880725855125745496079956918012971317205403842490960873636213513109752862098622426241874243578376772912641791880137675200320563326189241018616513034810244006856808606110481129427409009375274857858586840922973157 7936688608619964429073615749053303451074679213921393573414693782678405331319923544330346071951552057006610011693010611464556489168050091450055613784940454369313485910618419330189545486385219860080820040286332226857792865947499006936075105780234742015035317737300836494989167289350909354212097520747272504366618800613349590930611407110464599244759717542401996540730654084169735239250415635500390264400292275155191086294136723600026941207127811308763 6531615224433516226691901231017136295013316980770097670312259233409954235276489844208910924390275648161700407217392725660242958371557106716854141871300357131023054472593770645420643730283814784191021868821846656713832612826378069753098860829066330396698468396246747688511450649131518615524629479248111598731109079771152980588092092858162277065275677719539311203573194334593434733729518994157214722761903678004308795904799926642428196201630098883714 8845043980122446245560266040861613319972328497876159317126814004045056189668690984708239413708551813261996376889702124152313781873313001560112199565703541410653535638452439655642672721743450531708970862034765475867412814640719792280574469540684927959945904582090187317658661625178733129693572624876301827480530656002946241810151431318690240874938411242158215083730741283373100322266839576907350698817682754848177304995391310318465327838386562671747 6001806278875804925400887840392798564649645155278927345020015410031319050962710809628895237689828726513914081945116719591666318188533731279822794780963841863308123249343682732708847168484082306510680498401989966141848682192923712432262932844248302361017983910042699040774479919083761021111239606725071929979313651770673164504798623225519797029925665315101596604596690150887068882982527286405989514250476556464386139713909302025719458558252713927198 1132775888695544629206052026876752213679668274687758745287607786344913826995634800825441441318253472049480142126543298296784668605437790613389102060765389746783799090419822642829171356980043472466696993015751149537152043740319181079548689432406229094586232624522096675744952856601646578736884246540265604576973290012958378742017115100574265974925332868258662570245837811521822012775760787227875362544176785168184919799494976491000369349095508194502 0556381122496479676624965078580232712368944622866979631971539024990109911767205329659201024327415836646285103519400541457190714863882469446903822456883885007824410392501635971537484905694524560531254037917603310165347750019986495805835536614207169974117331055254042055211077318581045894610462735580709471466835287835222442439519510959648019339972822544123729119753352333978820050032094830778066283364606324667100180087066628897715761318039445308517 7859979679161756236424579913187479952951873675602067243360786278316446550471333425577456220329705837065208461481461803279556572311289137915061078782367241706315742790860275826804832820482530595944865355305335573608943668378778877908835773316581566564046333631178965577553867451359654743792882443277617766529977537884432122626758789612663833068438490058005776137309460432457331415978761655537226301616423353451002374635368298942478242558064807664336 1805237741563140378933712699900811546084081424058692844640874238912457751936646699463735915844119317795008584806528052045138617897232991096461177097629716988054741486404035888392795004056809668826825267833258753583516005057945853148483777029676183263606491366056471185080491635911181680573568625676757483627962595423144408426869444178084654590010983008324701273276732518629652810119875667425123718547191741964461099638143692252764876865242964332848 8026710488044888015591064476982918336443256383798347892249924247347347492558557293151861103453413733567227462578276718755128522961571935018632517217599994227794412512769491665964117645331130767839435875570151126833978807782308932767292196739065650167909884959899971836201837724669791646815888400401508326413390170244028639070088310664906834976762880088097131577264334164705251536471773066139272240563257100139729989909559374773055963634856006159849 6125351831074504282805991011356152764613718732307405486443870951037623912931744139267996447473236182136331185858040699365837776065584149533283266028778546968943002292685310193430198737058717358218098006693891250766257084746595062899184683469499119620505628810062352434005024075121256597621835683455225766840491652515707584146144132895209700930687290227163705638590610592169694573513122969929258356753188344521095375701735632618166442459183071917325 9280537351848183098722945626217254044418986403975038451360611100621071808868929053885565380321231977664500797880892291390719718321553376607146881588861466593708021811848640949124415780158696473723909595858031173549396393423239812188385832226906227304369154796477329036203102315846228211866082858960816909409000618964421346173446825214338630608641076491303096303860615612269477567270566164198322661282955940541852670099389441814526699815121965396719 0513843135365503213138068242451734889475925031241924841752557403818235113902616355370936864688471015259866820062966604332671588470284672528273675136369158934985721514957696957393793129333387868587015586438472121908813119471337087338232750005623992374477172103479216899958700150469805895623651885426829398566671272305833174739467989387917984475726396699725651509335049449623932989411838095115220273859361991620893155937352131938012702984818829682456 9246640158910245224083340735294723767660187190835662573439468354704836224454619937129219945521607705226537983475106667694632555115664949116807052305281730869088268238012941254181467305845934358127343340746347109810169733784511370003614666147779737566767622118782539423603706549237225664751927002508248888604062234098115451133342239017736841135991533723731846766340507156896681938103585480799073996134538888268575672435045918997400691044704111628786 5267920106161324719998448237152334997836375230143135132826955395290108649420581860439615905305825975400157347529974982723095387057721000539641886970487452897359156879270799441658104944268793902227820026173884246389592211392638749541141959433002708467142370681281377822984874389225801960673229557664622256072650083204373463689206974257310148877783281459700550621125297094395513482069706780920457890090055635993193030074671042570179184746799520164509 8538151015396961735455277804306267757948771097991362593662234937064837059816841914409008692838417581369607702626526373984217927518655855340018024947388424795076359369625165815980054901107970726953244886137434993884408366146859209020138746292972909384539568930915524703254564948483425584353927500268398089195124385714727889228818004727979105941649371664175676509443374654097289014406328130189143863392806334434942400260228810471699972553393957076410 7067895059052416329022129176157072028133796306498598823224267102982642645482279327154804587649921241321268182767230903475595793031158482489483014173171934310466356199829342266084524197727430008947575190644364250704011573813177948095995339269155798840054782895365239563674165729648804634630573673711721580999020989445373325540664924455565704797720791458123045061888066934773161154921352859808111096403564201032065031387832981444308563872065793894070 5623279586874460852840698062839012831994040317536981729101193027421648744601861963215944684538075570987221296475842610580437101441448910748813376672138354541424787136666538718207128484761707002802307713986200152328528467498051716009417700848306078163074067412915857045857980914354160929061349459709688925710567910055675290074750437994633821119211999009122153965563172633298735935838666500189702103768105655391258112742565036589214291019193567740079 6661271382307140818828418649325456700504789023579983462966520539034526722973679711222964757638427953370703079415632893117466348996286910518604722726888778758797953654811330971852577488362549950780896238311682394650511685470862613640217820445276226218509468771458466676588999479371028457027858288649455781921024708840980548840494289202758632513512032768369165509333757568774231103616106683832158080256433346454271722024956218060593586057783683982546 1822364498335419919081817549239621687105280495142246375891201136159799843803455389874368637941643003051303788958312792484549868399065860064078993352812785194098401671972972706993221339071842095517824752068026846361653977165123457434030443246614781771199610855372824309171126351950119153810332261700960781979229460355260187876692362124863624885129035442839737923251389555064014239130766546753811452440247068376528064142487208913451379638599944935160 8677107460143274772385102847494666363346194172301607736297628897725128300258084687726530151682029250873001346219923156538719904106055074193036339018444239787442338499826069676057020535368456464272727034894392366484590024597949473948604166711335717028120922680527815688335313264331759029946538574852184710972047718248056721561923131996627637828206706279778643822558087274035538875576372258299905067359154147149474372649839787057663311505334211612174 5340896541521554977462478886291183035260403687328220250708935308435234580815071956958892412605287571839649630550766286009111672617530072817388845881237359853726929926264266600217297690409322916645780080286157310501383405996052151802023374674932941095769139999676638521753746488507214642276836486091831973323639215924903900069678881210112974635837340525868785445702221462087368587279664145301762633541558879405907321222539467073782654675608107464960 4180433957953872113306464679928612294857139338563297616178508911558276611979023379998663577047496379682239935095795450820550511189303477935702443035283044283470241059046122468081137539970742874343512072417982710008293319137141928877140989863705462711361421706031603887715873410756266034626034693205757463632653061205961474109678643663281284892462172769906044003564831372701718432611076286907062962876782483372521816784952087018738888352668188068856 1553821029179384688125975922387175756873776636521727918293598889124812904849996547644596555459515319230198673421439626905245337463449860371792720542796816889295558794575534131465881283310245574792805020086669571693957780153414390677074688444371997229473142096243098464505318539652190602671100605662171450565239616762915821410039307333892918625670333714472417092407944822081957934969811552492557325408808831648195199484925188597971817916507188649753 5369431957636602624261722924254800560595721748153559340925382832433344777942345089465946829548015616400884023550373234965498786621710766801062510274472340547773872282337063244223465713099833535636179045129664535920772793879392700954660146105091802732697555135713654909405170986914333834373538622395662531670508132212346736878144276185478830585005810785155567880769397324212208730661826200908305041506079878672078008638748314710467962218043947575563 0990862442443828090707516360392136097396719349408198200518930846341841851377586942138597002519235721035235978147565628370064989358061942774783767367165686044012425353942546083747346222496082982724724021875373415104438842714089303290396631705985272743575722491980439640689369083307046069033634037611356692720080172060165258701662092465653183217835903483184668496336231773544630393379348923795838233801483524662070768884177564682572717136191483552894 4036115796246825347099957785414816484667357356113380319206582213549678296294583794899259090657150858589924036877724709560225206030410594547223573430761992020038703424402223490949671809511947981181231766216132812657418887926717804023857800559852923256156882467651635904834058800448384582302419984176242039750282144203323781364695612918160908807052269274478502357943715614285496103309997013947721460617450078824754170067917818813373073553878679601012 4219243417398732897632280986762293745343728998117259300822232462437598540018372660873832647120725544913064336449951001947825445255425611985444689633861923341088611902366362520061671773407268444876708707863399288518785748868906955952057560806553597236255486657680659973002696144997913863949137643343951178186561697245750119555271398766633102419936496159367342333676593518995108210508545586590240452439501495865709751688017729800819922259725289161528 3264328713301912072026225055993021055200593642720672067436580819591983894686241507538027516566228260425584487236963423152737049647360124729374705823518946377728760858627139523599906922325870359910709275360771787312754815094035127013817079487040027946364336884277169240128264044475383002168060555973991115327567430425079168966493653461066490303392645479826245075275297035511702938954939260502611673280508063619113504150387225535480524950307259220832 1299167699393857896052191904022659329689320152805385584883267673657568583799428685543148848459878043199371078484089337419779080033863696659632700048007534107331302869582860135928766135088569413072689527062211944465709013500028507817008173296936069944780801165089977469838327533544622311789004142445612565923619067137782218830990126205038713863746110754713824333342606611191124996043119748730035578467538558093194053656414387240871593070280022336202 4034209266924841036541392460325281513910602580690086792469478464151377425304908113337485925659032521084378705836901803059338532970010969600087425044814184589259856965345569808272371276255400483792707641017020870006758524443257752645790361826803605262387899668756268684575871134948261702787264207740532779178396605930246805376125287836224216318147642047643334565869242915619461741479293032672745331987962759051058255643906412796059960516294105583577 0035365632428567139724330935998617848544097181817255447779140932095918405016499843861280737887188167547887565056631963197673047058648946240459492697664532851091987443373512156644888145132509782997998568283018302927181265875799749152594214260663844934761823669436130100077834745045443839405946382531641746962167963754039491521160083553404587300703416744768853863537241759119191257302962875769986698306028450551254255778130491965735370810975388980514 4982819585172096328879249759668785855762687283638577142823352346656795892694854891954487424195222854027581013272572588484604654951851622252721485896972726328951526610074191959717832883659455976857057726284785595448837240757916288363148490647791455348726575585011194226486996243910900959484219505011828545702189874103457183898179048636464908296777315083677699733551507417008122025805388524519536398345318761778123182923384516149201894678720217480245 2815919012422558651698747259021550762497491226737659456330761660211943484032397991440702488173434330292725710928657389894240649561810909797654985118424771133900728809299016301869411421261170343722496674766825988818337774891530013580023146024260472055275799319899409643161144298528316114869897317486423082626493416316845278016222869452176524878906995560991510960158794169103884595635966852936125991245729283769357494996000637454051029331252353719421 1565013315475373628090714281577318511859276331001448478115773051572774116363217629955597106437427871640408298307104630541915599371481539161255478112643743890397452120735757677775074211505082981008573752383518383575399332029759891578248805041207059046440732276884830874353451226454706269409754445136975725708915057302324257356727210851684706739011137210182805804603224791660073832691454159319829243254337464860496339653422481729383254751114037593843 7780558100267902359338479895865486078741941416884073043417349690424069174289582911338815739432277101561962477635519024021712746862782472197996762662900919176955643810538569264018591476166954319407769348965559060313034157909445519756029662487545487909111753269937093712638067225675146306074023344598314820578077855253816934364805356807945204538688872214580520228137165269820116250616572973797480750029723392190975012204947494170065939296729602873876 7195222550630864385036022864184376624009174719032833908399536747468613101093275450853701032488164563575489558603679918936112978761908356737312274823781827018531064263096134724871436054931890377026133291202074118570203965492336859086327290034787222376598941863189523397575264482623228467814741678394175878779284134112230198805548371919662085993112969783033886516758544622791340538447608394235553449033163300012475799652761685263194532930959627313146 7261926618198321945664800489127240421657304136383304222664897851556264565532197114472973260582132148615280100972768015104029896520206386068600459816142852374999120852093472923079773503015339059776478342890747487781517348157362688287288473096086418866453032947600753309358538027704926007328843294119520864829711317593752534438895881425554838517329528360113779153290113357598117475908082955904750657658456860498951986993050662506017097078329876063046 8160095210972977875136018632054589557818005958757171911723235091578713751539912551505260695947605933157635090917977332083361368071945515640749533035718842256369317118343973251605736503774732145350056359563826247493638224705836847521426072791995525107455130424433833640549397003333713488002997859465754494276518303412111970210299873361991177647930047649326491521909917772362558052712725779928418622127220259472957836424156951838904261862931949850239 8088279018227708670870719353980183576382804721762702614902491846340252361295645126001797544961312208728483738833193857402018908281767850298505262156335275083393941014555472125637636854640790946476538165508050017967373743140990894748416914300650811821039900941917142905544287434869177808284127163283349333738760189805192382363730219765007029919984095395364081929393544844337867252570777295959613871007157921472183707580415005441349860049290749969893 7903488102082792506930057423601746771263982504447987947755138368875388820775721206353195865003008391065447149075492797115572184609015539457332518638981285824687769598008274176555499255652637871847498870632914943908030741726036758968025487183739999619682932661224121706771339713788092520170262301471782080063916213598205297385505558209594033326470891561955522356638062641257479134638253749259912880143126144362011718100610472258584185002863415621156 8844185662028272766006553624341653186172705470460182952332953648960573330745306473007739458174055622180102965869545542962321362680851935845002587357305866651956174463718111344775636102931642292999771284847399247914997524697574616765240133398871189935029199507259403541776788784275863173386202123143312232454999521022646419170590206372156364870441042698336333313821695884831981209369368359190411493162347872763662759215456841070241740529792569429819 1498174063952714478690511842343371955926123191937579062117858090932058847948363057956121560105651820752164895293647504997836425968788047609259997018653611113136048448104343137267327149325176406779591282704180928409930214809574578663493779227121375537125494983646132191054790119508054816377823175531880540483447456823482955282130638303595464797553133860371316576407833408859359457376719674086252518097818178803698601166138834712999153771123834154528 7404899564690282603006885427634518962357355461815822221407196786684310268265573811519493713161823492530436547791887277303957729166760359890682984979275326445793020562500419821581783367975832458201670334401637519436130793606687706059615507458187300740588554185707771293765395461112355201773745267536502771236010262637114085024937545199723881184972004852954076053757550486334985176039343403658952960860734480553122955335688214567118057604758841942058 3496338454216537702022628873203281426271924191134698071535062364060488010610176139643065506664667145977479275127501313346596764639606994405703118605608781228063289678165765372750629672835762639748283846472950189179856048249198500799160923239976671964767833012638465080880428311109850255466129686185565035001236106852974356644656198492092110126637583119546240112661948930083828438659999992833337948765982135588393330975965394351687477025420380520337 3382317893878282543047736859273772357478886566858736092568691056377446851131559478673651648492178603892046920573921373965976293426617993875988610557138473901586953800144003377394259635248692636896090870539526251096127290887376798222410747678488299026259214172065135443271991645998333033382050970236703791891297771139000217964645568170138089418258462959876893635924393798037012604370001954537532094758565668626186913776932365553855337366401811426040 1171263453205372512446880839250455380642547662809345060391086151194883142464773935945361134626325397903053106155154047570431835806988891168508827835754062604700813348942775641988110461503391081966974360385607326708715608776658858910608960720874715826970169056266871992681584833517410241095060497613332210304683200931629481966641786641089259633540386292413015247640415195327618247072352789772769577454314914572040541799531857883749810850505715767111 0581585216705522011002403121471715798464585433248907341098761099295649676156544718806244284933719422274740449837985964755841334894107426083336152120775019298015129465672084211550763881645988966176464369760328924324510530298250512242680703731212808393512202255408415132029479998057513768649336556761678499471334926956257739078483718248283155679298197287786862903631056068580099072224021538766147136448019656148112453886271654233428875619797920485573 0192999750041758818622035508435269374224183477542357560534672554956154189883817856029267690850613136595288039173555602456879717723106032174576049759502322562941963790630937955810449095876213591677865829539303065765309230704398675706257606714270638526055475959525321304780063261071076808321621001457946409776926800691390719372725319228526274289573895041376854774592960335922726252666683521707031894962827245652845824142546063037280407774797988541294 6353979992464746913355243372318304535384890808089315251813576848527285891732859174645036561200688294705032047169041537686780019293050636695778550885505423698901222980877912670610523562973580602220182943158073555219093758657747362647369928888127978293339349986977352324137599315546363119298207065372747860725899731206930627210401572394384260875603932638706392902219030858909877722019855938537268814793228829223698259046430933978816522998597111438879 1916811255637498313161109319061156325528926120586515985149397612705562408767671406059062759367897286320465589407531927159129511701844375575853523697820603460308111408561622204290428905287093487193875366819942119678716034475116563217044041605351341390173136689463887385553138636824336997598597061645706267041304591264372849891483568904556090934810115809231807301845998408799090461574931098614313315919784060635683188419505707596210326850840753951104 6071367743150631865568117504568429109859360948634686959367227758077306072883798814246810034268587441953320342225922259113156871855129884383997718184817757527652868727478679975609559814433269798023224692517480084804373540267386844464825094568371986966198330889858783525793232810047849800001659240729031466028150564724110345203157652765771714505108046030512975963903369048782270839013310400538514937353749729516134897226397902119889634448662018819029 5769295043464723057845265200580679906453900495542748739603331115133434232393928153928575524189254275336899367076736032707695340715397783176932998580029024738091222270247003014973214830993493324188082111825695862329465185756368975416357468959866026651728710637317821154407328308409582293717686280368564515915257032902756903685712988312781187473459607417310097884731562838649486193104350166181226630376959372676458853838094304945302303026801421097550 2503890721484246009339875439915383842137754597246409868737926602794166204708663284387662736608782721500359892776517074454770653839619602834310285238409133872378563979536825788370583048947266348134821317190888339633672412315363972952037995614054202652355733182260536030151610767270161366775347202108995240601901907310716711572131531313991087346049948558879305557329074866756924991779147777627525721533153059191543757640208556243114944537254595680970 2564757642444230904740701449387200931485566126738641899425494931363104759618933034909499307284324090098660429647764160636212894769517265674169221041267919762026291755853059616058835981509438139888155464739539002210859787185924059647802767889239242804773232416801150880994290751300672861497273785041600155380972786910116538163760299560019987567710528743417964863494875902284345081024845232428506194564649282883380246745314360076653939325316906934715 3411102590915595098099960777108192404340081740190904995224169459367084155126335044683742354082912646538035494169538468719159478644821690719718827904537417589786565396354364174964211383323912726608538295677462642204374861375086965603814411544678174631824157801254897625802405672218165190255256466551041784031399315527349701282746407837967734310395750011676435012323921872173693956157256120962946586125817922599712293601560483252932466059000746753828 9113588769660502304327546441577272041355353431069230209904095882802842492545660922550473678663353597767011475477937895122163950391748837006069208321431310565114032165914971605450331526087562443039751201627044475665497445082910844914275328651257884320143371916195074243458542671276811026007996977327310910874040713888398593020568547705681283700324106099488089120372337515691677129447677010573628517526922673867332490411057618836343343739931740573619 3536907770580699187001103875506825865123396341929847330966787573203290483700569033536216837286915868224849316458641309955612807613543158394797965036457984422529399803252134609728622695362672470762899717796327633461411207041541483053044019675458162359860634665727330574033424675682539988557003842039565097719954100268376282975119707156928778058823190261710147580089737378346499210043057076158595322507336108729570271507431229792031372110315120578694 5818242017418320565151175338128457998173296130009722859113082820909053314760119678185038367530347047000578748360997590909129630344182765505119842942611742125017453108837615277210320916233088335710208577216259509925298643641820689439656908564775124318290301835339510911467513718534246305851770744343216131691304544562072955779149889048547850294942518699230156420482367299678208543277081713993729713647285516236910280943949049809571114798735326336108 6154490921362107195786271826589846454595870090692492488205234351128687386269125293356955656244015333447567162409478118265711559547566993684235624999792277233328567847862452694981303829576715883682539034846167149680141385991940555979179178582819757848123724780229627342713273807017121315934540225441686146416206418549556220175802717174193296040307242855759140374875241255836486847826530579021129301504600930097911328939110209284222126288743972398792 9998722171268024426957043640826917512394728858097663173521903477402078301082500823068674816599291621420437855969070083963431749157040070491113309702304687661585748313508014447599285202072786040624690986245818371056631825492066663392868941642231681397853741745589835502398141347627568661622118636756113454018506123014505064146476620025479372737016911509105700588058385528775155356834613555088814313744985636377736943347307792236920232819512601988334 8531930841391296921034511566461558171845160918653048971195380110248525749893158647233999267453725219148787799788807562673750638723780564697643526861306774761161564030889810722990061362029138553864683684245835443420724906526943131926363064557919103281746224652305086811453922379034699935761819228384117831112734266093171716054723027485870001047866059835368762042349093563146793544370070867604441608093430388964169122938462935021661100210761640546614 5328261330250989929553919275962994627826326321165658743195517335942787247995482872278107931497771103534255438166350502182004755984571947076429678271587726848362361118065924451595282915230181808971672271763496522837506807313174144533509330105586215719733675910516720488567454157281632172593979270182677659278790726975958652444479862784876695394914610177605776036071107508660345575557129623454066377584487731406580502181444145701216138894429425430127 2614399603975154880968417538877870997710531568960577955363596700780699856501195536169958191091853337403661999066186774586536593782895158619216835838537205517181966990029062252442971964776076579212083499798148310842533800664605646546284410595975870105383783766951341441171157658015291972393283182374190724182705562114292481259500862193482545185655397012584064777459094161077898448667987879836035943067050826469850650965071424287984166501330336475959 7132945835690587596970583659840237526455951428415274309347600284805973744511548230400857745381944142354918783809292297831844140223844361123221688505624335418588432511544720643284962084563281194108270588318935428845436505484535633008842668569356364289020276692308486633611829914298726387988068299808612394976329510463591338269125251879466945089415396493327345497299448983629947399175474416471971731779872683943602401052166101498152655416254038545177 9521584002495879879741049524800475355816454411607964967437476718422118358157376737048968165761864668447399574573863895284956651895744786659777819507522588829870247890096406531852047423769523893355012184785996600740896503838595147018040723457768783856075809561645339216884897542598305991753761013232063543253442404886000030908226190037306341848688614387637364941788740120482609505127598633905097702424725298017588263922938707936732522111670579264414 0908543740148530459025037169637477458607191405425694381561170144378884418883091592292719203584129871622866850532460389435650023073416708375186459536802527582405209237446765733512706016011703490806822232723412140846959667332516156575806659024310130320641153751168740775678740603592587886171973634936771114265430484708113330323186633985509494314397480484078764776783277053488015967141016984435669780845487805182319957564073978831770271135643924204452 0333007609764367969990040958549556201313584805875374947256934033090917283239418369219324915186872354773939212756117946640185118001380750102777217130642042532655536114323907882035094537707508434889230102069364851728497612938332579316328040240236622477073584885055861960214818950756889614649864710858464453732949655233372641883832621271178272406932265715707864175572896145338291644891865204955272952633002810498231098573394308160225669817111505642180 3074943611078136138968220487736518566702091978710942722765034706338508550084211709404050825699245756282826278137513327080529455232216084540576543785400717990812768836695374975228640671461534564901126938742671140362151382047758754942856572278533665848729086917495101023758749766072301695185736509057949181869154204951481895063313672323360017919244397594016416771983594510693427217293483713315270825228587814764495406616826606632817385906468170848098 0195630954019100230303837721074832278139011682082582389277936139561206216213391578640790409627777430623945887116813593241244337109448308742299489657270496966891909767872956785683749182662280759470730876390942917918464672898935038166571603238341300482214907355731011475604391076423070499714171792722498893625118537718445653611243536680334158347109999781275045931072949201640040438736891084890000220658968949509883554543303448063469068362642692622526 0480503822296566585644546381725787202422393060316745016053977551655424603074325691453841406677000933481726253378578369549688018197142075830479025045449329434408065470696670920819668718095745182237903331168666010658854646162225136807558072817839904993820325403522221479127873573379240505817047934361116046575203509649920300943063385151557010396543615600425020917540836802510756962724054007061307391483997821549752696200677717461253751774740807704214 6949807246566921031380365590139144631933785249560765128958847039568360052405603773226648488976759864722223687045726002513146533027894907366831754285279304364168449130901482297794441453977670005047645453944199744253400902206497079506577866762562579041678795171932282160484279042228145745555525850110505111853205128248170449340850065111058596796611348054315799010027116370414625588451469531501613765309863467935139830644217212539142104848401806995555 58933864698447097220729204416001744645744857898852191332549713302548209802199209468670551308850411232159894030606077640708862153022528396306106149844929747045128120643925095268393316301653540689292805651871572657874119402174780917279954187411811373735348232049240285444372


6897792756904678571018105939373143881192914749443565221896260286325866365190174536592121863876810777420915836469090916518273980753103066499806244849277475618845297329472713914899726840778589778686560487233057524228571724734436667418181232708415917914786168197800328752421946480119315937935152394174090419098412578099090388940779420467270491534500024860427455307306836472220758930821994452347214521842825620929143768143878021396936399786022126322109 8220773571441294126406537652642854348297069365511680672830614815535006779927342874671740836666020537292204848408702523012585717914569665795239635968627064590372072680587943981340066767014117658125223348104838686771740587973689615599621784654973073934095466043145860154049561577645616734472126427468746140830206387935980428496622472232550466095231768172458636261128483387407650758288956774589588736109519742072321262333556151933824717602181868389530 0679750212076904388381283562581450125007119027156514434627064814950590196996139040560790673726072411292447199477028384835318633298176199947312833144915968777504290327977034761938062955123840138422910035767692969859590544398289266660878010344059670559052076683702101595219513945447731187410723527945608443549466760792882681935676466658916136214042478564279268156254485063166852683275246560027477652412794270534193482805462670281599245391248739375580 9401259197783465336557356259376680876997525746027021669649252998377538196938462547085188615104752264751364891883357381891697121958326810041957653770211921182725665088966824675048666996598850420411916153320898856723809260181428117623447955829428808581369886073727549749121306874374219430148667662596916951953688569117493823196975595579402179388737225151599714054472897083955103654866628196503684868466103927455684143635901777440387565120807714563648 7772844383315635724968367563148103943896809211928233741450761863056577773779414533302578207887933713552328193066778103474487881453302276711598246301467739131806469901714532318195729640171382993445866528104239029204404205030108503722889707226673204164075838352116255472935420977067186526207629467204363364327350566320411252128722589414997628046891485550759736146505117641257930283697453203604650615692381197213251056180613452134381768173276284141810 2164413417024917558436568114547977751958280662844249750379174772362042042450573630609111548402426995643360035301436665975118280328039534210540491910305673142107541302357934877234239073959389300436891328148546882197053482680640613344760357465909065646098009717176995752043755635452168504422439082780834807215680031213805137447557386633580661289825695253557232663073951954063697946913927391950929709929134880148676072714978516827026905071076789657653 0440463362626888722627429312028751738497554214315049989074564612156955425357015201474626587358829154486936716821097263877036692987627033326926764051123565917877363247704611611875283786408803828013634904145085131829558738033657159237554043740366009431266249374473501836940883501231805702551089418469366688303806236043616899868181504628145439937084394672379528195303288606099631547805411053979831739104819179879337630991824007163695359256783586699908 5256828346179992044849215828682554266066694806590558837547674778900630307639773201191626441931231373328223641811934383050586585544982998689911466813117119421891601793736025759632185321048687499204734702994267871276133342376683428225657565015748972028034318032062448495723097390057150931453891843449438283973734515799805156259164322627014186206236944759302141050850281203604910993905368478056021662704636855257274132906042289956351025228475190703082 5327384995555330449578033090259275316352218098898826291159803371125701721767669045456806492230515747468915571710175672403541893506112888730240431443198695865218667607330385490360277460963545019525296534070301597032409851150252930588656719011250832847149680648943813007837186239244681790216217356912288723948021648464737751768189421222071035655596507979484499008271935528147914340403713871720817609031988564587461081099105936917743794712879368950324 7741864858064819679956146436708248708993683951315072030565303007886859820360720669916737616414756654287719353591044521169167692816396364562978340737064788274061834054357077412161383202873787903785858932745536149564461255050554782668745445509088688946927185988949423449507483821850184341303236200466807001917504592628408385053643126768698034026811580709810345898604130841735509956944151799175432334806330732613391399797880003821091327660145496111570 4285802816067516233813538630524295638330950320192878164132492230047611795358249560591453000424644788062130246897865596926292576357402879940135692116755390400269966455602568297236950495909960271709738166616867800483272929905942810296816157469630606061010622671702125396674795138938137485389535175783294513642600693613777744000566993017402011366773178770446945060129226074969110615762076378933450413733651195600329078352359646532657474974352867211162 9807567585108385016069989693586715225964630570091390876287416492541708169096847309548860233298288800101652962808976987723196907421027009348880934455512188188336519784318535596067476350722161178728735639465655434276140685594124259121417078116303080101925876219938098958943050939682518277130330334926648853295618795266446319063493896492797477963058182377606580354022796691081809322672514261428768508550234036395970562141251513762046722444289799785545 4131901372056002945670634038242991780751257244844635771525893472233684526800050490579407659261183404627646998353219893312711732710511293877462720081317263208671247247831036953250571166846693391999383834165301330924772942935847074388263424007013217132097282749479611635667826150715662825021252062763897515665851340604552901092611263816622423668992710649041886270014421128735923939982500565800643250607509458935850072180729322308246108258185874671334 0673344326805154756527611229009421546556183103412687017228654162269075744666374025785058198390337266853912834251138897761037015547059697842843812110416674964236193689840635613876227959545215146892881328239439636612945013878167659092925089753247166912368348275154607827280445182434537596550492568064853230999281451475345509275552779627941424557440525521882532395562508572117996353019567581177443676255097319751155651484513728542407490483808199558809 1516117939219104261909284857816139051482314744553101516159178414599947122390516596944103972729574115833974593906205007758070959676589892496143734348781563774420837499914618345134117857213565765100288216534378838906972299886294622686851956288323205705378942178959367844899972838082251295857374295653148704304032195433016472204581397905745288020747285881031140858798747211863286489844734053114604400480011189647421657199931158890372059003146641812617 9209119408878500667780109991854619093489266918509118998532817580156149634425272742021323083262625378297537478084964862057473772980595049021455501089693480645109743330059979855532033131826917519159195006558488436551656335235079497441486995545934682666761749841931923239198584931429070339724907410433531550716185771284452704556151487208217879010758099459907819034076848455908034852561211244638832388776007725640595058576145061729291017634210620163227 6313357086984161133384335191595521993423910456556597310082316994799784563195983411430563705888413585723243945999371608451544322473332574743269029321113405536052609072416883753354361412870234237825270895382357658516596417328110042367022479426589489542002462779779309893450760213624171370310651327597596134899242700470471725333264227742623475663202251798424952498212765595113945681412700766231548515825735963353826717922669936333918066855094802896639 7016335803063577792061512929958681816023327826828756138695348983385807840486775650291623281022321262862370364711672590911162207449944470337154671719355796034064957218399132431571758689056357820119356227777634216236724756676876172206101521338942884427554638039142982934097063768466511699684549774924842162345498790190059012230711024880588049920820267341521334526194822718040452465922884429554190815449214580890457049392729832168834134299536825867464 1083672846833132874321981230074513031444007683574024462780977013002142187123511884439078142864571486713031627438140533885760388529469050776911243964028442753921160112468485588590871112043313698335512983177044754395273511809456262736507213423867548781623509663987589890781058433372203975442049861899214534394570010766993023334045070623558228321979391210716339044784574064959683736835999610270559810934327545718226581916273764083264919446339254141257 0472789300121814099502881776632184985453085666790070376265770583827317495612091752324760127284885442229898679988266283950867894577143881580967550580114816329510134178454949532484743502461668260490860543498626070769522068457693088810199363886020569081016645051872181500574347274692400456628013524424290432379684768326499597859954187679609888240649742665229584406972977619146264897831510287400669792362033206040445354794419819989475253195717052085531 6177791641077276461392157117740299135555015167097966196524062222914160997227029865408714690791932911101746040120652081190334793350740933967335438106677644251621091064097827740393472409226971399864193240183367625787951661669211485708440347311098577186041438065703058114089652279903370706792777717324019606366905990239660061747596602743647723341713211256406957304300738718969760826253778407616890456503696412101726055110506318058783071771045716789172 0931555100513126248850749712570882776081846297351566606413813185775692321942216169819818338615910911121296406834764541498748925967693915520889997434834825109771717334774849042415704476573657457752887031370873919072182505772993177204212596617789094627810737489396727533366949775977576140133909640059949599124774240582260227674347914043659775007117490687276269345637528762791538610334809869295742898490087041375521603759467876439843626959137289972377 2007314533667335269968366292608565705839038823593831189614763613317043665297644360749401649697173956600232484753127826135116274516934985914972842578011566354011257488383449578205475651348675253533930949298777856682473832247136341278156638245905023073398325360830038730248396399541840286629808766899600543606746374781759738593200109703840094329084825214860785580072030283926248148421073567689436508478291723943135377307833828620452560793714347989024 7754480001573891165778949114366003679354363932067762630211052152101359215469454499705888762836579334060613239110233812347891165133960648232734302761158534325707822596745669263994450654928199905402788150706299036213505045231732501367062439410618076676137866141456378576604420749242292697703498450126514921671769633105167672678488372954900567865723978442763113473249771989060076187591408960730665821513844913456155557115108451321597382911001114287389 5994616239385058360323234420828814504339150737808186319372078380311364175837348751976507933520535426106483964680022831803234766267824389703438282856767409938801224558418282506165887184191773971348424955753553615428351062448328211410756609679699510482522794215870693151868682289065990544542897676834078428468663516950735929005944652517186518412045443271163745245912494051031774974327164330478610425203579403271210384808446436333013715290149884275237 7949834574799875281511965159434402988721491706555591849396373620235346368882181314372081349365898041885261814616685646389742839150595583703947123832173452734821361569612832630851650382152956508420824710834855636841528927797777756366598286215650221250746116759032116542096541470122942838545756721417389929799800524641816847334818021732521988211950351846705828084292711592599970153750974790079509303318805655801013980812298456546816187153857992812861 0376600684408308498397279763700416603065246148266042831177932893558742055934518813264760502991798338271637395986023588785134609267323195158872972924667709763509894677014028229224590936493192519317428596941523665646599511192546858864800103777931630738794443787115163435808683855098036167341177467955250541569632555175659300110987103438333592007520317718713211694297373666504816162281397436919436021979331891137147757928460485105745428328748179328722 7871096158968260415191032160358867794747925929885099949904921648497138544125533916737983269837424487412745470962063371390474048360794157529363363904481795414111734936202604851201230536055436888793862914480787910052555989328252773354359247067399972692273992775653397256696715240967730735176129922142025550653142954908742617053358503331777460258915289378865430766613971869474350204696966875056766378250013366544341201497803953340948430588040808713869 5315898917544323055761484459929712872562076470023808833082557863754480673545385987638085847636506952673628098611990040267981130204610101944598035927435305744929624227377339552016915800533206697551301973113370391256119133054329794169919294829390557267957952817726968793291142577732050021476019969815220206152451794238984581852682797897974405416564805621008330286054730103160503201457405188876198453502969999264657956500190448278241738609540179103702 5463814362445250887029226639233664043519678003566545443642503625079529648921390656484140182736971450214526431646621003738099504185588748963082465740733426300253099497815591421287519705271001157101716377498833787956568653934426611954407741443992487423206042266159771478006548964334962358396221135312572898201355984815657020457482109173737866280253930704465543688974749065847794940959812244787432218660153009734548024696172671294778795194415134401730 1188323674487204478062366370035242586176568380848573688569023709229088212227208341700897912925654354194078268993055731519169901180705018958859647404813904626097073419544942270677540335371029648360620327556173102159143468441553909565909746549927915376332947359960200898026407946829253612778983205853605856186118945140611322242712861116686725025703363488631585717397116032882123866374918745662604295318985208791769279853205968708273206077204908756249 7623985063918737880636107372115907573362989705665746883773515985230620783485667267399450197245706160417028656143126685079755716895080673861961335761307793385665294261178995576128220396278616303669765729274631760052262488130026201593446959933230130444390851414406961294909514351132404372818037803052701614745966697318233961655755091009447720112313016992708211043728483536465802279843531764876043952080736225958640787345819153105945582524031075377215 7432145713447781843098447499918919885723488153921904520156617192555429987533454002381109748520270053711471238979747010158547538626802813231702862012903865851442364486492865523581713720293880175294101022520285691187186079645010876529842532971631174418650752018769292746421061313176203085067906658825606161624512329833385602122519961320728581640702090623127183448482230078940409243916327452408745667813673557003975514278073920034353313212822873286895 4206188188329141890423929582934929305948139194192101543032435674476992430684895495202395456455030650470971258953086410011569687327280575346288820928949980376942767152372469074527687494117376112489070191987929642324749483718639132922040334047627285290480570200588772263597678817471579821421764176643490054851532223351305020047426608426027581114308115877357853681413656836671339174031607056503790852843226782164643593015192070991234338444761974897013 6375189516849863063347124393571993453325119243402486722685096712244422809548620967064207146038923593401068440047536963864975135973583310937832600190925157443192037612293770890557454362847738453351375649811641233689229522888668519991591629961786720819183717347307006822812701860650275302983390146699957479446107026716111602787170650023445485265531804615279803013588943109664382224754397716230467646353180281996449375662371151160519787587083429214674 9800015297141091672570579693615487561571782358311177101359012535395568712745799720175926065461900593796089784619027221814507235879548427149913315039620305124110916504419669755825132181861783569427554061455972705352382673571102318081972085394860182205482689866360286956681834866852454461440840695218263328048760444691900826696762964549075457223692332744166491319556486439945889933877587009880543318639985540493230677615918285928743896057804640984208 9740550683296113972392222269790364697767875517303966644741574726584654780659639564895358195570035797166891226946992715128448647722739811741814886633192899465947060089211318989429677196570486185276861342368815000041723800282976700527792276554084855433348616889849738718678861898732323800424009638640679843517162511269725924658678721107053801531949577164948506298157989469417142820421641655866599072861984938491754802695846196422947793149812238364153 8557038089789007613901032349717969632547196564912274558263541323414243643574594749297927856960776359148472801212182057123722912544332455660534074849518144676905895980695200349230012498661937621085005123644254782643573382132966096697316535354256247308090288177611337397206298364305054086194062218385024498547566872126006763397437315325783835487482440978097393361487310202390453380947415977664560313768110629892140901661232700390050502294761351885912 4106470656031298014608889949278623547812337075637352432127180061053085517170340536033073763018711366935321769842826017611218600635848965341436067091419977924640972114274495469891463555482864340110401472230084740058971939425556775578440399365701263770092330401772015709714022618972549024996396256689084858977504157130429271592893380146276281780424512433461156729170872181169866958713126106655810971551555696334819844224937727899849001691334065013922 5583745253644587113153774964284515400536404218597690932979007200836296202467322396588374131752905866262694467352104426037919315211035606156132717795833242389410113783086245462951409581718941653818826098581362550702814720744101032283856977012126679321464728011596824377110164058829203812229822825505648850200090315990840966980142501599597425610220263183617255711149139214436110185338455682860703157664486057682509194621585069508284940853018066449912 0714286759898668841279064653948357153197916296821916428762691256721694722877436722690746310853419544061133608487163008322078153715481543546458370259485036167470707302758499672313280960162936123357408505167586704703228598724739808647326794039491393791308497363241413902943928457663835198421867634664301808689606921433831960422100947209843976665228225443683042220547014325651194268703971992934248063911831147159679288276590160658481161372294419943326 3769016822243435592607990882034002343509905859139297715760494727077028309575842707091369770437135759020267227121355344973304305067410370544077345958430922769374840395638204885926470438636211199354225500002561144970850527050091628929604984739830597708931412041983770187000638580784426177361278758099551595038466620748481572501821235408254337982027525680745741779553025894681945776460653749932699328882053951518474085147443635682109242501710525863495 3457915902871522129953659591580769737340686493813561483468625939742529349372392299112609535278901474152094619169375233960791800588818378506688578822174089302237670789264905590178357330290498610475662408840463017442091646079276592403350052136975053666580334050131280712427989700062737291525907016667464372456678743256001955542420944533633439391956768045908713309834479621296632581163765466480890071124740281515643434631081445327339715432334544926861 9307448373532903424290227063234450908155379512377571610492712179818535358509941553871821944942708611496926208222831105450526017646944214984796916249383350864389979794372572585034947332112364201564544595832321025867338212082720110236171813291628134769361336231630005551854169945123703087471769347530638094914882823181146014847359176501968305714704713971680541712076085415277906148408154352770547111386619355191825554967376875375655901891589207674352 6148852937632107873123875720648408237375303288464023488292875867457517411964259554732547129988784413376971744782895148060629750159810410965179248737254241586060709263434511221805151576805039523207983907038445590802489767512428111868311223535944953623328051564284509116382532846827690377989405609730496598216774794290605229064271154090759630490750045786694806442407914160424989736396223835534265688248924903094013532275982922676180213994468018996032 0675803429397947950058112356339869727902367019776289840733198614297089945534090372605768223447488692010297648871946187586293421317093272777691651871002498996665855083811335678961748113924008069204414625665382945223391551604594824870277524026560308024160840633583104991593130853947426907323472088411918202484707573291150721245446898526855311599851117939381080209773473817493399988897385653699403875952533621748239471547834800589460393665918892899621 7521047163046603844441237345091038293248389456001298364934173204224321656427582862696462987054943708647463427711852938248043935821601986070062171196591832591807574493655660319057421033069753707322301404429391360729974231482186205712797240843229742225306478470222877289889172044541364168301862059266947810650015772730346839982955110599642751983442090994298239413615583265388406852983750196100267432796083226766089824373992304583819359944552036471095 9082518991662915931963986386099844252455919444237409807650556117505789614643591992556426759631196277837512874653796523866525681695700326964287850720184716605737922725209523210990761127024194913962807481696514943204319306489969675235237780133601715355794152722674404383547747834615417136108071971047308860237450312138900813256243172049768868022829255024334939599178274676959411554430985036164313163944257325967461417580663424492506040232202802946987 3751829312706554137782988619584810935026636452075093196152508201502395128106961883020837877917531424737800666136610712556138095687549097630224818254733695777442501363334650527296241951503070016298234339909100061555024946737128843219723533994529380672234196217016163432924793757445914665771562668285110792098013823602779085249086140613238204702960336142123967891694992342321715288832979939112946652538472686405318731979322677702760178715157112713190 2216836416945329045195204615033553473446978714152244708770708456141208314980110666716520746555367187872873746904987162762468053085758352280419199560732766591756957730028792070628730635622829071093172254124410289965621943930339359793127298249018850599820753028058182687345362620769884288389289635517726997755270892807119838327126416498135850566092974668194143322037636016031702386454010380419337568874559351238398276056529937969463111573623676580351 5756436802079790980697358928950333631027509478478135700064703167653179843748938593199284467970505014658422277826960675919777431422848983462296380957522453292343592235130441203459096101274485891405058274767759110361971874811262596027245866765571472754939412055513362289169042638208357399520615723946451744498991297021106570959449855647567105391013640465590616591177906243645957393460718577711706111845170015454508099885004059315587509512061655456314 6200738739443327439156540822226551667114981361350737399548933917480863741966480932781710026395502591404777519347205269361172155291928948911285123125631052770972349386770893098856247973589327598084634232185162498530503627316455508600244801128794870890218752873453929413161466208814826808614162015915549122041986025984886099100100893552198600427434057310121427340294759435672697762854277727675979540678321549998708026058381328690281838621000610033764 2379198001944237044206333199893214651697433457699128223182611409070898614415408199147374743368164498243252660816669669733619695332127776912977263579843015097108158562779524101403121972539950098548370069915726381749334231984170867848596330912936697738356288707840800239223578231036122923133431387087137560726479553068785676787614086797853884183975085046835092841447196834356692453914539697267038657031729624183897923545368707062910535840958625288172 9281692471046395913765433977510330386186905416278540679671885645231462534683464300203066362430077280418391505048399774639065235270047668220337015691585237701399054126383476484663841179107634163945096265761345248340913898753793488871084408225150247944719876888399200357379260736576854930155343026843848388931402721966820387276849040650786414983954838623991443271003548414285714663675814108685756849749642492058856984374594686574480184934228027958235 6377564388268232624187762216226070904519845932677347735018285436069393524165896011745073761140640689598829299446453818686066474728889919098229601789297804735791247963218691536870365595294443349954251605809083049273594088101251280459106505047664962675822241339331580270942092343548241375457305908715656756767010920950546711178377321047597669794363570249991724776409909961842234225938966846991544188772094653007034437183115728705732067398759578214079 4073633423608496383233359179022771268263032769487753200468018475770539434300795119666775243961591663082780839590538322951127233820755074415307889777628677166251881091187535197330098637717478618815476411602223903031955967898153733333258298360045188973413138579600929777458806142401045915014782067973943636291993558227602367510347827556486627121882555285317825358601035108225814502611204747092401718602564690068461731767990573490110072728768926194527 5883358758221947384320834578633052807557454938289523900598456827291413464323488171485846067830594826014535968762159670812495532305763781564934456525782552293824962657511707494988668765441038270533740898921040368677365604542858451695031402232363375702641796577852081754489246557099240813236655786985264535388801118891932862519259222135566768155760927630615575930662647392608983278347680214605557131593915751341973623814379449788885811963343728292321 9663203357801261130770108572159898202801245270141944055108211091262826167070806274271062080737562374739117901880630391519189825171866613757572759710389811462813209411824321201157828817875559190831284165898101295993972458282885034709053028292225178972431329487897374321507341389531992364509403300894441779949785506114695615294856553112229462352630605156014992464164694165358171790659753464774747518944903388637694549101338475379570124343532832144929 8275732064946005703587974137284730855685002414057806994944420965645454206704067126917703420558935459214751399465865637953244989394807296345359598977325035224253669755202625966190223911374464701515637749468173440379453288595394926777638755908647972478088680068172355853131435632975431766043925383854057568997429850951712778248854066092032655982812701957135642813925406613098387251913882874323038507006601992157068887156531369864586671792836573552565 8627188144014431714367937481059691370932121680624247162372966171539343995336805414569867938971784889101598603095412935298746169109192523809742944551488558318499498594795902426366425548655563314934689356150341488374884631294653005659807467697736019455981528630627612626766355773597675811384216123733145970872986047138417401248888918797133273636262511311334676537629299840890377895200008539399763584744281979857678072104896345990778015426697174567542 6172384022032773364763975517549166533844727336853524966915629769248343626504746198823359455938542388739013641770469453957981187527121597768442511799580716945466861749820038914136757425295199235363028640995847738080667594169715580833542623996679137191811974565095014215741445024655942823086685483454755041753280904924396975773383406920036596269823806321058421168311536080639600030298348698625014189519615977098530989341590691826447462124298360754346 4462434641837589126993823538014384957364332358908803400365035629450989571731821193875360604033750257331182525704669344702757566572460202434358051761798043050015766122068591071191644783678775528755576514955386462900314778433524201822322818628898360499556710094713073625117504656828874933451108004370570085720732275083196736841092108726460308626987012176044090402806979491118396436605218431492307351631588904445480567978322555962857732503063907386237 0333133937948649073559546851796504296661825531052645982451735375632502837394355101805927205309010514290924335273127869001515130558740539553595264903028131275892668785026838027753980878419695424447075982652771476368013445122704646965861601405000598135542660045553041256453856489931603128055964697097277176477513623793186953564285143044563012761042826494036797480293301901344399860928405868810026888328778606907005752229163788459542951127123641629041 7249259287033518121777245720634744414071045798701168348653894086087934642885814053237220522033388278249160655075142849889502673047338689414665771519170670071546284933413054595326178257624745577860528907055681209392136360207948400190453482271750199199850351721819829155537394052447488160840114286829854219815417399461519446756653991108625702661728915721161670861280786442259687806540552408407698092622979890897438864871881241215285862107144171314682 7394151245402315271846416021045875096948375943180736202192937400119027475027176567343594247367066180398677673056064018589905357512300230660837087116869147579133638408623253843492671860661390466843378796516790070950960770044545355631362405135816161738439970087207800572797374766973300019518157166514482156340621818656955569523059973209613527960436084916464544009853402960861674533438096899823943693824949550947169541670641283942451714126019162473827 0866976931180696097101557258147853194625746145350397626055465125435021452414343298249241381217713203403237186715206273592816337441031547104639631117708345350154482594576086659775717391457660958775366724984051724570082595821245485219616437893131098824817003842233206328850043254208492159442373470693012469333391888763956241425406832442961396568624031641284030587825646523428183365665189585503699094325953094250608082468414255314370373906651098967653 9808735874993770334589530194951951702175226452073203602754639413113711611622289900457080284754036140638147708904136189639814679360905829482054185806765374568452152011414513584740042491714183497910852675578692364608405102964056854716291147960516605129860116421892358470677447836979163436922030219888963849015241726483510873673134583953442150224626155336633614834786432335613805300749667620842875753074484767612212952046402684256157402198984963409036 1092184760431288829692663808182477416243214918051745760516527671485956723605854481485440213290753231193378970542137669259894146244375806251615321799734696371796455473353549249001405607436631064741766799857256986302528399444346379930518242598412579835864959062789069536518549591816028252311296488624546624741498780234896199049347281966658307147577253201586835547077836728257562399243554639377454477973382960292239539101363924842457990895204656398045 1217891118683684611173674956595237321588319222476966429594969400736850502840377689062658085002467172958976399152885528712794692079212206720132052809396452263227086822123147580066031785861841069345045525790977739566180123341874179413622157860500783390345912525245404857543632770893637348137625065838802048457015329172877536585102843043037380946458279446317034769613448682880549387474207836072091819669560779780786595574070960443029786093090797207307 4960701081558685015948097534353052729341161714831747339661005175217002301479901086903452297704877598405728629894181021529690074555659724334836185037771505508603301115053176164169618772366138127227871098651734520385737873021661272225806239456342389511827106389993828193946808908917142686787488703236974236982543558888324608458202840234836262358836434932664801755904603428215172195639634953043008484166217827151449459540901179448852595049472655691194 5792036793654037611386749376191352883897654886121318115303047160619686704364428843498822552331296875029163545865426866088946046929370596495128448974048567800358527040399356260489828221525557199699352579454526174074327085989113001429067140022594327469021898299517955344274871811164211742934346618581259577501754135341180155914001252399483939017661752161192300632039269350307440800556485321736481168158330203170589764678232920238182476764490923997157 4846690066268487079269797454361050266597917187256545818722599567184718953968963563982739116945400828677220839735648520196059606726455519342925230681863759467716574716398510375801026645131490589465320117025939029809267215532618811216870595841647293227196915373233155149878813034739889489625427170463108520020308934976074748096952314381448595233628759639315703476429000525190908752531657407924492946317614112816050060433236781492170244718104090002523 5729074509400875419094485013234277377902820376877759883889102242894658630718857836325840114004029582015157277750552204976717418065229681281445359630774683991974361507755608490148304881526622616887549680346283304068496724884583144896108984111641853472467904954298423368792950285053562273808693036290643496106389027342398164443712989675246221349980717909832538537518245143182298170149804714744052082067717348293075742446071778472524594618574890493050 9650979539054225306921236070170383791085714698302257724852517384591456079105588537047066293052686115149625701677756605098715221893119931908608040958932727146520031599118043637406495544985222116311079240253084120858743275083025736046735590502428762009605821782540707253588194242748229061261156506709906900009646228666919350261335698044849903060697708791796420344947066473435831304985932397059589076521205938976976179995460990255750129252950517564633 2819377848179827289216268839791503902841548928484050101832934301693930859769188207609832728889211355169823445644473332530729623985792356457676844465574078818475328003206204091248503790790336969679985756985481175481183866884928262489337313463656209623643601760475628848255746879835231668920327581208311926727387077628308791944164060207462803182215764029456583397476087986917525550317049629196191712150721245277331363754728630499003750245934859600321 1514499284066215825743674227447550106391222421889039120688571499028125033222930101962598793831274820795145746636908690111021310530573875061028762582480472978297597037886652702174411246083737007276409150371333361497174009051602135428701865990605537125909298969887572687800067915869091084574078027399010187258340250270675234927908455645847233838793694839321219370566310273581109630944234629357335874395461017150974841760325948353621751671249004828787 8693443178634077789561343147653044727101587308359186544227533506094500454270943829595234500617950815499122260677053695403470872316703773580038588820185360607740785920309100130736686153320514309483297128610836602524555926973266001032976141119174374276782789747510302954650308104060484212662927492258713195804378325583814279728206104671644545396678275066337611956154718081141066372890445086071121650660339892385555376753205387993468505034921858653621 5611625607737850783368139484509250569703460543116890143456562307724317804512844149902118799309048288989666196447742952614868975745732046817013139309051170561296813362465657670327529978842563672610468451395578761745542614079499278851594193234557306458553637676662779045651946875235905070702902642359376892174112583357143985547271796933471669904524573857657346363234020958011223544764441723301996887594841115885919388026520824126254157759239535571390 0994061925788576243834396708253598508677174520306477125971687162927198110872264071673162031199505749535335078557905805522805676870940035886214508419394511021296641803010250719004143518026258391841696334287108392447011217284273032774701343798411733012446913775974881728083780863283584806041092422086576772875220996324008042994492930498688498984582499837138589166913141159480537977042001597068934711183157338901047464798780815652192644112417536626682 1681770769432381466336419486790863825847134143907867852662542025507987500598344208643353203403385407169700485895423819416463202364499218696935197625148758953644751634449406416198941671134104435014824843798746391600097858007148865413513572346046623479297272831424155920800251034678954542752194241325704026306976946540161354854687985714429486803039101844108638904144811237544371285330823993732836681962313029569185695856627411377033885853664622747193 1672503361104073315657007652071242407975699950151716821900645117887028746352292980881877100729033972992256642113056013757759771901399412363267280845389400319096154214993192613364112255536011836627327838526740198754781876353935733949284710295825287103809975654397325671294875582247836268074527390349037453906581151941957264558587882696188599474918395265496354475713650412286059311783277470431717021755542733811316446122057779146073657791463076230156 9877794279947080006669333908086631285203725804287139455275693441864382832163075424935767434066898429248175407624563484358599789479950735840897211272601098018591318726985820436021544935373422820998321512799675477151086725568882198976906794323199185003456465975468942090858651868854156500530177043477744794386727039309525080717481143880667694404088033700276228922940394954645686946736562765121574442727556185472729709231607710083303276120464400195010 8825543666118384017506433079878960184957256409227026453638384878282644377846764678894521861373535543656377606476678170898450543551146912314274141648367976459749610075175159580739164799319511126936601648584829390733187973916908788195618674358831373515539061314098627551521295444877104580897721910582763398947484910278339169952254377681439407418668237567124423323514823465867649964519452476330870536440687141456832606639769454801930943710086795751239 8911906085980795618977028617046714020263900407552116967903967972007171335597714677918457136111494079667124629229993314776342165412277835748258627534990067921119780603078857495469732841964644872481549238845041687488440326562774709529606774811952785925148107028490709150186522875342941836314061123708587326294024339098198386808979186012746208189395020988748831959202092020419914311024328861840438672146984472180588274776118855314334547759499157081121 5472430488110982675308501879271223606726542472255495116778349951376070493031367598922164576741761560889488299509311427656818795044573907260386601558121381695557713584204354934789536420233897464954927668535362013175286570550588094409771668261877850356569324883700619168688132576989889215377016429415477035280056119484224729851874877749535465998647312837668102316847838642080357150661043760802759009924176268410207319104116864752349250603645638677729 6180495366105618145387474536473562955760076828385002653903382204235925539829328419394494205000899887248918062112870490391300294855651474954344575244822871583406545423074678494274930963470015143263124161298211097657797808646208963643472088059155364232264831264515021605196502658472066706130120493386969922060721205507484698313250445679036197937511451056109940597227061024553164341842315931353905307277364315636726458013226763772668618633479296099412 4327001774495398230432040025449854464125821814920560149218878884850042818418295383774717036791912893763087010427207210527934076159095560569028788415435937041294487067737642712638215283791146308614599688138515495896934947775300910908956450628879874949987918977330055395549969672231130329962237357438567780028847289642133583266974725834606152803712627432217243252933925759249244741154505859760314253954019027327179534824534471181832675337725688313193 5700208316178318579346955506250987414808507383726201448358464003533691270556211958906298935556277917839908857649562403797143088390971110264225897462931766896722340401278924999440030146467922020383042161988077173466473516468109820565844567718498749974291629569527774417095631284596102690145422333953644324790898827529451163209927530749937938189831475679444124595963726257884877982459217012800557580271614757921687730287677241427839045907391273929426 7884385771923968052299403405334707357333451836725155426582639619999309836730795037244868646114937304957612941570707066203289181107238915527538336663817080430330556707275261677419463060608701555657445230874655839612405030148057910614581630901314898861882107938274751304764124868278016019084967844218901110183925596780158884405085393976838736014191230960600868884840958759093979887545712509890277211540144019262217279654656498959921437569114290202041 1115792487312650807559597284727869968278916268278694911524767458519228110865267700981927943533791355350051468985793823713882735357271717893830142216485717141029006997282353232884846219281128940817079740244219054436930380174929970320843401108733211145368423599993209089515669085964915227766722963969422424234188318035210991164028064348473544379832000036280819097685584925611752392977416582041844810908951268364708462474117396127148810193294558673819 4325086126535883736855992025907815396082128790730606533354490598834747010168086963731773732582913940201499232920969270678316759681476696675208077482680711116784929358461984186261721109253221606852538815918559880627768721643818351604955385279364210903131036078162438914712543316537004929543573131191804284196503216157809042520133124856053203608591448176717054976690739276489514055215206092541329165702491817166443720366613685787673325110828590381921 5447665286225246359219175013034284393319549122972792697639531748622320787892026844508352041249612609478597647640505134461645779957974192093941387311276724057940541046207559701574182718191565611832096658777408146769169774837664183860817525478596851524694807752817906293992706525231293089486645014790454710761515539979963895457354995616420964604747459853772405194520424469515511057601494221445985078562898005200150144217236030394428342444870888738111 7569548458688101588473050820293605143013701045069902681581989459515045374857234879807161323689988928620499341347784459648262388689344956413068869396801624022569609725905836903591447830464096918458265475815349450077651607581956641240074336117286666057806409790685068438390865501366034171566121774136535246662924038527316315842924751071820737619974257005266362873424852769709124146326043911646825719384474976527412791288332764753400458797875672197285 0802515877654905655892204714962052521040120166987644538174938761539621762099818669564349377520407867045502757495420828343826527279906640404630855560157935415801838870887714052300577774791013360758346370816037414033581662171052377954778031082878931138989447958611693922813772482097662231537416555187072430037844683873444610185876496624830235355290685620889367050129145033747129770829859205524051878310562165213224612288003475473255932571175091617659 4166482394972913352370543886272408483705528170029629809058650804794954624582240135714158490067330844573881811967445142911521434279392699655622571986439196067753038374686672221703556890842503483294766784150367836819897475626360760561739594959045378728870880119654187892476530782025541234215275554653752784851164219300210400696015444285500717437035400703359356505398651785707006582099804195744951235876447812486104147556590450055377874542573276631373 8825020172648969616129101048127932637456731347387116638770998454206702700296011172263762727267452101811865591052586145338819701289911963847350290174000706806314623013080539754577602872474099097506917882619283197164721284958737918035495590854500617988132119821142982583753056350978991235940544860179024862607671948351844234905871907533729443395924091853528029572010383942096233427756208747723170117527568724101224530281538795845096348579839104519213 1863495690303912564113905964125401943629294949192135307171534484096842071064228228981186402676350716079693504702100231878109856135679106593066007897762553197898250066315156298335443916444925805700780106162803210220195704757986565811680933242300056066489673694876242617241011990759620694346859404061641090571155345453768092327128723539990744359195398397372110133494916569271429930280203147745605054466184575323059017078615644303819701791495676539404 5943560606605070173938931321346258503810731950386744835560194918228051677305768502688432549589089560814199507525651893554022636610084816146203865446477107121879516306983362021407461243273856073300741729085341371467646620823326530075778457801275507872627830161825087008428187745332078797789429648585975819284204996482962042735407338531005469939541254619473472170399527022703577938585129683664406788983746565636135444780666838466976517661499961854398 9623502371767110274089091939958314514687236128713849724206908095044223678551028762868042518816358402616298518072115283322375809709057453569178401938160024396543257825045445196940348840924340857899982771915123030947380554030823155608186071615834339556172810637331106060152649641481568404319462356043630174317509207713049088685604727385517309538084750144865176049756773607833154472292534335963845630215217104987385925310203978958143336638415592992550 8944602780701796227452105550671191316326265279936696359892383006096981600167088134430020391177191630701637780038300371126418241460149870417148056626033849775175603849549191579141792953684959706286329717452214945264364000401168512758738794348666883757228899613429938664023640589448245291242820165800478166941847806366047848381761856515584017460372897821585659083148930651177919857231716476472418930431531999088154997137742072101183319686196849440518 4713480510376244887581817277233442721570874000852493919493398103083199952288542626308518145514104967489642576817203145774197605540116651437193376372188186506524854450399937660922677770747939980142258086621498719124701387469895676580981634240795135703733486839946074001483818809109122785049874225639471028589036178924869455199904917116231709297408195172163625062371420825261190713179187638003738209989415516736290310549402905372537989577370008817865 8870490439209102611278111129355194227781921470074363737351900832947336873223965494763299282753183518126240071189203456588554680950302630425192198797773744326372609289111090052198687553722810530557641476148246398586371897727977619373087670426497044115114128900621261138853060373672295958161170213950300741417661128483328860167367167320358804701580247848646398079995767647079233106445662603373073615899226178752674260135360072952785114473129927914524 5062334029096397175923219795801119146699283960660905462007982374521224503601691041156322195329726954455515182840945395507867404093718532366038779628051431267662740364398239831881760597852813466394695605558118458939807050113575168206806948943855291350882854473482815176097154238595221327308613220412923307765655869279095700478430395568199401596422335959455022810565437799547086244855908003706950156080193072146489726731639389255381599586170220591397 3027090063858841495346162764260442837389125191847819850025498263035851006341034437633407334699031270355830801124354815866116467990470409954792381287897186780109815204978806050476668203662967250936939607313669337472036724300318966620499750652520175471357865734643836467637926850195846151069676536390244748995432199723190611693296228778946122656683064351895616389957450772210945127991885324449376487789040544224233470979587265217693777637079604073278 9702455829538696164126324657549210448122380893363807649499671963486155406090914159497678087746191227708286844605325727180192324631999466767892603035979578118279000471394092171939987407600099970695816344792336051061664600778755939545785813561911797348472427564395444690018537030388994721998308058834058367204730105933716458537773337382618819978607406745090629225548899083443584470718683462839079294708011696863948511850811643813460281234771266500937 0864349808106119251169983906911241127884922501074046700100249875549803524056367371564404834835224610219675040334226809019609191836769753918448889810307693136036846490751851920899807967484952064252815039882199294501631224441929079058217550021246415643878011473635348603231817697699256886234224365116141378358486034572918456459731014580144233910343661909121175141432240043381471464957028036817478157339925527876758136335975360559539384017686767430474 6201122791642138790162717829363320257354064982943159500554714114406637280225906499077297215318483539621059207509481870223099482546729701848378246112123226391943500731777620066954059960374037654410628719241786662420882146482782794381136197446758843595640054338403532921278595748814000737497083250483278575562787738665283977888843093724219594555535436816532937198863634368179075180196127350934580410944655172588496802612101534669727381161498560713593 3184212517820869764413662803131959266299800800499938017991534491839141860014917652009555057429439030632354051291327228528953318386128009002420185920683012455768851599860366708821440361799497576930101581684048963695057071941618192298699854618110664316242154343885744834338880719947667423092554142522046461326333021925412332655422517900396237001187722488012189973986745402327831011155813888762532752346656497928456091175839397247695692295816479170577 5346063017007527431401713140934708262075805563651383657797778566866723143389971585405128381753951728867267924335193242794464042748455722042713703833842824335856314255103756910181474583564146789534508685629018486760916770619988006592305344363957172825088842599663928971247757401309355439247332407918204555381766372353322209351254013248159029890264297425927878945475006549946921212466620662608214349320020805522405722398438304493632828192284548893289 5874022579320820777499212636085911890296466098389588810029238820492462297133229297037751993136100980352670524486853226374478046384325646301000814486291219945715644790099446084293682847965274461276533324488110332420251747386222344906972367553788033995966640307214375360233103696573323152377229874426905668961779628232189871890962510009667381607994856169911256164664511017559716379949948745173586586770840471684474770849909769979447071072216462801394 6275459233625336185844576023868690373404023429979586621889714158804575375650785042610212069743697096921440941134689942630874378569318126994043871459489599835002482339043529602141043479871030683534297708298332077518071528480882833701459951573669234089522074675311090200040877667734520830410725541593900525760346091208140284177420377130700842437158672936059348066492560890600621400735246220346694340437762973714172956577384435940054753577833647871738 58831995725380639809960264540532720562873151122978157160862957374684566542360082900430576533154127168989746228513385107670664275111061263511316160924243466569700709329952178094757112910514811469846816362099491211915737590934654666176085925249964296490499530084958760781963


2455757610398609663567882894550033360433372084655672516489462327278693098950945586309830114378782588321229906713291819397652202572455840081402413093213342095068969419077870202615357580218210512329081352831950915725992555006719879687514630234571315295363312886696129887510461508593563383915070262240450567951168869460511094662767237607237505288455533235047477489980158288045753005046091690215964523830382629210630322585173215675280891358488354854871 2412653274247165752201579356043381984648837766055270265526784708356010243568608832661178809770313606137790936091130872340772096181023901578532920354712719691056747947044146433121314395609675166261128944405036638819340286420485038072860987919829804873133499004845521940657346541555378014662305783921185114327966512426186044783706656942465109697462111066255726717641719632000060679461544447383009587849363123252352851899857198091600068141919186168389 0151812480464347190128400070704117380054024841599367102849240755930396348724030137535199115751180444162615222008808978968333324522000440429731261225161765569424603020753595893240208528924924352707396565138857291831649476344881044603214390876483265516729876219997368370945854939343383325884620594015729844642978627786282332906904492327659329244991240461338339690152475856010196827612372034305510897923175286777387820132668450988071802682039220280484 9215743424256804673069717712187345608571520356706217008389369827536191719737107940739990603683952061279228549713860022565446739856276967564477699256300949570927013119192982495577576375085942369144906834763454604394437131867956302588382681792897579073867577438197352081312680685284194436531551097133568125748283469790178901431827752618088331363997360282959901000051972437701525586481910612361767641145832369347955064737525034060992789723071950827784 9700119603131624755510087288521738129185608767747856196063893512409250785806286682155371236246489693259203489219130671347171099770337362895959783509532523598271289649198711044815613010829185812739292211017926948642819683286246929210846438959969288165507695822898733723861578329428488075621932309574063083808914628364138116929229083233675690406787653576163961754266645938024360197471995403483650856887128855292429351867994655684451320866302074899531 6987888798390898954565467592320605819226177883766122253354733863709677295930239911805566228092649500449877527733462521733263893894949146540382124321807361584536114046021555259753667202239198810502846810737704377232931215975362275051572387645294363483879135289887879058215501111042335845183102276113343358047897141497715251577898482989361644918289793177903264672287494186754532691836408798282666191059531425286630926707017324059507062273866705792873 3882718495187976068532280614808818646593287994277974612452954095267124969044104613107390919211239694068351844696993047168661742405051922297675298529668486734836811625766352554575224403184392246233255616522514104235923273201888336360890136050472633749620582370618484689529986526746636302195871613693678672483535610994037381399698900440515388959039103282794572815113975877627474453184293053661363795169817274605208854646923204175911435001350395075348 4896156924950900207556055754384170290146078181869924923939119438241100257051821388230098035458587811640045530311277179266614743774837366237460202073538403482309687677893623056167893806731785663137163538704715874017289052724912520827168930437398229658837763226587058276813473532994786385827743816547793609856131567793418000201475804245593773783036039563134913576340135030348407399275786595343912755160207530865236538527450378885971248667165003987741 9265374145011160495071001864930153582757306955302684228758483403210477930534852209549079257356397702757373204550799101581843679809773130351644989780684770092412465890171794998639015234524231446407331462397045474526050430187421299438212570644915073546929709320638029037759118818739015791038279468492628606493557705792753569998447487845448455800506346031019432771827220312508097750299519197688024658963981141533713506843610011310996298251092340076886 2681738142858204141106078957011495068943086279652602887953539761168458073043529965627122092196855252288491697344907527823409037934366431756882408319294978354314731449399148449444634289657179655332850400946759399635949907338642665621874810726324787243040629049467920253848591539802660863028206837106819258636756161674883003149343012810529959988806188629972368964165204568060779510100917746573081454691925813273129673025592058716565880420339131539744 1591728719487570142622214719278911066027507612894427322429136699466592706572510419363102385981754907986994389243889008939346341213828136219471807981114503000204339015792043931255399519222609088999712563092330271429125014403981870500420259608780870813586866490177244473695219446703490650223840969305182593996803942103858321601640076947789192421214895435937440099937964372856130362894311674370894674473797167618208641593168356184240048454270762185606 6439597880214216431665190096072817460641376846555288918618196034882585207484555661908969318905511599162690872569882176388463745955064737773914158066740766500977834149348421618440383883109376015393889363106315487134597252904837036883415016860751585799025411531953560707703814971227446960968940953052600980817492700921933267421388744897485958260981627811239347933827705619740666378971366211011150620641783273090943864210443410015684879462446967599935 2470493084992705731112482397592335989864528277041548277629085165037960815057835098230275874215779597790045920608880043548743473529828147036766578453926047834167045941769174894680825377283621606685686911351945238338908918911109127985145874140765028525906720911115279925914212843554397575899852207175909946241446928463268626340215826602498292115869480107657666054916190877864527586671942368344343143419381233500212897771314250005292249716731077710017 1685118882299889208472946752106224245534716079912083220472626821596886645081673509616439339924477511462369670308230209426462536749134703407424587665240882619103362519804641137116122739349796447567014545812884270106771962632936917848228627912056184982809090073238861546445788578285840970960477441126591618895177662916625271687217187625165136317089796176464843096986550203832749903690139566167724533477735942841050791076893352387935549818784678123081 2595819765132635425639402346170289036070816642417750144015178987133940719540680368401437775382302327416865127331446717927706754152593737093421319759704093148149199488987228678226746965193156630529145957136183974955247480194339279493656351149799084354265713102019714434595201177875945803750787462518049950522139898147845950331786257848999775100918367587992192282605503802850781001785441580731247007138124481319901891828791517297480631535418402724973 1986676050304698921400122077849186541670628894614373987362169714665740339540354657042071325868663336279283212156148810545073264464398983800241706849219912974800942850816694356492957834344123652616984823031940948633410216606988284623109833870141892807820737483205430749541642896324813950945589933704491826186642654150819005827072358841898280998019151035177063881643966427934704377364802695785368103679866531939037687765826608503687181035728366643365 0577172278666728793090809972219221888136713093480501052572641573813406411781621048067871430238916681156631072876053694575377847806505850299526911703233303716719601123523444074752681289283558682868402632571605697450019444495170180661810819064410545524662199746055108376658288581298144515267490380226956781150070305237616097616075164743583933410407798055772293477599134331367215978661055073422783711677618319948593027585726139705865847098686679533960 9462918867805571711368786100785500743881857106412692050966991492894227497425451085029268848939544748228630674993942734032486837449145564735830378788605984756918370045423301286627585792709510678969053335973429361420032882467148804583531441386307976265974048930871107688512323078607934245122017154558018416921640760895771328756451994313802327207500512875563762033975330060539152081158801054294431785558933982463564583104692415828661178849010046341407 6094998214465414603928375102473505894407349196495403702722453457220124463687003138483398423091832402490157951865933785992829470159857959196859838685981944905441298097484199553689636996354717206181813585525926232995399169375917092428613664218558467667720623054441488582625370532082454374482290302780270657510380017108817832818651459865583258719554645852534197577697821772923612071333641240281634970014373150088552712917589196082897388980202176082104 8775450013336131917131976208564149148137964066304065403542908487514460930454287978881572479698005656607995943883648202831603389466790445113655307314233276057871082079267604395353546642253678185026829228847438639303958374009738587014265108634462047051758476054990457272575031508505858568197468429290417067166141331885043846980797356017771048117683664107793967943620268481911773148240899769255512882631452780126438139137569639489110846479984997677906 2995454495157317870080407124802833371117026427230154423913602066185340630711308281520749753719314684009710622503719592163865824282289408364927262824559605155252350591207841467076056758736733618941117427616791555301719943675684792853267322657804559329786442566694443389254568991712253772984042896325472825553367989035077223103164222255936866224029328970790077496213095713496292896492938787597564476663310010012085380491365778048694771004653842197087 5553324956543022798404918623196790625317699314735845280277782058867692232477965323935598599179926338256860793129715306595539487832777388807136981497464050662517514314106466975480788825062108036930301495236024766871701778304594493982135466681201891555895109323779106639743217171528610129007333518011331114135668468007910399622453150596207162070402855157026143358103007802778165023775172009678562401690788151274926741016063023195786733309667419533263 1791548690087721251730723578980925225302256322654190233991410380309934353845802706803344427165192772582342536905924927564449959931893373020241561339217286882111688625658527099872906016565710880738948758361695217062095632682460903996183788978720182268702378535683441810012149346172306767528635990112808891008964737792459795688250073985023807750959129815553066924895357372764132385668467817781405763877234876040325129467647135943665941345531063140695 8562634633689731065163807435534312610069096745376501440519811834923531887194079939990955389289577987504772778032708466093615488559657996970259562328028461747441648263204872412829894947810298822837746185618582323346671858688349581842191943883222041292566218213616277944900410223801402421658236604363913231229544346569498272220679082328807024151373524162312274775730325612470426854433853224701279777859978351819954302148759477816076188527083820208483 4997471275528202579694699665538193959379828961377844300795301854003696616611576286812079579716153560662027357626724712099348262911458725856610030202616546006848143871460837279792596145993239211017039733769873495439047451665419547377441161880916700728524973472353480092459473691441023228343634384103720771001346205794664067075309824085550357688699700784814367551040154533652214918883832021327917374952250859104094126462615872664616191769631733141663 3744493848851485951358679018700795817364758504070965634445300631086513401545686454609857793768228464230331017327992712144695553139665054817276401972657906219538813253509632509474459898910878590169692258198604873251616314872253320868115250387783903092109639731408701463262774873619992516036903516401813228638410157789138345482086953949114165419212244103725882353735283296622540405395995512541880469553470169279658180842216911467794957709031814719952 2420048905885593746441615349093468210952738190692493401258540162129838882360671129904727853825109322126760086356788729911106064744385406313070269157932911471683574893086073417620348424225579743251001003864368816055246682773280148166978734963320996341723779237883035166054871671792874001119144726245671247002497622458224027397707027023503237712416913149130844802726400994497259572092359302306992730005224907365141977781182720305259060505366479310184 8708283976243597654102454719021296462440721878685429130719911560221343598109261278099244929883532142115168804430524223133517203668759109206121817157215013230491503852431276016026780710277905987836302849099513323332565542428323312697082604828410911646293553079701347159992856426889889700767442334648965004511482489448843811905203162023956125155080114293455938402258904452354916067705752641775197360904402044833678818915689702778936604499831675503334 6099743453906679681237983313639844586220491826985980185062808365058175856328286723970216470379261157543687834566404659060788858593615726073376479473628394189492835760504833644940113498654912082100481325506837562819702568696995491876219763972045027900446675639511937613156006454486485525074979942085002895444499533574504683662276687208248316413599480307060161182230915617525952849002899529342873761735102674241881593715994890969792225772144013909127 2246178883874360805196751530314791141433573207365859049304277337984471291954446454304400959751830974182337618633781152912801517866360090164769745449589573231467955499389337513949564362601454959264673734721602188531326544686008853720772213452751031059526253071110235537885691649959116922083888770780517354383985678670150963780886864757576698253235404424542840088268747777032853826199762542581992934205912179778082778705118584523089729856387686511275 0727634100359941466012227948957495592036099460378048483855259599108171236282744204017849802110317627877887503036302263616097666758010603955547997874569981579733423399742444758845313933453664591755258134755046344267161094890817996895922670464402169176805100590718447352631235416442486477743878776517385347897501402520406932991135325561481360435329683129289912953561529040275913176773412777046365308522132575486307933547882996383406999371515422494380 8824064733263123350461388215947951691759254509848097911089233113778953966407460834573009765117060752414362883466091800384906356926853296400551653599785791306066404745571908486625041462763357204425087660332076412002768371472025839577572548308176352281706577594153270832662553910968973058504562259368984989756227021582652652806200251844164898191969095582120789897267176461338008395664877220193204636718817239547049302092798661041184695704868470049638 6412595306737666603894217618938754237522401874581597228442522907977372292551018088673990839885492144913863562538863789161591888424051299819365171369259169577919988494941497711519431575582630705994857586353474963975685597038626780540072008974502527051939796981252968831191645904520975630528337309486023832962721322569007376753391116829471981277057426243752213758250320087363753204645000573891793465923557708362204145285013907946406724667360182753798 5447814076921256085694481054166195675264750745239025451705310940662636682474575734607040652757535777432010239133411381357750332256114390097609946952139817702841461088413608565918393299393135808195270706927092760772171777909876385463446024051690499497747577482873009339789406414736945719850482990513484286707099150933044579663919535589147801094434509827017367724097904948059288384657526908214068409367522488842466125605269509780101260577282287359937 9849977045731761175869419846747429048640123199674462226863633260076411070293488972360126214984596841603187424531584352054891859045356941964460633379884931531169547583611157497667740703154480578978170504573192258815494311439025793450499895500372704236182645680415899700136977093646184318296660690731354763645120346808804485446394798810546809849670131795494286681388276584446505851797712368142674585475571382290726634603164381375014654291945359934360 8206282790725318865751797342457466122502744301909224296277693665315871680944424278624984074946655635268045027684357821136273406943561642515379232246664582371079321459044461110922107039760456510101286976059355657979972303939386839617991898691799159386947086324241601016103098873785439567731482972348965947671427213412840043762106602005505662023339519575586451283024177142823715776932876797845227571042372817246844546162244727036661864054672492501446 7120456547835726921447053879805427443650665491900369785230070372006141837257113091116810217228672125895948574600435329503311469579656490062446226953912511252868037826375208346201091939205299406735316501758378263276410048994464890719508214784102083666996441555489973118544459531232788198843519364669075619174436387489862636276503027206860925188097236088479380162529503922552102831859119520952160308797092230631824304905136125178526678309896484076261 8711211938564523325880156358456632568153659741400635166538527833027993327618187316429284343663516156632552808774054766967000188148312992649497560617449945560484056516920660629441907471164740575561955183453874064046466344652333203510377844767588566666090172875209822447115645045567243110919573466626779195035111191248491406455543525772549656639267852219176238547538197108319832284839469222949537374931725775542580964794985891026863594535761355146603 7513914968451229674554784247177930607499992487150391737113310598418240045774257591786671219505174289611967389888904579312607783631612978256941136845078884344497866404495895781779775376331750386865692143284565907638770350854549228817745921346447903640967193788480015659908526276175097739401643740642321537883413005026201713197591248645879230068500253381354891513199847109339798843654460482728915497107603731744512609717170621549152309355807845628392 1799509366499044096091569942149387112429146631205469132238606335268740464186976497513460031842898257475120258445983103982014060948468707691618383086238789106146824197283200526150385110681990583517695632365696941423626101521553817250369391988202927136854440106294367264512033344244808295285077865022358866847987292336334526758265461364764488099277633165502130074494529895433961752661174901691213005810955424491226738528512234383695983978048397524645 1012058826742830639996089076557344363448014904882983571898164096451011928985398760882296922643542082445684123687523325897783852438454227592056760926079584672793866397640133375298174103800839713669875017925188890050961627253029063851224481562947348667180792167574395023354187971463703413595070688796031015016464474223923286729237172565384290147065906886729406948425427159052053409339014321081313854582597043485809314855063394187054375482019170226882 3175109013294136171877005809113345796164220301259802204310738296686490703750445386844284408790945807138389620954492075996155366557130684404695271299487830971345078827572484489989734970396224651104987770041793712631986655042482645042713229161230932461641353303916768945148358569270216603190656899930352729669425409329858504714285408386710889273443108736345700269111924324963772982294009440207520246620664473839172044257548340145394080354627340999096 4069072075622907374684131198586578798855914252147080351784967358936933535007544672324613125258268704637563439646390594790703928961259764866705690718158460299360428566416523782711376077456210903179808657173199934312817969129429620455695201243315446083595765650783244672112585007760996890714299062146372250183703199851692200508139102053789839156229925006468735679795406627829502247459266561768688629321162565605008454294559032917372009820858817353746 8783182064470226861276497609063433941566490264262194495999726278798874206865377484001240271202527473344361668130227204754587027046409864346757364149445560401804690256490853251672716709512790052393421702743032886141323309616964755602018386215997872360962122757042109968737000712257994295186963004129541887796287240932784617980486479076998905777338860558382491142283163748692878538148143146224283984962337855773508605110105092612932309949247418926751 3161881862075325740386848069649046982799912216113866566382032601913596840251564924790644398333003180789523696165184056141033843479937617818210047435190907065480640320569117166432209921547124046169424710431522220510488536638270472083522207228179230772437862146298606683003944318403189711959387588071981150483977508624928452053766099357035113846959784295954406485751505062084971228123360639541480452318303759039230419312935804702532239639115127937593 6015140870535146062989951940745755354886861982269324695538210219472021248849044263655395305394353300405061335996832016669879477207952586691433189909211865226058496088149626836546723498404814381094319857403683774663709365806373392945879466445168261148333459808948132301423449736300081770030290154167401795744361620184220760535776542316284564276440937556897155378728695987224574072558628891627542274001393924890937205554561607842415395618839990558247 9740297074147881435727079149221043557745460934900573768159682819680197715906457966057549425418144532992479819966571196455188565565681215133490980465803768476182660137371756837274130617046443808292439165371329638261653072310606823338899995102553073274412094269941379201101046632087497154105874458261159959068772409428697875946269429880547786077645800522940757030840638516043605931255565855331231165546386554103007269934477311816907866280119553224809 9561712788155639351901256077112884694732263635778302596564232697384744696747938171918349844120102842351921959479411888645207796023134306321717435406924886237588135079501301954212568538960669312542793294445046041439975110593068307589866631208970917867381443106267328572913524733573733413996498162256056419741787984415602133012302960042148911478485752643862518142961913689838222749415586395787408237809038341408792976445118888023372009886401223617417 6430506370381076927834118901729401329462385639308531532244222768818571728893885168650075904844157097366365393941138141433007084179831172343974321289826930882817908454608352276168839236706701819377906387518688982678985926122487707255370774680909173812195568154246781758249863590845775282210873370947100534470431626453265098754187048260408504943289449671151155640450375992218315315062189417680797400402678059163735949230580218910561624590130191307342 3092201187748905417634752347872050957508301245800976089449020142283215170817863829715178754102327793778540726836395180372272739907246132811667262023853629580447687448945589355612941667877115144459521507280112452897838988924398057926113395117163372724763220356134137665549360910760775428863941537509112835509538910175699273481058020524474988606569414068805981571455349610211640412992071191573822396496879006157717959575116755908481929690435593444902 8936964861900866118483640844547092298808201869643501024165892806728934618921288399805886754723382266287467489827600721396917908199418072364514382989430173553032251147891184679935694376925654535114088246264417878175405852046275209119455171507153223229003178378639299726457950413622430738874742958842038653796300887828497491015367140448727060522398327465443452935652807696047722150302406032996082014428740664630902436955822017514819021276959194854806 5002515966276672115626582703870721458114744697943698506765768823503506327908552602752457845213931189712195956022277801052170563123963444611270021258672357370900902467406949257666965304797371427626570535957448790876199299797549154709567456866266693317816026949924563786133450401286482682564546781442573431384860066826797672708278086896403276259416788405714594114804629164881285200102610561984527854316767343019418002873928094615194818546866310990795 1504488133650125461221413542791228391303694726258978002733168003031221980792227233930233396990249323813630178121360113136831038867733900122525241037628839200114687473978301968151623448458441708471154056306712215025240060095668450209965442357785547880065844530633545865197485172711046869237082103742383445162144635916426832646976748511916117839341951421626343457280693936967164403452311179813313674725581030233003356470919313118415493271541872145395 5008962151995577648095322472817056846283525646275430576200001721499028964513843833117116585841776451061858250821047245469890855260571543347364077660598021844622302303576492869835354772286691167255092926423495359112977808670676400914176047251101842295428946972427193139578251117713736466128861099385961544636685556640632424096551152712448740813863395840329068301663750515937889447003244679444205006232380567807586140516179491567587848547537980361332 0458867201313746842227773933830101592787382664035207938573727331878722116006978868491056887673735468207179344205169186912073390602304035953144024848275524988496686390561518129135491333068919805095831954745243476885587738310414344539933978264379056007932577903268772389335970408929063798623591326882769120482353226853311130949276614545789111470718167829879548739779664939334049995804451114426378780550061812019428565801151160496597514709360848244784 0715101656881915154763085370899177749500315467791994055430238455568432958712280703393036550805203590269022257432694177337833020778508816459977499843551470304189931092788636285559549866645215146083224327029398653547117146112097864464644325618002352000486416928090125195558796777707120141585403242927279651399821426254278523836182489744008376465719918339566033650949707852328897458814933477309948639738318201932446879191922759819287059190059075406735 7185234811868346434778505415782822449079858408700586120528447163358777233043808270913739688950568455535232618221110237312713688142058398385474704900053609386576177773048783078559721753881861727200525683687300867217691544126287754950323922211648722178615226209112425923774670550161255823546154420874458421496477602559572740291847164531588852588278842868558894965084270394298993544274755784884092534243675964612654381092025562998205154148019374700480 3579667745874100884131811872582385785448488816682771330320509148049902706338669469099351248792271005092774614149529146261051764859906929923817599024416187949702356571809514425854995765179296210567446002214133673754807986035969594685698337977267285287592506044418464357782403623776670298728323706045274425550681518095558886835891475330457011692173081904136821961979244460426499343848452732374619113711082446433501694801550253284184628733492266134568 9441390024706633554707881416054856796686564326698130317836216464658820830050364454812922884964461641012502375768282189455118458059573209093946206486775093802437912896018008279404748174220633279147128420951370105619432717629286857909094932180555689790662862891547375486731986937384664195856188997708279900169246494251903473777039886301492011183528372327919965077715581634061761969840722231867827012354034994384291685565051517438377353920322561159929 7568796557485637139984984188981872386344774773551501353507919108180826989536012524782547043214097784693232943801472551258437608609981460219969863154847357629208099670223123077999976689261493709481313117612672502902025112501769538583175793324823747587160195989309689954294571523802778922356850487641824139102326914916557444484512460830514578741750738717674417355110130764553789788752222185205861330107591272012841581609901291829118566671573929980929 1799149161000466033329225776086756566635965341818542256059884318442721810942318109063106059677332784039505960669772102777361411827206434298538442465877284718517883633752819325425830054996146148373504141918616198629106706387911951762050556410548148530782364372016539996520950423890411674976436029024341956762244685142089456568032327777818280402353171727161613847452643425617030040388071688888421475795728132416306939771904869321017748493439522088977 9774606413216065912354287306634985649513842991511937541568268804640344074003191648752422812899084960491088752481897662954439463753621983060853026629767762297282370884106403067983957045507986425562413295697069031260693727227049738584906354811946653533660264315355456127620022454365014092870701038450249422996824698948193110638058489638349668423154689585739417810047802743102434361706393732266714140476450553206852545277727133799598971912933510953352 1837623781448282123898331839226954036294419444779393386294782085653916027686547422160219745416250347948657330874869636214605079665721155856826471256401983236872218016273702740854612331531487465319393626134387278498409826789986196912202669754590120334748717152720342378485320199773941089399183239935343608383194483504071701605001971940795569291694412482684602905546024805566374925676902358565496305630549909473833868200225327275101476538201571896891 7643861760384669147127050209010166793143538898179926138949582056843152542717333984584967784219554228496937753821419875398362804151385327095150706778317618492686749245187887825652388078755933987418992394106466084284159517680029189967446045623476841746284361490524099614609132990782507767172994873799300497060952190291591878815655029486924994826388639682384956086850057999208125916980957625006325227429775722353244646312991916029527828387808637437948 4878160079866918449449520338909118199684001436019370933054722190471786161995211092911279170019766720202163966918422241349535264054150343478493730094810750009923037091538820155082003301200760403674004750282381217235331054698371010096575548811661428174197142241111465396494088106871353167996748974279372263513581038998825451605536725102136416929003210731223430072399556914225246430126273566681782285901690339952558864708517542843979342327492533998925 8403923207983599325215743584252303743666138993863200080064574750880709379984627470966570809436929936107002734538156848014398180022649796165498392424721495385516649061338869947944876407062566016055171789113105157898124840674415404386343218080496035776369336965075024967546596535171500859975076400045595426370119626833504239694093247325407321746536577121897863354556824170391037818242656724415781843849453825620349781174947104658950823214082047820539 9922170830963792471914357052689273788296301720459841639676597939924684512021673155759406108501108401501493958481324314326483170638352293389835732862962500645396532323409016634553497614539777543545510180022729878166610572423124306235039912669272559398387044682244056902175272089059731403171949939375760651704430817843584689023226409067025582563156527103991987874499600566965311694201789033319307912876404500245292607775735544830851499121604626040796 6357004292941415210785179395124892931131087234036875493332119971694155822422532345269916514842708074964982432091087091302719220736052823988903337764824402482164367448928389327178724630129521377758406567665034225484479527343892962635217069248295722337237260521214867559012437510688636168620684810753252551908087008239375667993000525640041056868732134577420110043021274796404626772079602886807545332844611639636702961676361061209564091590392267597725 6127708233691017979324027600947790504939059499035509762328552456920149233803895551145369453798964243907753154386610796172549357971644803446126662353804145557367642625144590571925802222930640330494317739911077459948051848434169030124710528400114530117015926417603100466879843400676366135754159381073949023384595997856649006331001925807617965927489021730881865451249156100845649219173398418493640078924253400528851274097826072818449936233443967778341 6430328617074655574470958871066122859798438328988827786089949825934445706255208466693362073645613299517534649909660709934312563597490296567184680351887876443719273432284967575348743806058683938732087107123411960330893060235219350237964753015141593728621182295259067018575855904869810336131061953704410772086023300066943559822989972003894205071241309633012473989889865016134460416369764129918551398564133480244010903820420980509818816370765602535422 8852064250474895868089917946686117193250332482302410598055847663804552137893230572350200971557476025937720767760874681482134522531630208788823985355668408462018877633388938239400596938234755581196604405366017085155431409286335709215944811601753296583413334717730271105970905178115890170866029901605124794507024301232306702621797011415106820022681399975072583213035616679491261005420128645322980067268900094820970758541021988488529545960197473063613 2842969855385226523816130889665914509124886813125953536296057660319750429504118843939724705360578947986283171400396848076421190941427568120273245423319593111952395056290622611009964398948381646448745866830754857785328740819937572748521974137180942967777411722239364135603321190933440755678783811304519984514862898000608483869420621852719280187780424866808029951289703473294463170946003859512545338683557968905846517230067044888968406108630406121351 5520387421392844962022257546585820866986406049865542588590814553099484349384273384217864505139854273974290958570085614625618349527002281417325367653979469127529747013170063835415965446342449683526350594853447447210780561078108296494264788100259793187756392390432917853276342037522975657527434082950845479470152452608993138857831239117512692255667572885133404397696254039311749337139944952935680106037969445956859752498772673480790732676182452335521 2162149680234492925428865514573375655765945557092395334281424629031727815403998341556419837718018982112476085595551899950620730071403452081550332981497507024426772643603387375397314843137407092665449229520423199007345946393119965350568073329814865841109199443946272328453677112848473622460633136028591059635237193871634598696364439068540532231931524135469324875767304633817030294479835226020518149444585049612032690923375271623551335262343207219430 0935881503393598974493352695787457278314039670396910017073414932531022063263016925237018012024422688492909819555117195612083815501448583657166510269086648717323819014860992469913154608200199270504730568876141893298108310235264828108102485450220875722128344134379484999727920258354341720442598469327409141782143949280179974565987369828742826826748442121371546823275112853416523703165307043258283372112371376096959399375495362232222197465961933252907 4042487602513819524269739101756371975343004479617825043115331506758256273534347625253914251527570478784376788524187196634624199270080257610839274976226365490018653206454995155802908398513272627321967284783025385221904792786893895387803686993188466031043633524373271546998988111864436701140284262026150473882358997472814933432570654746370224518872890612550302737919026403965774176068989769834566464705204716359214483070995843064717275076337180207145 9744565251418850503716377381890296968528440925819317441005557608985029232710160089825722381739454369852965476949018738404646564373071319590114076131742822038833136029708526145123490730714762453405024542376366668557574012060405988695563011441544314169698607403220788600313279055391786967416355524025076765308563224273784714974603778406460934681299187190289275976307015984088778174519269014769103003023497945851100018088660621628680111091511610409832 7308808995433755118718317378655877648735885449036687907416918253831330636233820582015488544982788382174243758054923815972964061963105821516709190326318730933813850113091332770930342511221097215505610491387050426219805260247611607505971037943664771529353491718612506611636738330499564878779365697911293195878277774060107533372432790009732407256070388800871137309659634457096041175089444791191621745516970964844762046174128154536128422601551301589525 8628069570639244435478023905168613385498619266567622760358234985569192248906901164598660961567955415492157581283540920253931708073781465078832035266513457070655368569928112426567084480177864614974045492118431227621845224410884715075701908834950224375698850494542410572662460945832095962572872030994776540107398558069966198019534500506514501054924018861089134173060759238439461246569861605609094541772907364009391321956768364333299619997965424348026 5694068369867061758741316765050602713588257443370721645881952261339705452052344128092317306505198995450285853835228737872869829172758078242098261060609015092521109089899643892978629430141114006762877499207817237947462091689983896189486307730602749102670388394335247424342123671217702461011602406111857168705082440491623894343504702508136491551551043272507479410247374781922652059335513625530181219642499248821299260177408010371988421254744721602969 5002774268507752175866917993801362584224173985607669916543275706123045286728070763189470589544061884213157138003398487408680941446184585423034495144852105399124893245548665930533558457827714423774338533920824127763216596753832665064306388069556915620262225946941429007998769834420914699989795683266709041413980686333251565256968787899225743279613964370265431446393337990008198575307978817613374360948392830223380327973203865364624249805511402246922 6478931592944918040382983649034888638697564414855608560537177228737148228236864278113657203947496906937239915610036828075141178473782562212775995916775814038532986888513655232313938431742258535628070191544007763016347647781261324380248421865669855274007641051190109545289838256348407045580809052214769722042873822020644511165580202158137220466347663335175617990500897780885600932081454176443903235241939731547218920920202474270405857913543792600976 8076362987566147826443389261212134565944568010422276165241837640186734533914880790013636035284321747804016831467261880679364930468658736463114832826980492022787625545401785091774977282946756929354516660986419481458364447890960383045828536989560806656661903603100453047200242263938815720686746900619298730822484900168163489212554337544475803887361586588592485975587427838599929541709917225115340254222296922343661777819296533134967477572209784301938 1844505985075080564948318967922058343414789051025761749099758200123472441028507941231843760147142137829511021873589939170816868055988133546991379453783137711413549197124346581093112783326621759222758936993477049843525192107351757370200545734513058731322143846208760277518405348937132376629071120552694905300388822804204808210851928761076772814548927944032272362841247943192644192430796813703829482005869742015013235319872051992035387731421588221148 5974318238790989199325393415037876899596958043272517776898661258893954420139171306418862951066526896062414520844803403474113314880043138647317158446815754836531670512601746640760728095967213272942245361042667928094697735836383498228114766916959695573277028279120997926086381701765421015111581109268328748595064626236299259249694378182229169234325485361604152514206369252147745980941988926814776443905376111917463026074170414492241949800170623866816 9466079892475169718500094287444466241005863803558630650636095727097973493070964889076063019079233461701974566562487128849867382678546268945120946229054827542330251732132827853165175869340541118457151048346328320081011525254131193679545612612161031974278321038795482539174314098770652570060376719683830478692910032674834420668406673515088586091662976572277996926003868273349641875833211808091686185171345911568508931494044819961072502337896779899188 7258268670537757435124650813798628134835066431324662709245236546983517407042651369882414330883552631945475425324845884093993784631867338133661031005811464551518773050141308156660180611322683529639711462401049831484646043952006163735425846982605212545385915053646201416593061524137743303724644103975985001568921027909378678603185176724046959915723405290038167607242477016978152148615194746270546142211256912722538159050203958305146858500360242005490 9455026826185095875426210973991322095029548958289174232981343154069257570588015736545351789274152712894131431826947690258885478659919689883599904388542274846947311875197488771215019159190888581326376998121590808969182335059079714874613336803970635003695553942259073453693326389696162384254104794629483793746381324612408253069026914650215171965524256788471272297526679202803841296615750218468110886939399252687943950326728700875818861049300859750196 9280952048237571389454388442416217566263735180336432774017341259427455820267544027881214092868804120300022706318082593186766481490447257994467045942382811148786117712471299402343531934763897789484462560417454780205295530815025429801570903923821472145748055026968444380960380164437261953004403990818426587487953263601747734396347413330292755818200084648860981832917078621243703459404281501604147705818564413222318877939216398896127369924002251605351 2829372365573731931938983417538439708309035853330857183693113650370081905654504329842209938149004544540044861822140550605287168313414262789644169533398029687951753666784755096725673907734718169339975900118989111396246520616071885649119266426940160695906161044378014986669982843324652576088257101089919591111808350303650797428123070939519840254801694462620592363635107199014815677440001231307254102560560159316840532816997339070715372088090132654154 0840848694648513376227482849916127474705322255057918337197829980217375914243447148663438084599101392554944659667423730119121569104847330698050817129727313806629229678493165707003108305567889791232981303751031746783401120813530914660733675118762187223247896837038279501239544495396758853738446641347202470015885201761312154814372133479265672244691795625863300306994583628910381264895233888076384381880921180739792768314123086880946917176552671971341 1290271581467529442762521329501543011533690389221384101337883275393592020905194209393897941289380765953087027355077304221911430043256684624072289034021711512731689053394678518738227848515822470484127739268280565172603764458440068284667373544825924969162142390338893181170113891315019222854107381814522925921851485752524761838480775838298666675567628883100860152635893586357127421777289515445831293470980084717828967273412903707607159708978389934279 2625573818895631940507275208732599945654560858685535826313370849340641393491374917907721822853116009498270366792789235878843160849183895336236157657683342228959270239391538681195815299606645208188618438969720018935678548949422165123610171847376046060382961644273311730402586998521537216477536320660720612329293239624078004742806780812454299279509350514397602119291130378021703950829509906994439391195500340721574148017759229971932827163039713393800 3492679133416508911394642479661320947250898195723750491133129166984273711489586628649336133970303624716301283210070841520262768996306818969526666944051675113293786905003412004284173942954144584447541246771850871030194976373064645661863494065661595559022203881357136176823477846310988547480314160751831305440342811270350719599014203058814923214884129356944529643170313190357793773919016569125771780698512180115203637847182328949534446551462678468202 6303966630199069226106232408625749366744026581397192480133160604128043094030117818395338456973477787554965052267198920398064650880987659599040268354582908404887435901210248570719056955851822996481632457015703748335071625617787840260248079543643142774097520462960077059523215937839265605847631831645394608691291390297075293245752831122063165307794559970935880191017954784682220298137949673390087099348352365925215317478091492963595768036416453157419 8408294970424039023534026592213525985308033243178585774060569003951749662478311461547074710152410927099019069460555923968305614807726537399849961888020452613695722308907368225836972534673293043490796231583862612634442408631410349974036550869216050046280979394259573707752242127755962792858417731369309036459436384493982339291854895536764735608789899719778070386620927463185198508519268526245382587024957380501099381632387082022856447402189035037020 5158682457112552023153087809016194370538717681644829394491186589768122858228286305889861029605283254438604524159887904370477377371368502135393822653949023421710889783710051749817597020686825702725971239990477731332089067421121200821839867778705656294246938200423781349130666302875875209256477327316746369664746257061200346715640903478963148186821345980612729682565455767498591972867379753810674217385801948693932923297854556100790005472533051670818 5495508295733164530389667280573878280582588338674395672132016122364271902399903185069780948472980377051720009130562696720528431664964904631103134009037815217492434067144662452624788444797032670809204796602152536229777984130352918249166775473338610975771752089257006270953984192767246810212714644651636182903867855736355070011836724154289540477483432843483747564304527445068084429432880032635348132660476017214226940034962856397025725628371882800895 4760238666306549747045349843766403859894645814480531950919925945149823361365390441231674071296632618704241988407865603468894409807356511171908841621313370383284752715801402333740874605509019733708360472009020165095766376037863721883200386390086318700252115943278393284792647056206906139403648830945520239437276001155644876784475408356160399848851377292303432353009793967833698300912777997949717046285314100435349333822674849658177523531271960159061 7282846213714010305334392027034513019491070344617456577179219132414373649693969048965732825756691327645310834456871594499005092022404757994214851413924545725326078271647130569958137234896227241015135814633935985739176240573446271578414318958068767448800803490104731595819072414641729115982896970259377776750067320383367599920898141119898575770545690088066735105347037213293489055455497205353010557324696610538066099500702754752262676383165272527915 4833145361939167195510302515194171781239124482761114532218866777176734174064523789930150371042110232238847769373142553479838888837413246016948494522990510710895587932162056322085156530074079505592494459743510349190441133791566366617724617723425057713516044266303431268508796541039734739274529051405512410302983625893362358342678655320477807539090909460140438067643829114783029646518215386189201400711494551862692991324737572992206115252478291665457 5695663832511478672525609757827406443804607071542461773873376807193067971913031072597471709514887374746950349152024257187438661942079828728831057102815793640271463453279847349413902420822973866014373548560908029571346922653311826406796525443498999697808629347038553615700103796998646180680289328572972529014282901970405011170939604017994007727907300595740645359239166638811445976418742692009378297052256405569829948514511625396658674223630839350814 8778211469714515626421839723245197256393926186481618297743853241064349252541686264352270431372380466259855686036939297507794006992109272687025326458806166692255729635224420485867181204509342716663189051926245014908460068805223509444346582740225829051295030497996140166077255644874614627097868897325672101929230098245476543800864374001097572366609241372318680077447626862945263917248970267674567927348695426329629330779938306069517425895653753303319 8251374669746258716171967671157859591293894641900519594231162554265589036040426117249989093064050953199964610719970516938281588424916149236396001113845325917165402764954766172956590312791649517360294213628187264592677678276896029664972247633742345885325543235731917632165397243501468576239165650433876800210156944358236086348457350102531746380709120581568187968385839451042367958767056686080265948295232559420292102688752911543692228947178983633062 8408977303931369921911471481628943832342429101443255465123776429921208276392973771594064139740520923053096407841631655435542402370608217818229921582821565401767669766120899144806005952990654376236361202630598895100772357556516592197145167836743551290845111362955595308758670837780019199618165568310045570228278919161302403618351641223162709045429397967412823508433094522021606266842689197180814965483076922146809272437721832739709295506752479298131 1566988231593310969899391225434479357745606611269046429656407405419288226478547979797445592299821353002931553127176172218631970898223531161069406848815755289481620820918166724813128908104623769907013229353284450081408941518931109879654072146182757480558580243538161513918772004445850657984792025456944114779663992297905320277130234997864403442182496163201891811804326478311151594681114816472645477617634978713086688756952976260303166684121463430262 4407946869782859874183950317139429001355908772255770537385820548895316960180686323258791510705889327168594220715607638907859760776550843037319077176693145523913518622363114271160854458040847500024799875823005870882654914622078726726806363745375980674164794484814973892387547284593438752792867664432725647955615698313724625104542888500733489513025043675009241929034354360108566920829426185038839729213803592097852633481338499592725301325821086087156 2799411912242653301351854683014758836172716488218149835028778855753965978890610683222861861952982764025772256605724744655934032528658160143865185373616114163075572970379994466511411405407942714753778111142551339728349611528753303886443281608116519009719605585040319934565279822223428072991817130543227748759230282529480265505717408619925237062968149812420426377685988195395996847506801203170391350760070019492084836887963851424058353860689680377544 2070642716519419088448177490953805258104482473913499622829643783561309374571147615093589594579265351844458244073484489100939557560229105606244845612560043821227900342790703931871075238085638921136403935835401058207371156598072563030772823585173136193707794908570998474013366850020841298191122359596968222596454588321433935711948347789268345889740076030693945402135727476634284866657596679093779764676816301584881677064603897065832759236308140929955 0394583781385143772011353236289264203778348412135950821407271208953373316878810000342084057618038903775566026792357942645825046342858264058246647041364199474705466118335438791076331452420005378089995503474173982479708963230657788066150878820932715957565448426168832058940287967211719805372836240656118907999138028832094343311246912681414321820670235390665254965636176151324015679568910354880795582582532800003740724316505915305906941655244026442226 5534657082709714384284185626503226274931962958902475416534576128240935354062701440070911482095483336493865766285662502730215442597984538294819130149993816839032640802982348877414716824958784818180055520669101561370253273682398464025891880120337650092064772911586849770591281425393646332561493813809881934729589219122373029584341575051021773876002742570067130721327155850271832631656732297416556993878969323828886666047534639873633285056162548773854 35688300572624974075468515505447792066495159632292580229326617229622139077254749522646217975460868209939045420657122232019376562938297808861803061952849313208496738723326039474869730793856785007594093947867425498820242041547066719824068073770803660751254641737104593569506


1272053653025444763830653355045114641522470865121213129009990019681516959215243039102294969643906355219906513943216303653453974715157350144591560970031479537382507222864326791180222854544505100668683826497290748132584808710208874950514269642937392581367718416906545215610876157378020535279580044684913613691746825371728035367843503618901245777758338646770048718755154181150371412945491142726968772088619529031100065214806047938943042612112504746362 2256753934768192222192006351687668258215068279880160735706110805557861686704947486404202700061440097794418761478549764582395624980544495512570910640270832390814460092511777876520638039371357117644763292216214126564837394710745132290507372055423326208635230121119230099328216475364369237906325033568253135543303478962915330449231153809199575553294498705280190335116740752763665598147220612180438573003072978792173568500012562331806742598872401099689 6981385239730619195592833694861190323949253594415836595816138391218541195151992655070437222451106336712668962567275866773882387907913364509386511722013962859447865442962183266784517002027818841924009364903662723574437287448563310872878958458482352508201562742207923922033920450828194622615291844607061975822852133877969632367864013313041099556453747740645777576849035137916732532182650044015006462416364046311782779660535756676037161374420266916172 1891429916392304849738254289422199854547868948256705457712083060696640151754701139843828993193363522888572981154828691359603242851163621922207667981900638840484271526086590715537049718593352260571181041504579347353963276399887232560636896084103154413642148782611928541838499574304427686838514591491891874240066190283144798592264459633479953102863027801831150089300076576280887077688855667113610618616899624996387993702911361950062155095910026639429 8058423177896496506627565297834415149733882552363364465203622013216280321350049361959750702691727832370138371576432302888101329633287393824573874624509689508223833084417619240847605102724686019144743039151080377748192387105291127959055174988229390755127440803641693282921255378008849192870285467542546669735739705365362454007222398956201306760481133915634972776056714496409064045114809482486851179621640442806897195762975356223618168885002728569433 6528800131844121214112389838519527851194814679016652840688382186958683066129590397745990561487036122898098411382006158591424712862298600417189064530100820327940885803857608905122698760086424606482694850486186296517221848751835565288146631275237687067466752691724416729735456956733166771849284394313859957738504850610973138057829209449944463239430606875958119003860261904921098398719699336474633114066294511147152055694804027987358243091859738263977 1340411416016623775269357722361477563479055527521664824146099814862813287663118752410741743298743627538504577774254205757662739315698404385677291438378359018235173687708804803437428632366590745228853952283577868134721953766050084686198962633005033093604099782229148151475257718379528138489156804919218123836041227135829611649724710802612545920595248651142278339115649754666274486718521875618162947119647138066877715360854178694183861466074853653955 2580901696623778000065583681884719769824445873229844530886990299337887795265719728089915979394193436752271866343782907936824440320624639601866990497231903150243625040813055353383065316109237895273339143697925936907286974042623404247587033791700221492583435241015718645398347845451758922412361367352913626017121554410849303321644230075969711058854695869571172632037985137192940144871195015371587916332125383079389694412746892273986101183720851428693 1971502864690987328481720738738152015911637945123010101966662036445412956291903554810519125343871316001524124785504522454804170858009744164360840375963801883860748953526626950353281648096816794488017615939929356306431457111483516674756546277594216725378229613379520048290422881659995670507607348704290859084996849095294910463268517636522463170134879989376887798420929485129627852301598830153361268342991776614639254947705193020500310556054936776339 1632839538955788699776971431354461013249618901917057012018206670211657766541460513685343451173302843741097526751835575924718515188909168989486576041645332124170280811484675907730132725479460941550972867896718796180122044335029687962196440483278863799604098388253629382303958396983739496101712358218421774397427036469112581075159452663554646751436788687978229022955994771576430671265259718556151103574766104209641784124768301584033979360112118781120 0823174503714075700409271083743540108919934594983756706127409717699213954110952101250839813654956204515024366843113398973858736113065124745242321542571509170983114140086026489053937071277441244066907683167085424057300361178690524323205442682356865003270303065015077480473870024026729241448002051530677327019111454898739634929248920628971290478304492685380028314875358105997056148380692737300968661098886378902955732473773218392968237265964099999476 6795576053071821618693945992778164452536969658122450093564589944321917279168676398557892539969660988248722705869024920017849027121486353955328059468288469933578566896852991438034105283369383898081065416312507494946094474088864690836521657106852902937901140010171041875820439261982433726156111356858417307628652063100312749714469978191038819926090166461797540691029725658474690450719252449465833527641746399517886169056732659316334124585451782580824 4900718850178514288717667208311599555929267262117825611904459506934896175722832507114752044127677657505086893670980336668678679866809585451635645045670009828213046712442375802553358494967834550276310756161856761102420062290862217868011243459156477566136273107961732523468140907001105009794586345724419026620057736717904612327442085379760972626868770094642272586850071636459572360638163384749434997520654319048826875825350515691074271345868417945695 5827177098027528168620203131954435974916468654922876308046662143131853417398650352264519025805451724237931971335479894431301843024011898085682842876356115113592545051759006609029317534197237037316626763104552677057284108266195395396768023500467639232238198895390409926916785915668921976462053713869576979999088841317689151137434627023755761356023595321292951339330688041066225809559753015227590711430726120998040611204959544702529022458298103260460 3666107907846145624771807212209453782243796089208478369881533998578438358476233111145529449931635895654517074349410086456375682365245225528902797171999867299638162137834713253882980766128714625534783529714630139379788432298529584543951967680386477081199962158170809443989580382507071135827079833478098566103008092483633401066437851717050086728560572566582490063038166592502760359401420724325335032907153406437209910495544172192961728518931878766754 0913587710997530683942283296170848065834349711181400922782530261593481394755173603558408942664474933095846199862068129248429990069049530956019916735927003422770580777725794298919248350750002625357538268748323634227672480871144139303257644516263630141577372991358552647618310615475055054350039788791534532770215960445663570306770661001920179321401714796971673846973333970705605859892283092531295264942795361836760792879940177086017608475303934791124 7886123969453298233627503274176462432178205058631210032808102535309052281121335769067348278937719290836686403502827994706248624768867044020859538534724137046928259372275289596415597499167757872687009614379339091219386991136301973189710945603730161110976662442440018178065055572462339859256865538611682612704334070095180088689713989492131948076545616095446512264314966934969743616983961687411240926925087916495101225186752483635616057123486384689279 6456667649848464767165046561266990865485403705281050282325415823196482458286149790041803457596958657165789359912026924047544686256265670714416277114320705726232045705864254864853864287183259235882721005017819259103218621025254290610641964932197384822924672145088027677363100251061465898752818456725920500790060992633179350293026339149754789980559159838740722820121116031847446073130926422360572014068318740741436847356693028138596844963678163554669 0457525318548265991161791886475069922132683880788802178150798752627095916528280767673143687407626055402771583328466679056225244150316045686489418112599997950353070728399541880040621837690405286046378220683553744365548569477836150626359899363478702790903099746277218424110017648215901270567118208766878227576467699428541130542428469796771293655637190811243475249918894104423899887655814909816313382834439867883056142206994865643705634568169510209714 3423812653705290231148917416269759846890675493815136882312553178553493746115050458035667819443184768513482917267953046515495980756411689982379368626545225447682319382165559881689756544989847223360804023621521263789857002732047970983507338475588088526560046011136366410695357973449086862143285777692977138838668754917368355359148530578245719109983029831395137570525256209580954017897695413946151720261764966079521063305486458118903323277535560804209 2880795481310443083142541175646937964493700880517884390646505986995299345622884978136790056842469066898234803767228391414146393834419705052555274566152430703116893995864095218468006890113619130090893426827828837570563951953301251801823500492931069727258057031966431977564341418649195709519441152022579601579421743329987124953984816432158840168231801567682205889033443405769062383726206054194708302698868088319400151779250677571751745937223847177220 5082093070415931173622020003881306078884009111773966418883673332044652964644593441976859642812624451256257788632315383190956542867923083451240276168883596525102882925470174588508778546743233541314358139890052342270388006077143178342526680299665251595805267396825662975785411273245999963482719371057021772767908830058490736336401316479936837878094275476160827790635398026354770894899217773445189729100846164905691264458400492070830852606455660554188 7941017689160277283372571529263391248090560002823379201775264068935118044977919973237802038054845153464214411215740926117175317752534252312656527895654799495249996613418668561137172657535761612467563936363465852902198835935831392192491393418642454135934428166038405794303405858305951612584120866417970404500557090151031427979014579958567197456136453537244757325971762416221665609815477651079243328459730350221418019104377848724061746812837199614628 3916642534803096672402411784837905118698833839179026793076495649132796657819771695645747593331331342626077489713671970058790516411057560868039039268658263487063454055157631398616763810774144512259412855075449421595294857398986305684715535148771193322794310386006628760697072692238839211010422054182314187838700284748888389056675063312220920514807870613610842837440600890446146679737158262720291116842293247482478917896858777805977609418186443163400 2885026453644551355067121340118869078555749941020501202058436935943833843142118798496695796671231829694191171815804943525795240601837585099793437113088026402154288164434430672028630306124498537156718090967836741275202011134541349983917111725353851702142430673210003144137288710554407895824702376490475232030970596062076120274233173017656903200367749269422733032275776275170079415069130235233822952293804237429919553110013757008735740489604930149100 1310514828563869984292941736475578552941533379493920244023171942716029023127159436936461304778015704697510260615433560235322727132552378164940552536518894649839034517885744396354358013434976027147384385511984781089286682294577257535978429545434990952690776186980501260973242575667396516641860943350384149618387370350938070380101695366304616092407294362211337355372256317992452086818271670641961004506900017835172681539217865847481240698829943944692 8475392120476967040089175169800447350134011378005521056304988254349320679964173418381132082260661908719833602171482565623937107277080044260302578643754691414064673799881333062749804340488444339372858514209290714069313278515053469681273452320463635666300917026335976323886142443801882404910085101582522932565567279300996617151675711037022790900577243226451934853958153367620180430790663469385952282763485280737392669541534068128659434699569118047243 7660893831562192438656410313134058911508072193286739168832381494477607199208103547538842345389673265484968440806351067157523712030750328876853691661238860177353540400910880395892751210025497166937079787186642922014014558824562342414467031323035012810324420163216305765377138709905272596849408782981186152588849252721860328952218240262829832327008176345561299714577465837854724296746182466438490297865300776315937919644254783948828268065501763316234 0101463270947259720188233353881335302545653904634831051730084970426153736764062033013790647873873712146452555336583558282531298690853960026366890725505682714100041735228984821717599940268074649141888703063814711532964678955931808651223026636997204711317478634905277669414273422723279580870002598280525801378538783200311808721509846232270743162776152941280404273173876699769554819153808427735709328137376056176693707288061211955806890081599398264876 4512003321785648698432090637602562999928889730761247741228383269616110751648915228250644546268306417227180338343173765819712463951447878320009351333318655222338955660251647081019002244674779398750108774616269889409502813107485697512863709006577191414377029675485623143832515950385251731366442655028598105764183707048240607320787117705529545309698183519729294115418251958353083363474955997898763199425104174380877385642307717332540519763611239063521 9894917439052550024775592393944610777614131867655092406892223028644317156237562055325359475888341884110318326056616085707801241213297274916600004899274741402158343701248157419129887709471169331110411304646457319878710695701135487660168472395555808872908971746912203692511897246805917112574573943911456518061060805637865308957847735391188780952243969780018458236443954482446565562789229023722984608325547054940682218788034731789918341605402685996748 7218008132077885533824305278895252897097708026085078817526844197474750300894424270027730324729381969579912766676269025359762295246233268788313894840039368170446872185101395713247675408223230437822817504981212218492381106072004410173724029200225719476280314994515478334470303346453163731315274916269277287196580757976562490296241213427394749494996058045828871922218243736016280861644682942178448664330819416549098050350619393537344184449884818559504 9650263222645086225208709839417951613729261563166641163790862599661958483269538206406102682517040494898838579192421686509829170475839529326011944310572999700948820006462825064142980885784611984385093174349933158754056846184430872481690382849694454914912112838991744269803554425667205923759401508528758412056238186705431189016681809717891902212293518874279092195515518088868903134477084577771454928357845296172487465733320431666064130222407809409924 0861486196616461791573178124113520858151699182455410544125676216433441070173512032368369224702394752231986468094665767008441477627112781820370673947730272527129920311438451352019946347089810581466817328707877561024420480747530842041044301634872633267883450445024484231091775516736707605284105175214522934932480284264838848469002099445286264641842034722165709568643477981110366220426052840320341215341862403961367926539763057239176780823941973879373 9699311857904544687873150027991647682588517407844000561270342803131241594006256008060316896796077526780558515844477375732040986866150895683261795987193471910824256221882689002334105397189176036305647134218859359916610040431195689986685470952963076078686347518088766821399004676927370948474866326257852632299652649029047557265564262817106736122779326818851162138242414638514198006184825602021620796477460122499966967228685245060285138006176482634185 9670837636160177178787584787211352425712748345276492317626462574367092266211307733555205683386054307054158740244929003575611165555716998579313100068193328538001828777472325091411581985057695450951287072005765226634271771499575351994237585201083275572559101341983066117809208403270159630241973591496606810901929538788649629120915479131840927623462313114441025278015853644351302631195924384614550783343687132109051148727123095875779712220718360713602 3614162793363027620066151301431755842436447252712844828608334767494112067999001847319319046961301417860432255267100830950296615161233914007232481274069433748481319458570184419485195460907139625406959265565362319238294985722128612645094639194954110726922190617568177212932823950981632942369731247240843462067641516583724295223693017432684138741020941322315904311230900855917808980986398114724234312597727307258749654507988460850364940355636064213602 4636725029758258821423970906963894751585219601005670875761743422200688184018678289640797134211987989424200542623226391091608083282217206238321815660095637661311507035253943137043847640671257073659863704705747299557705633292492870667671578426397484164818987464420627326291809186345695140821112621118307784231880550483902301823855961986897258663753836854851880890027567239148796757475871447704496390596664763884055513983208511051808694673344214696438 8936519874292945007963579336776306583547913440943749848749178110525952934946088696039617923756363527056828663233569387547828496049149559435581123376296279491108962728456306695903129237389498739064645482345265301124597093691663681984294019757039611050180939637076776957461341673659491868407159799409774921295144753643557051040490718226804775346892192192239665598892640138338542564942877508240456558180339798752807500932132516595562648968432647209508 4572694267619620324652425361138081285541080986138899323175276100059368274818919305726879270527066816509473844112413522522462164058966977377662669472230604792593765890405451089087271966929602615646056922347083077659724942225173449004958810325871173498512933407482889628228684514065870595822088546356622237969268457727080062428624708391000127132274669329107759578411605552325394275509600607608370533448080696135747986610034569429050487428865415852057 1824749343029266450201290152285085761374552109727391108825404901954679022537325594370109330222334353367924791554865089056103150920105329770033114909933191441582540393767103856151258970841315151528321798116250944078384463599269824851477998262383671542281850696667162662017616097056709486112509359420925767250273704083583389316097505678303544284000039700202864233335323800308367275769471670632072715632881451354026654528053705616337565756556156045683 9735821127233493026657137376157808881484169546069518924508977614582773056447115603672340137375123911334222135099520103561776430770908044730482689991779764687600344803644414864134634689995078455510203029888633384832818107269920008898285719368413891539811167635237013599604776794327352194624941833983034177275287197321653523974783666159883000187013548007254996779481564122250731982077737494936934051592615121472524091331243285352266095099178862420621 4707618144436516820590669370269728484430350602521914049775512614504465725697123159579764295821796831320720497667628657047131171465971689941414194155855279213291655341080358645394236043976346169533528984633901443709771031718852633529786009866930866984352639341843697031885743906286547106851908002382479226597066957969129228277977600811198961917051876577047154804076234201469014747012300723672006374794146524884880021869725445463705686004723267422019 6980822142277847213930550996393066658835120573420953623270683351905374323509642416928024349246375291319682400703838920994682079708205085530265060841729064678943292489042266623714939148718520453336050928192722002667835450900672192934483571874004864525843619500945520255338530150193608275455081483677629431734666870183989663273687066717388978381705851435561662657530589349283799568837156619051174693401985358752506727461577175427929766541124306616885 7921466304826537623629178636344787320604811685644513319633775974521089142064262107733716871629057910904737837639993403176101329586566017868615084132025994391846880266009194120701567367052752104460254246476622255379685622112998222213661949692780512346135893880093787006445888955300930967808022056712229117324496219466633608501509594916809119443188318875572728807260492048422572695023477727362566817426430792407273243055492388314054863945929521673461 2059347331081226707443585443063905135486124584692352772955595950816339124034488084615574831651102805659691260473822009624298786189595228730193832928596279934984472850958341618215438661086913654406425908911589698129897442714708606373440889508112079256324343912160486709803726929822324855824995708943110863765484037375213836977540372535093086840240831865921894754342546568199331920286973641687638078055942726490940543186086883587062399303809324893776 0639588088169278821723284010080077874468552849300953561681336987821881319879609157078006065875120413681055150138991407216054540732098424457112407869027529556371764996922732097345339032749384224697177560429121963794004392913939936963834312381057271231601654623818608034169377923236080648416685167008845800707990539901913898692886788685012546791682529572979509077814007758372919595259230778985290095374969314464885604201830724836681645348889006164184 8721314017619792067384253885282960239842855401308933923814117570120808301554188871910117122035439604125881368880489293940966294766794056226564819392253637168630106007982286989053718470719552486361442452983986054972266738139927123232697913526781947508154247515825957071821517477933308380538542252593586879001120176971506948468723239775696021905302772913441798953328457172256959513939845008081855050284617312093463323897674396686784116298253664412222 3505420632363899786130116046064276425247211995387977652547098991387573337095875444606881810333079159233516940026805099690092016813695028758939377149493311215724159021236225154972698785804236244127487899865593145938269756931430554981795065314418668327328819513027519956721753823705715225229178899738983906301739917299478596473288245148057315766239727468127206928354685997204915820065493214263737853653777657763105425649156377280018981099444126794727 6921150956072802362828488060198203017705573603550343134769074127602842407027856245018676049368092179666630506285791925690321609215503829815738436504956833388199142037563207628943768460247661039435202294481010140411684096352222244652669840429640253001700640703723317193522076178313500357425684523102015448618474112946240496328898364055154538023000657624314766841533398052677981987237595528463455943508759753081225407831152856459138266985406198907598 5920268537279230084147530346162184574848815554875180280750087011486020566300511079526262181650999704624609382003056246103553110403422874336687869698965895714605263601339474029550277428860048235899761603260749857047122184558667132271410069788469581712627149938589828585921462536869196078653561335684500757664674333108632471158007102508635704220042755102796922229828867950516039032784227388738111830329773296824160426832369253343439480561513027747565 5642243538631283413939265597296620263849694533758729394690259628738874014880709463380659799698316511192908802511925602858173049910841216417996843252364020412026660339061356441401313893221202873062944532613198313335654125205821195292932149405364882300337137813069933752626752573427205471825985193439712284754974232282540407662617308559179774871262988700226674104747061146869802870273514819887933069078040518521698287223191317558377555383293064193433 2767058711857276687145649647500467923706677199070691387000871163039442974822989518150941074191583828498300089051563374997092344581268411890557203901380937449267263259914733455221666514058384741593179377470138831092920729725748072689274863625450102261803654579949694183630518520334858306138860891537475768145068904830504743231041756725444567867754056535324624426384501125401588113376287922791445769993245490207100571938902433231581806774444726672317 6645607682348386279213909238724304151108883374048260207564476757768523134578578434649845829336240746480141597946452143509285544414656623672600705710744294714808993054625246150539546672945745477522309885938349227321181401218199372897274783639130242229542283226581272993978869758174293364400546233397984792366191852240226254562010126296227425623817530051776328637553954276860419576758487868293565801648475164681085067253073869350186544318606782117480 7067102386061328973257124478239794432392685146855870717593267869335876854716034489616776117163412996673364505897921107546018301236333606911449641883879341218421949353787499665237975153917630591596461034715212146564274723918539650213163259112308165283502948681956571358874767723962901916931991677686458730587552887475970901591888584134023149445351637158204611939295386500630901968781148725200246325005859550973265669759408809248852766267444246672639 8494549409633358854494438550708277866043263766955889909423392133453243745869236955358408441578541048678823088765914992585877613493789393381723956612673264586058860998331302388177066929334834048048944814411828434656375280816656029472988769848951911289727995059763032773051776937678299759925957344752814862839444189362992099002413580600242332685520325343646493589775270690343598809038877648352811417289852206157665771897459969312690499427459585774890 0715017710280050510218508746333748028182672386637611059367212151178910066446038280924572444314173858083144173658768637249757501724180505564815645888269442413625697379292255945902050613210392317227946862868956199674192340073901316879381804182128317285099359198047059989085315255060611129029607455276541605554323462610167088128515203185163523305468450163097876868862516095539218201938430432208578808474078482365115168524579205376362858300472488949906 2322027715010389354247920672721803903231808545493523002157032240483035751683461419504518377046131294502206404923254337208233095668957898208001861335005068753785517389822960864579261346012293364278941293472373772411834710567199474988132556630241748551125446135307313825080177595900205755256882935354103329405824763345954891191480026305941122856290209919829708922675202451182220011255715792407336505746127588382381239480241104044907188979390179213491 7798575028751711212449707103662889052674505062509392601996539954670766856145659300467217310496756990455624866338937724735088968724553086783819397974149839080870071248444061484882489613102697330738591249879037418706260010514215839040887612370365371352029294878765054888518285342824841003839855366231337645767092370447705443448028249088623220965866449859194336311920583162054531014457848223373995095568172734145085035650280593064829271852974721285323 8817532400077625654889901114846834623218046070717582378163621157379393336563514361265578824300183870597868274534862241033127098248694442254632051824297733063193782880524736277279010236575158387770445736380232431010591330252239746032544228425304763924993687412259412525344274571914357904261985598032355410755517179602225731007940379296322417785536177805088049496315873832128675554297068865951555521682850849181846715119760879072356978603646204109197 2064930041231501888377704583113976291870092380526818209787516650895211993782704945513992044479894337884842312224876272598929978954825746643485755792646037586224230854016062202312395837939679061860820207384862333850063860371679539464128279817191131196147821670008308089507854458132669548181663862569509252316482191782213462414175913354379790283414237783538889205956684619798105231928257665293832880911966876104818588964544244022054274896911206933353 4552351730720139527954521612369056345572702560858266064853839180881791607076066138641953390753463104231631434614551495468392152545717652301762790713467029896411934810468624873109129058828693056154855010986571699431794832040020461502892242832539872040350919383645420568065798193492377797399236164339232844122291241613102368123841230940085955594392123890261014800241184367325721856692868521171174389577355671369440365534188266303219673712204778461396 7242423934382065575710146521083904110580254990574309270936597181213253729453276129255716033811599327295120079560078112053314636112722208931150147192517953524282097046383536281323733050395799214257143099602033906880057835187398188931411813030607371891553698731169760498551140763775109513049911398393241826775067861293093343419446004710929787141898483801103110274188437832920482839062201145924541976522126891453178721214513312677987845560445615959524 9754529857535222154681714898414511138425081410550130854896234243628497910419440009535419847829409880436504183375719505308169336254654866850676594860210844032088836979178574562358881459948339271283258175664781489307630183188450317518770254338151217217473808647418369178051185427139283059255152036961544265579274334095174087902928468948476751281828993693696380052096625809630952244784114162334706388675154201504131753538500081328771628081047001883468 9655555443257656803765673502026726529968266884467810665749563509998596178894324430751583105497717634532380639058204773181162089074001240149200801923869544920213679302425802464651769831056714850197856958739975556787502966173286707949082756613216383025793652727117235764937197729881838765016004696019807626071729733871958649870990996872471749476111410147825901880118245361021522042204981976181635300339885999787260560375797598680307331475224756400757 1518792201644858905540902200692157100677635924985723995527632014441216849154357780055265954849998512479780901999090881425545314201117411693915483314820573828041454362718046468662629137358234966482875220896995836290036596212940685485088790079706097153615049303070971447935664014903112055308082409502443841987582416470860586489907394068754413110174450351946487233176746260249006611578886109716268850323904256421665793019714233077714453553878628432514 3360212501899094526144540052685213771778766749432239192593559065144012279953236573878596336671886798210051122484817540292475013669500504759670844180126373458801066225304001850669818109719049088130229187287636601125981634073025813256626207879429393773088340581698229404803439324680675520008530432140538370368119674497364266432990337815352550225246825427764482726049064908269772138869837559244207237728578067019484075482502459031366717778767945828097 1200747091410334539792304070212470478959724163063167939042624636533153824680278462999849295582970677703673617809127448651096131947837554214734726097785221422069774417333930237588915451744621841465888174063321925106639986263693688001561290539774891786922752271866000006486886069438433416956897619104793155040737906994805414239314034277212056417610191846519831622755248470937887500888830317863573072829187673035632713538749271862784783688027045784857 0870734728184365507652351170625675594045614751081746288865138894890196169187358664401789113965033124828628212773234149566257038143667039496496422017426965254125031386671549257792425824718393040622119315529395247295659610883491077311846506610853782237227650723300729864336816764066348271265966113355194054621502427959882603393437778513689665892077747703809123061987976754485388849348861517902298951335515131781694479389844805510160447538729346020810 5642399995653132943818118179491682066434229861417488886246889109104015783835789046470338506242254509152617858172096015495904190198081724986333236532399620352998335812881844400312316684412820921571036500317793276716554859267887642911944388521823389650944951082992926077565435181399883335003165944187490157382515153491173025292109119075949224257483071597071033946394772901771111795483875324543082191957109711631365585111336167799267450022545674617270 2619265822809693016765263536797856218150440685524250206327743120789245928073083160954493228199057876042271412546989922037225580941931329073979529846907496688497302828612768342445094025419733427838637133216298271886802877048859039816542665131221746650688390343880540662876132415147364980113225683524539644591778808774654570209538890575598696204337257885828876643040148602881347856677752231677008528156703135170869936872283959797761427043044338753674 0461034096265981400795953733803766082066807101929880983464611253521726264746148090624508435609183266233286147657178873670704326449642375583111810861353206304527313550133893258469803965075894599527870986867736616656527294096627095361899238083435232506453540653636670081238084314212916084893926064757504243607733700769780104862268669732720613130877124288380795136823259604935462698754785069760870906213944467098705043539971706828557773245561833859672 5841529584388095410036379769074832639223226967631086303998106796892341608259466054119657825083379100517643071960066914226778080310863589495491266601968216898487279809973651882678777310532850591912303608390383406391113657529384738732739647586951190390961292144657800965627823085485257649831923721384198581880491491408122029836664762563895359153095424421023811400942201054358733602176560751537841989836183058408095095792328872313144825688115900293087 0419488419522251557714253601969600071163474474393500568456344376900335741760282554910888521532392506087844859788167278966902631720010672064720740459424890050807628233972035138346041011685589515018945459228325869990993583184838883333495905712543219713999285566983682627054269275987881498938895553277521957161988467584092669237122724294525243982523836417638668895023936487670293181515076725859767848492337458449430892319353106512504708445945982293233 9044945520691951947530503597462788335698461320222129938974906934284023355296263560276993322927250894302020639727851055890584430078972050488044129234894746728867838915026228885291287429527504355650209629422473679346403525512695447933149314320123748438652466578663381046029077025167406752254703544717816861485292245879861896172324465895281971514061410121927327569484710478372857694609245181691687995355804049841241104919757439292511009593142809765921 9158870146386551402977596012953584700768611682922644374888309035896186112660684982818072956009457321865073950634395701253548259150353689577146691650957644504336265125119916820408853488218399214903746883206389219583967718072126073278856195131355765752434134536657084865934159844354645376945359090314079655081066049468224721451838346650131789067411039280361890014419260045177269902946519122625302754503806032488518836047936463224990548258049577601974 0854482383090288704159731204703163934836548926547230251529080407727077303618518251961201662424935513390875866910423295025219622274262425667159298289304043119006795704120100840947826597883650327603103028484313256421105347720758350314603861753293827376171032952138127566993973744418533716325063558390500476440504318465550507304089903892699362886204694026958443150631088978643382529879170065955281987833755417779176288761977750252490672963806218479450 1401437110271575943654040883382581796441943083330859984775988917685225290274578421689690036843713892403690325632174580396528818827581867775090350407785677282152803744178285539246393030179355759946961952814180998160358562272455412759745369637536195570980535234513266574644682623554839759342756845834543058091598382508947389287692102976887429987118954151732043580651915856132717351681114909835419221182834703657288674488155998026216334728734343000146 1760387865900136880255812776602634600144920817095907337266610360736242308598843852524693473596609937969756917834925603693389615646024653120908008670272784774156103600087897533676639449245622950923406638335836132514639323912202114104758373638153882739120159065947488481804948983636563622348542146894400775250800230777863764248086281910281820347118317437303493344261779754369537719481282156429854650561096435593803114776643035513388882948516981378638 7513074991074046317672875953236553329126594764048735628441175079713904740055133239389619555128569785980204776976005252060680548352054715812429473628012190883115120816936817092279617805040894557835991309347632280801514996988913569688136111051402341987841705950776564048246311888590148083377611155237681938306357143194096425742267143549818473954077948135087788954885441300133174612510004307332540107531424253624326777980106057834007304622567359488688 5619126692356012329843557726500006474319751470222670528280388950057002152053908057026851688179096653597758126368885914769419797482970011325857658785726696799680032089677189952205029203490718021401691020056286547729600869263802729111469401471195506772843968772487327158127480428597810302450513289974410757541535707520610369102909431370692300027584895321251197846884642301068044903732891922605837738861309121071177058775287031874653045525558154038878 5652417324957369774887607670119504928941832459182180707700622495028789984059966097284353140332007498193707480320834245563618631659974150015818925437235841475658435711934943348597563546491917525117456083081918043863357646830719241410750040948868501060599618501420458616536896955114758739606606076195171626252502367814350592999274323654217871595338031759236278898782949132690189601796158873699583536315303050304832586192093522214594208207413039779873 8379090640621247797034395114163048800821786819413639283924963789204424567103999952897567048617902880627342384547397844728193551281160733812632791742199283209721893969611128149769722842643702754075034764079013453331331324564963028811571355381128154995238826309068009825704032522248214189545731194710504933927455593513204206562153689294936646864090563109585365986127655029652850490850254774598215669295127371133217455907531571802909943258834053869948 1640996723253122460832108993175248992344381194820664316769432057280142533520526218782872148908350656108741927216443745740883270167599430945650145995388325564824040661128333322934694473822981475820213179753550555457762429632551222563613964468549978940344397493681610165919412356501732770121225749665266463117307115734836669975131418259115846143281085787581342173761329838207675195559755419571723966422267645474652002119862782287820240364525990263546 1770596464704118323000965795490248713711791563189956210816754283526888091179891832700151008943093350226550988041726814890881229128708295210976641544476183309811369127897747712298020213321274658985263467192662455538831927714499914083410105952487256903065476732185557814100283844205889041468210966905433755520653291342320411149444100772459855641528901216225842635255114707859555321360988093289506964483761877632525942710870131467907675027632598732576 6791190434282627051475245364942311690421570359226975853210231171944589747868172321561144409284498744812255972316167944415034458684482061781214268917234825687477876627836168367743249408773244948988691063112600380478865818134246210720845544736421518472876874593713829842803509208275211768993845949109624624375453677491827465418467347459270497448425473396257541989940808113988809617887011452014324499095869529262140219339730031606517359189393323587541 3795465408213880912747306543545173566449093275849006172638897645842184591345904519770084034522599909618879193398402889543235627906082493689415463236116775294038268346235551942863309956512636968001156488804892946266193646523184340988345860273058541333874462705453538350203975715425221285252128218301302993326617904122269238706146828426457480684458555758248668872135025417309371260417969124276481319974611402653413800502024718139556939770266513648400 9479262014589759138181669048177231659380550527069076839774618455309912602312300839997984107604782938514159887872479842239091437645430731876545189095326502310947742636863639679565102799543304550196299510289841429099115580018885576177703373467445467848761475525096699445065903373930150031316083832059972984457035801649539935756873406560221992121815670455920865803054460810365368880519721305776033697791282130976053685806300795151760564762996410624739 8349695899949168518709749894440934598359352326346812880259885425319651316359589443145420068157243560539801859680943714942865566944149003491115569797346153042368660689450470004538919216435945629122204204541554833978183611551289833126210250769674369298551683203785418677422376337169514555308472609142939192564006809487739878753639043132845210957787024572168036765425369755669337691689372159682642757537449497418005416994427085677468627943345741278193 4597508929237014499253445514353396620616846162869463188341163816873263566096684426618168508783583022017268272795159491962988946547141503006699417879085694450273240803777842715034138537355605050774296153837658200559422209594072775101931880464424558912948593645383784405015959209169180992093220851226729247492051440151722161097921221026915723023656934985512430923066030593657798502968717352913344997241629647348256737640787833029427750736521959651753 9511732842538480999346666970118541311640518949526554950081439314826648814446464020940783235393423612349538986248150164626287251406844154032324103038129212028434275834077158714583810420168862545619529592250289375037943829260402097400297659130668606595275532751069879445414339965551619498692094065915238201172767866616283443831248166625203883657625412669984546456630562695630052414535081644907959147990964778200244813028767072494468710070397159911375 9347014971086244076651521471989330630186021305048086070345183800627956418712285362423280665412324259297091097700292972121994744426228543308684127337911626984752085482300415690572101220265546980356715481577352519046914043093788933407978357663892407945831053809339861714613321315002679579725818962290576615119916240999193263215059982468159612035086196162185140955383507737097381655129651352026318952939243562395145390317544223633130657390191841231458 9429905606842925375989779182457369869473304239369233735211154133584762038181426924586220681605170577372233329961192988887052130039696680004463367180969237088530503608758432040275575677296700500709344562921987559009851741611710104989587970844695219578481169471998915071084496263525467031605791774211693822077220932352600571823423623934394111679245840915260616864130025591430568111117797082777361518323078893856675090928097083693313274270041040190294 6144372591081348354917074104732302975622169328016927704919328931914111490886972438904204922187582597997067564392655969402138114267128981672957428040764685833698703542339906412061908925873490116640570308240076491226128501018729351002460461822256831532382619806998211838401071948228998960737201090757034014732667850030562583899804980719849773423190191747246598372272074210855769543250590340703340504822422614308762808883420167299418449561628869589213 4723418576797210819805461815839733317831479781392885064825825088189657616971791871415017060915450039966398970448413092125469123200475844245375100418446477104934773844112579849619665499434168902643712951268056230282085270878043999881177877526438418231405761652466193118860690405132423239531733139514493709568694609307469314164276161660931859705889566352596023775307483043131652545728120657912367284982185753474555387547682602700226624748154671053178 2539114273717207458271650962764009915847504336343182654635440264040597328437116507225403265136655394981890509934793798198580697821865502181327039315360049815369763298650553658774363415217958775612451858034830994833708860254890915258282377983668348739557098706627632980572519218791453602855717737671378299615779605186852177462472797744589456125497437428319048153508095360334517620186222460126046248802268144890302086995405340681415438518493965990384 5911174586904095735814668336030323456446280634305244412220994971113470241456023969311815207755289287487893639618928372948700793311171332579697602283983177455775458612993110518107239694876579428203755884462077707173234133890415195554046475576327027653380107926590450199139991114863195571322212459932729859118497350132241737752767249833216157371180056909299700801812447186896657877268005455511536819797198826848078945227542433487036723188421035203504 8530872411544593847549658620092222075697993203380369371970118620686785419495255563324660911586550421706176765066648772023067335212871229572864628593292686770613076925551413724934001927652248539432700595619641090703916208440328327989866193987592464676893911495031828083479399860466583725069502132569217564902388765615240185217012211621274685894817898502864744778728805223523568228520359372244127993663796742824483964378068084949230172094688777742518 6607959324537172908026139941096976765466340943127143436880658920699238896633992377814747893502809437366027590036462416130091873498595963428047847369567350496512427843588542222945033800113262003971584611455196041542091202354470533820147803874100072252486231838881937801921658210374416709758573537411340839395522857874706821842943745044891824751438878123345558634507762627021771657630862420917470500401708664012755923070392599025709615495474257433275 7651801896883382854955713228848591640290722819747439084329162549923360313093772591162447164874142268157619944324616057295606007775572712147755502821957088598761030861652699743456773684934533075310785509520368342153820268676367990480875512997682554833269000521950313002848256936888101150090070833401009054160543970501044880124123142517279266978094246624616089531136154168053097688007906225531274958649556987999188853625530061132458335482857506369488 2255737304037192527978009324019657545394260194974997779469639167367418736987987825059437117506136845125583580071465597991832278671542835371934195490622248935956224872350015965515958203602782874174520513574548409743275382575552195680734777891272429525285475377416310543712273922030540663165394607929542801194972285986886262095970577136576745769464229858567404085499316146892335485678633144181922122136886299706540317111527979213893436282996378841327 7829395098920549556847867473011837384550561314781570541630118146051812583181526609932668565644749486427236111006399020153193412882598321073694949529160862702977939042236362515914082470343247036819246398275189526910227950314933730899837799279245439411604715911973315412320997178133722888601536303280053212834939228219427985955455416679258510853206403209848850627815661621488128466767270416201689843688069485991007452575301982376453842056047226797984 5632601505549341618925533263566771752943034111901878705682235547120159829502893609563368361185608376927023150693340265942304195620459672440770113647316949691061304972832176408469533539206481500583501825585103085490348803833748183194421881309584774220376952264714441724599395934119070544163630797214176855938286411209471656201941013076569395469755996400829760053541886617882311102017271557302255059529033501374025869285427719746698446360302981411834 5183219329346621191049720611973683629567033419427791676238341546392166558972067100211039085968668390528173719652781392134501547568786291318332843345475807220124754674876828981892346880324971215786221858465238181791603387622054450261053527730169177366478088241739088445258913852404189170539301360562050253228909091314659975223046546496264872705050427985635524999568943548465629053352838905240747682823469442512422052432146049691151599502745119211568 2913619877757442997508199457149787740475436646671218367186399859386477584804973795743103135561069226488933237941886210343030099671295756250603303590322176674941553563372391168890323669273923796055594782223183502575769569048499578355341992708004537102909673080487193192187349050957832790929334097901123050953551778787974257302591266151473309719502128366443945796395942721434847918265638596525320195043897241592694683925242421860380728712661664237383 5217683934465689422500055758131518403085059725619469623569650725848509348137829283722170682289794264165425784454200928474864542851382837277838133513581940827953579228398897399113773593148731564341268557738938282797440373940385808905475853764692026568181661000376224592307825369028319760597426613455826289520007471751986613934845228586067098922913986007376721642745021841899068751282105164071420660638958780283243197758108844372613835546296124606128 1033813110128147483064925001565512390649263760563155724150594446447578971934930991026680957081484238104884185792550051367684291351141125175793902226258740088453641633871277575302581962372271590742555475734011936308352925466276945714811338665484639021230369169058049540678417310559465918598303503065831399068316976483876101199519366253613888976226616508466733759478466304203938446589038464883472822845237953170699411613641081944696996724440746928392 3641305679339230152919108360753578089544072265784231508405883419547823568799736621842186804968764307531395163670366263754439135185429397386393035047322416695286543843954922710470012092173801038357609531156944974648759568577239395946125495083017942186451249760690958553284814130398283321957441569941230839326637951758977091254917797311845939926153452213996141098349106184057736741482444413357246529150310050804462575025374527545985515392948604233021 4582807131173753191394089351712155180430170462205544797376696674789317309627148178043205241537398501695409051168830681253148680904395232324376023162252504388366898685706616530661819045685274746655871617726585165073415506594517561366784259071595185264923266119894199276978330288377794111175014474104229080890236608339194065211139323726761359788538923428288900897730547336312680332517109129839261484970005426861602994296096384886444060049102945503966 5291702342363466065042222960210987858800694421569857705366984484108686731050696302960906193423160663874899001882894951256155911024044628205315937709684265648034603378173148140538450449907592035509064459099090914452597256714953028272645215273966122182604134614750102864922445726576575452903240547143706012344312177520657776455271900115395334250541807539121915059837985261573370516229544119703078887431739989145794825349987158969437877343737675161566 3954647624352081865315975103666897077758328386505752358050171402323620418208538777467983029508442338331103745806536419079447497062847706547679482962188669259068217600673139160665816078583284251386246833062603366795467912492230323889295687728947612151536396030940627653119766901091138048740549377875158608275732363545668580674906271659721599029921867086138968951373706831731568009195548277920465055777750668885211866929765211039077863184433695906723 52028399996432396387686732036137916466867950311217912679120494226863196952264941526031838460165370450925925788004244059443494676228555085452556602069422687732189463339027671535820222547033122347985668270282524598801234683953776355174689122536788123818919954637844127033241


0042491967200921485676401596976159704057369425903568270576217269808261258458059616706188663328402633856482864261038593074900732614647683459041578797930499820505904321300238863933029787387361962755332185958012662216325846640775464765793633808544964957096554919468161205115569439108079681353938460597500671795063102561224795271996046570862538431272191945200310509319123694795458561223792958467448322080383851926631532382845070622235541635575201604845 8595787727964356640792897731517789254324601637419516533248548662125998117972463576280561784916758392325772236684392313904636250636402302831723001378553839784405960356833268427992665461606721109596063883424295043002336365108733945914246608246878679142241097259955121353439193233952088570015903804469826631106954585363846429954740680406796096334008965964761233501181547182215652025938005625906215027290122242604041472615840342781626054598733857245637 1477792160474827443344111296731237676119862978669863080241795004730990548680786839290099752578360568423252734512493884646426117437845901765446954096515947087299765071127626661175786960190328974286263834806460258351836519591472871025416090341710762667758150465169462544957993828996178666609857273572606855066958690375723054995572090626217139470396850395236312944870874152476422506065216697079552830412810868604973922953659243154172599393270748607956 6741459387068412327500416690860257614875887987623593673475462930459683470578182433923747399924993182137763038375299038515104921386268559486228289802909860409840116650732228999532240562234847784269088277733330025209570716387891375728361113161508282405867748061283780997658812245009750709847914399252401416224053285985178406026775338192282678495278866724568933375945160731956862168560635120350246309928374185078076042047738430532548387635924125575316 3645229316351178652228232896444831910269247416363399928053530936659261798644249549488461748132899568137313948309594995811247355548837387112521903370051546804023677832615442406566906224043635791995891916187319853048280061974222320988366936470840181232141747627673223947330600405172628593548541188246139912254599360462896971413416520309350257355936126114513964764664902106275445737497714471550805888268603135966157597888808251340841751240842314218875 9570263961666676842178850151166502959559786184159605479201785548116465418583113141209127828459690444808181998063143890380522074970999644592680426847344541557810334493205950156320196305397621418073990862708480643032178002476090143977156423120072263543493273799157315518591100652472774851997101984779766556894491967164861686707903757170664835628080325964867673404584205686501819370242695253648169558145909093659078076868124386399342565535330465056785 0655486555712821183817396599836335767803088710405729720638481947048233307935220906084398628018386708952979494559033980397505682344935367837444146988538880452810081360625583295193112119347517762845206651922225273866969263002566560571379874677472263219110395446393846121845585775692692112744696565407157141418197949229614464039021523936521713197016823791016253905630796286769037036699987201010551972758839049026661939716483481149742391173870422714295 0498039184409203535350564648264709088316271727043914121423842292160092712912360067010295249048268895285813608494320353804135696451593092433827730106982907400363781910721422010919069241872160277555804593264901521505941423353135286277882691268505700877094417670821111780339161323107788454769589235628606267690636811548086194488650598563498242078522482102735571711682860437427930019053242147326980760359336634855924681912023947148092123328418605006258 5379108555395006935143257214182173424169658289168710477383110597050998134940969399553351724534645472530194525002197042367256339419925959139030043726038976533972333101892731998036678696654613980753800150074994058963965696044446341048889101877254017581364829927018989318743514757195119016432624565142006231074765452195530622094090762265639677031822328595936090281625230627976852910671388077127464190257056024461237830789026485486006490087858777224582 8110243449387066147744535679373207145334080832496103686003164871160455763852964000928899056590388078720153816868605784536026239537615843658764131568954201845166804253112509061280575860518512612612637270196042362190166991290755289148425500020316639433680320405711411604237579803585659563124749946956984951358676171716148613421187649219985740236045258155314008760929919647446288133829073216882269131573555149018421727816778521303836603763561290076854 4531563881090587180694081778190789574514335959383903513995923221581547874786726203342273037795254810134334887011269882527069457297044292547385863958940316252418176801033883738925978285637951334907225664398213604080607695122990547942207745586977993303444390441999735760797502802035252928636562271663753010434815414543327065339165099594673587113493338216698948567055738078220021731209391530078265261286845142429072659990570958254860430354523299996515 5578146176895285778053665489485926317291170626203829798016084121593188188696290282871579787179368849040257669196947891197016642307944711630047969166029633665411656714129266583864167655842583466265066904169951079819904156389709616578360678034580385887549043983668110794625922809484398900347357457657221278020507663612424745302728327791975368709460269211026412850520464771511319590975978475200954067737217411843995901350727293059963625355275183651258 4260472280813050170163645829887952963874735239442289840412742307669265753891912937927022735871589067800740485921648396309083923403988400951287322298306185307149444124552897445431895856118740001809527520962851371172568457262195438787859256273722400118928592109735917744530909913760185710513365526899609798279669130166471364566970732370814846534938788898100994832982220454610020172043612751203153811658299101511869430491144759374415119921482776988466 7239091980921508515824456105200887185460698730137255363463299564455463872644523269557824381689553110896531340698420412186385006905379902901129655602973049646054821960184977149958716016018632187928577655514826098688914664178674355486398857672164079809930784644700415892529812120080775469404448690228534770939508682132340733873815211764044476048345552930529995893020716502131845576085163782416290715979408661795263226509087062500009785294598803412110 8255776072014188772749071012838936324373447553276610994629820292478457279595995866906046000101825538486745656582757507158587296867716751114872652122065893051470298169911459357597062405238204272016760908971936440310471427018901122919727832816021135597563255486999922433885045198582826291038182261226559925915970829197862331931668810629752541068411710862598703071440860838890816173401839452178676169102178400070572151153318183463981090485505984190806 5379840393196765261825490144962826381313686830190537277629022140822825320503157581449110521496934008005917184288674742328188920822109870751009609422271796061186875231086513054879407303247558551585727129568516671150265857537215249702073566554287480481883816894380929471939249707834269119816210471308309570279144044887529446522288091642693221208914373532634347018941418654987580854438978375427611160482194498573399194641634510588275964150749708686870 6533308767468551708636722004133550690898227033638087248324773623842767127299827900047237503365691359648505894871179717735895375235172704532988089768706037171689381311492611799076386817572277825030379948105309971413321067911176939082497857595017347343274863356684315499742555434287981387288858840828665550630311692303426240065192461820851294051384109438338309943373235611840834156109525474454266787441539452743808547815748171805542923017257708254215 5145523116898159841576303310410248678593445139563372056885889069057119083999697995213344839522875922839778656931697054502755249860375938138006589525705654871539925942499971731716797625183078071800651730515295633826327932127180626959480634164969102111602364643235890477243477665172504370188262115843764422666620475127825235188702178980272672802771182277315210303587264208245289884331683157916664992568216114499034246695153246391357047807685268989984 8932052533721012467448559451168698251650863150655902335060894613325964758574047430716451021988964666857650930833004568187275724168076705921604355468100929255939564895332950279715672189202732570815062770907173871031323842496009919676665726212488713499205697235869332407381117705573234609021579847223452138277157958034722054025896644153905341213744700508903387153834939078365114580792027210147906297989923573034032499697624060788973218431088244930826 6190802622049990112859749295562772174646114689939294010594942097338175943828780250444099687534019038860177170124591227676884675715236965521220057724245036539737696902851785827201084335983398454456817840625749043191708774382410403186714142041720368114298950367725654607105012860183188433059026704135914468999688471783347040829146812415474309300998153842585056327604739087689049279322492409534991903416211544608213898364543627345255421371578915213206 0376564346128773346423265279490788381923864447557705950091194441422576047487273346424607959246298170464153460651330840957147648715521286086578470735295517681275823209533816373144290474179840268935951138362336190365221936869489539292986105606543505797027155112426086430859272820573203824528633753600405371597766322099134912226229821552464413415294565515770151918986924072986258052706984831289548079625435319741712858425766114028200953496918021677875 0906409638893891048450466408657503729405221041128000954731966004650043944216848594220901445242927222558490593663824402773328362645030305335399309698777034309071233257624941496016107924287316685263884527512670603005707641095261429896648818120396063873408498555009417321987796675327499620118697725690414469020624776565535065664237591469173330727489154340583008070722148098316774819302173684537002122864915199448086439186071365067385266280290156868007 3865848269567625421052986411659338692482538337878752134922296988954977033420478617409807162101844151617722148191100437333711693674308773266973085990103719739779496102842916186841275756991398649211424787814353108830701287103774766452424063043283708377315256119447305575523791098461773531290644241044708945166904880695091460731826894492787888493093950009950702290353435392133255894765250328071052854241242946878306631082799514039926485381943346180295 6014311243285648469653171701739125387897466609714539422772741011442393879589598789105456641042681478911626857280359967830398709786663444404744950237805374940891697917385372097470734527397946057249275908249278258335068256908378083545693636681739559150054891171229458934250193970208963987204233608131092995278188504027712873857443547058197144905713041591925075571511856871245138617084613762199481388155508293884837569145259023563970063111260122118004 3703847770706721578829144725047038571195085880934755063748382935317775380885589411741926329374954300085072224839222875439442262626959819118969563052527909934629461536093616354944787917503777137415907062317596724558368532599842155881031625624442765549902532750176313629431277960119164305097169595321129920452717744965463360265153656582884193638793377535522100075233062499389170886030551349824542033286014988225189244497897136543887876073258396869412 3983880820433462661172204379981330742351367849908458648166662862011101678772854932272589731796290083893809378368862243092816036269180732135646537153505048869164778779185842773790818861314754357370438396416108668454477860518569883643545539414674488362256907582297656680517777748487429731521740717222408996252027134463802893843314525169836380731179921467836533342174788805977284261602035843082892445143907954874192059946703109376776927346001157263547 8653303787050882558626169169547527360426276524262803824771112903565310920613755010415351635002947736028030426515606870445034565865327374888313887136360128083391312685040569730582623675060661853976157041742174275940940477766295856099304644453696935713123533139018447310167028536689418035023616326193267872577312149724982450873030342047625852256587138441719279864813496990033682366359258820601075142130599354051182398221393595842421288680155694960131 6342658839229035170296385493143120268575172092434167716759536738545958915630415154340888500416067053346654082813070083289776148824969628924016042114161510361797779321029713476265799794021546997803877847940159881608521421353530414979434853189195283011575006555852642361877164423608307897345825052329324364026437592459180056329087230507629703648435508696762133108287701771634937764001574077061929099773118327157053720920536540297077678672665327793308 5996580010922173623890413584279519335088822145436519113434014342809428932147888483073872577049742533246466094835351665781767074465378364802847096926101318645029312296165994373555820292882023445072827713813735310873868156668468058416553952406315115736792154911263247750126529807086865320787180461286792428807755570652927825941943007588427801209591016637750414014314456516093920421399550727498787244571094135555045015722897094705928715478578423754955 5530688277162786068182464764719997298003673328772074752265359103975496408864254765241431378861906622713920337483035553828434447644598243634065327813631957808343899184020729563312274240406329113697622685654000106238986047816686297777840312794899917073967230675221629509652878963150378284676791610967455848873593475491086691961722460379433265367175326679642757594399604997668066120400165330285049499728607042754250937207738586370041544102605952449370 7585003637841381860779567606680646172342950075239776514594329489671900183945085350711525082628454534527375779691224833371923427615820308014628017675628250240714602509716056309317672459307604868824879005384715805207507448203052649668981999402515794942321159027841043254258353371777888992395174636657432613728518110052927573466418481851815699443404088180376875351974066363047833728440558181929943124928206995745614238266530509813446643009698835798899 9333648249647226676786609483821820069176447799515410064831495092340231329855502076012976597654825143221427726580666575578245211435118357337237730492437142595702958551587115638880779956709924041678394507854184745979089815804130829675468152034660396987843938308183923747716278977138284443405134095116842773409217690725247631089224446647891168794325132220073651534562311855013874215233544503089388539861014611069074891095663596629481504685467562292894 1510892372943193195614918231825611290602583642878172194929175345388235279936285889636367951806699435539473796067883863943299218278556841255867799549795461330287862146465157139916591402845873487027052610698170625680635866012816449797246668164161969879886773684747096351963496757677241171938898911618410167572490652812301639681693150030825201489745797388900152682402377798309724004631085064997410591209501570775841414891805283246730618351409517491370 7885125975348247692650042368546235843601597072961828044309168026370057859215113722012165857223365413744447659413954964395531325161609658018099208779083525790375772675062232251858830607569323189563374733180715366869988498638691437039379137969021750962586928425716912905420020815546977772690884691552481174499936570726048504395080918943285304474939896300603185187727458210524655774108122548587461398410245523154697286056159900491973013387453043160232 4644992651250170425989598182556523887587795429109096721908835535777249868613661528049587621544173261930411792496997142364803945636309930720835169224953962020083881511918372444522752636688920992957667709566738351889661959616053753500860232336482872126727945718259271787177324843095828273573981941079466564284153735209789228890021037317202758664290118383502401038262269418554517462360055390533684447990378023149350091043351555983611865012604956960259 1345769365876222655770632075180259102970974492951788854202119297169126631041420914010786425238613208134763454729775317440856732210322546073930167741895602027299203162479753768627807845971052132685726453736242255319250951861718760134511243376299053555461959175254804303890441737617913169627434487853115501952536997807793447126384248899343581917195672961221652053462230855341045461753516028530353170601408812136373334586374744900712868341362130746643 1499196264587662383247945685549526493664650173730252699119087348893838082204903139990505627544398890446347223256585859879118866887408069701032026820399164596539398276313976757586756306611912485289248569949554527475825958380592669805669093152791187730205978970631378708933883220709508976733530085556152945784936406639124522960126695960096262492362354350067173565750932462110097876387859400037811122554818628659191302654661216074980353256023443563676 3124118158964697385615082951931800657154126306228994298631809447088299969778236008373193275931245373029308031970839167921123822037759386912820570401257724448615797828970323720982431419952191356933990701376486572379409018973102677314647704915431246335314923116498284611912232044329798798865455048855028172241271964129621425524408143383318483554853164891565559472845494159518329931788517978572333349821971674522093982279470389483093870068880950095001 7601865107568261901821225987911067357657410237188662724699351075758553148758506068892653011018387189835211172154353512759382643296902223394938045976378558090731716349568750327089865704509163882052480794235222753568708256026031828129257727003799185301263523799010619425957035219797869460379340909076816903937424032942224485649062429240690413555579781762809939784678087508737889272173505415721686106252435312971752870170021713892652686261966868712382 2200180819981055671128721788669286651408685730731420302602941758006147543396996144541957801734713074532518466502487391866312265912601566023637862665201617416091315672128370430238318580118360359563761144021963419885177735871538027980839239623069592894450288127077113265979220538364752490063865053846735265471279601392705742533572399284392566821190075920761228272723860856213827653499339217228831328929444455418559118523325131830035127913792520760388 2293290768317757284347671056843279974476200796878545960902303706015474437242611467397637614102508918193427878230418831155679580454124311921034413514902690955017999960420723226099427493619621259445847015799426738408269168070342003733428173588242204803457761918055384418670610927864754468711090427656490961336789669320618650990481167965986055034049205961741584031837366244498788910350470616500092549942339456621656246048636275236757195846212709710103 5867837376285945519035694807841844204611642743268607874808440542518712273222200262143479895429528267493240381500981848046570078416191838634925747769264605691767553183675482278920331802726653109312711643679338196228009595413304787068427586157839815966786353122126491074162834036375848986732387826613769035930136232429615603116634579503348069604146809599985141673315641663661063813593337029105580951861002596596933585381337026672093038574257421678642 9063642546277737124516142500896386538595275801322289186537906079328441153123957194433305971116746266490238943266717961130794582310441191900797838817152230006700944002400638759226943622851083989082522875583396750453543274241265645394801066480187933702647796786435630154195928502562439369802444070041489810128503847612557665321967998949975116516655256803543642604731499806941576711495717908706191447997252271479529327963073535876112075829068056459270 7528771761173126629456760366335713353483622574923160908849973395000823908022708340184421860239715622689469759011211164176352819617880020135508986069980355503955076960175235571734913676580503663480989176623747277794438892098679516938936159532508157610426498077187885831916660258754558558020712496020356901436024116067650944175116399552511760463554583545586837333273783538558665765175565323846658898639838629579349798658078391202883732216541805510150 4518391046892095056442926187130727188975971985224621314295193673784547251284191391728084319502081487214486818091226214195079624858367872512008495905249253663525575397130128252266631931267472711708740168740198182053009569012107994936932404638634100522606283359784777509936197411021609915334124174563222729142898453154604467932463165850820599008444304452923568356130595857276984976510035763738094889043789814971338944112155340478285383410251586273452 2092981378958015125267959050168838110797793737852314075453642383267753725911397231685879268790411956752555832558943262474631695959323793280773972152341316510233269555100425671347816568789443259010203076129931870611713111472446847380987616613298215895237336732356716715456141755516238807971200015234531119945417833872460867591965315696494597543435262414717377027351623521869084588169433264954360963069032786367827217343378723421220127791453073615284 4291764593757545276655117361662493776258341232669470386618010995264161414469436866655412146535572510882313260444302059478295706469642084050663972063931736507351317300388044526225960365484863659694269514837219194053748866482246955138001416617534413109439766963048925949723208317530996261430784529933180165084520803236358264421016274310136612985587054229184691858535800025965709361068886707408368708490761257994716413099638885977280605725438367777594 5949487903959265587631921103227650583873043998704354154077217081533712281697253470848046067848153033982742535460673613310625536480782351719373197638292319760687931863997393970932923584652592525487847560669587367260250749646865932053476033302670225878939971559384670734638222108716543115987110832363590150691704625433514220561500233993163621226931614164516346722487008908575597842867209087050350595391102855612564991351759644938784685362718801645021 5023465660857544006212932808424563547806671370456568519259335922474643444968138939640957288030077415667409023826142450163971489926715058806214047363887717765209161257743011347519545220374908961631221049043534651801900090993521519640471458864773560214651224794178059004235182076679650785800263851082616667884855895074915864512661930983830583482629690713170673107171972808077684848057965875444137992944910704747182972801787259017034033300092303925380 6104167548466988957313506803868617426399244369000507783234698240692427033122344253381686955456854241317436885767212185233924551451954366292887749040043945594665507408427025138815422580127799362494827612553010957594107015575245701740197885097699952595617208689434091597258963492835929491764187707351188755733523909753386139046117441975491085823789453594881734097886394506170092273558356900405856227237806491162179925752635876771733782545081928110810 2159023883118495295970302890454635523927760376697180464550093663893952712937566183649877213557432275835211796176974028937456777117102096019708609988891974822781834064514963240191341985954666751863043821782298053647680859641348784882765133590607031616600807385645023674086326510479565555523905693241365906176731915774394061383800816228694214783660581227966013786881036422393449289901558277560476721452887526965184984097572531141269697999683583131116 3623016679676374068208473522076481987519882298630528018228873740084633583983983511917977005782448199586712374407288542554258820673303865935123488499797026231342809325846120618731449057393342952618555683158647234650823356311168990392980746237301858961751274620110241350253016504735987391299668773165788793314681146209300688222308872061583309685836479381171758723221188044075636045626651016083443677231341484618712669394355809447299222058095400341747 7116924948572249761131666871509490601304242787861170021809547239131794441841677024576301402297501831938044884481604777014040813741893954547596552735396146035191133930122313329913329256507989652308090598585740695106919203279334733972661495541705616616081542952178792420850189261589084277089990815410205163517964598157545596880694260180013035578554702715987600680733145181619407836722122385173317731783658569999622159384875883922489929110687127774169 3137472569565133430063065227379245510562669218808078118325867313696011209077146657944366288330014408158630986317264190633304404450805822811281548891619832293273181879995885127378387293850969905006909581505599686237771294231761972940408139418136027240514820820737951363148433542279393342776536861035254077258399965486187460681108544159937826344218383938448584852903530456971510991250442313825249252954008960027765387386635741563882743141102359953392 2274661428089503023576301847389969569687857964761481338527462600017284007661035335997001107429588617909344856882386140221202628100987841947785566957670602082972972849321728359478850747856268835413960452050327339001159768997592348823789600370474350944012621810109481571513305005269673475051595793024141924677188377990789709674198562062060336577626066200393475145895121231388967680521585832148587562100493982743377929100085634596084787274433460556184 8216303387229105564330934672192647866563146898144200381872110934389738986303817212957909299112743076719777291578376748546289285218082039671437850793363736950077276642667558541999588569725888941718854732457041265453872792938355542304128413701321311631686167649503182078123352807867036057531692611111413192742877904464559074531083030459561199477889297649507064639716814514629453124294363555488686361248826561240064409327046272099193802499353896059744 3351284906593630428301040581746061232043944596786199437588182107887055290972403150885180446976720704932193264273274749474657352706314008460022706069559676968769935816122080876142890824382822508271626545101507650711225487767831271048985812589031480801153234822354857562501636134324457554897084018525624878558411615590629157064001861938267871916714542297842701318556353007592339174371504225236871430802869738972306594087472615583200288560564305436754 7301269759923912140930782051634730568394435766080505495391291458645641895198421266755703261404016526464718191682556178050004366263986812632605156770373757632282557237224033732656343992610107277749134762717616978002420241745421963354236834210899820509839969309009668335172915560518003291237502797413833634655705452783485374761577072978602826423169895661621536415061191691186958507630088773984133144332352216108648075376275627953573261927680750591791 9753822080505536085921437064255882040794994568053209984521619529034874717291587880433789802719917575528412495164553897366903667977458510604923731647493348513891310767047816893150928005652508074003360262558797465873389588650455491059441871151078989476427723914132008590273134823051471147108625684424430556126457313179759466908304134034969841895264128081303923795354233955145164368583297176727033879966070502753808844666613249520847059562360351328876 3569283104042351423073689830225761893982210451471164975086495793133102305164007027404187229255253125550507519626309014190428815837860801872268853303342603241887419947430948709809007796896221521278204036387184986911556892852678851436920811198966991991759394422276598585296073161102727719303922875037352767460313649872860148590878010890276964810178419250513768363944327798589783499670751064591608079978149867462129594299294951034556123952851899664838 9315134166342562538722904207857003100505766723878249942293043318762933107599216334103488185307894578621304384469902259715109537842483964045195613952649940910541934802783338141050549750386325213441665253257834624105431372420513436561007097502647497506018793298970049526351080384880012217081134423115923301825065523290008053296095052967476178277649903380464927564246078440062247751022984090446457608828400843839653757251633090869365950113166805903176 0653994130467831860450062980954641179322276064394545097464031190004046101363637566525147633922056408539488115656651564144995469997989615517085192389641735048616440196028228370231053195494455715777919567588597530366609882202496886496240237376974149089622782626717164709054545896434251358107215509931278700181094793378001942881169713845597813034375911744983050397272005088385100204864527669175972913171516690414586990948299639788578847124158215181915 1311936465926550224699522520658612371086170777529724800962855738111726435043977239915913533372794371214939748639792624792457463092688060161268332810801373076067896388530352476247957729623303632060797531311700321563157739611414172670968457919889678233174980250090409276983988948694658406197088371187171626789505980379928186879083596767443867394110895371969861829767384589543924411217443260728143441568333778396580093324162653119758863863145759699162 8226060779033373953780686154995433439666253404137239336058376135713663148496022846567534731883339597694060242585033382282696716025148826483767031393661503046556944035909979588086530647752720761812141539410681855315173588005631797895081069982071232635714671453116275825250080620098353029985987653456158772655905776777052350680073472116044980648839123443149699456629688381099231793759615151983265012059878144161793289005863320956390449673274096775615 6579216951256957573430650111772794467699754846396367647409519787469857405002566630430496930378286467308890740676217208162910009270841088021980366469032006604898295265441973616508087089991399726806525622796418049464541564487670128005839444300387771355707804656432991321870606322081514275062240463573963323033417129205307955186159422189134174393464269860039630400508002042870415729593735309957716677615251624524092900687648409445244870829637234794663 4083467678892429045159840508607169534168927276857026100718961752877525160511457579234875828968827250058296434832572501948870491673293274144146938616110082120730148945094220915611353196601506009515300421518796800500925670277461697526917366335884789531048751627925415229157364741848801293707600826420065741850241704070543171728758494534967559692560581068000917355323392465539765805611506266857145888623136877825027075077938929852212898376757339444061 2389601946254801496866953716675692027945004146572845670685309943119591039872370249270901043532552598050115712122632847074507459034059643855282087291911849839551668044048721547532339125619945930281059752503341685465676518494539988852432775783503720834777412746381874054586392925447115055543227998182086818796986470104656134118680053965131346723238124944140474145964713110072333552028123385221405072386153693166089460593075675862667907505370161104070 3409092628267488775028597523751023854526779620553060275277743678194057795338407659371912339041612299389658775405042093316578069596534125892927690021058353472340561065145554293200917074504394701995669836627702247022883042665069045512194383705684670838235730118163228543400184304949798582621768415619917919935124153094915801007937477404039276368882693841499375805717517134475581593103274577418757637118775713224689227224249337777113957558484346931432 0561935228175997645633844635236679326941663652938292994731554160262278104340459712825822426701976096925423356800253834894656311249517014689940046400911880740870773299643030944043581834084141758018478995026247389569075478192665221993496740541728819110503325279002158545943175734588732769586397741338302654225157488127285818892732849776969110852593856521723918404258258231447031064760464814502022210286533308656374402259588047132186945014436681753853 0731589200519065754801582344915484431777081767125204611964939450188625676374145376864560060142151261292424645967306428464885104976111918846720498664547599992680177566433790034005684703754475628782493489840871400770236296504170750104540300696831123531729340302631722131708617620296043445482095434867636952493941538476675380957735512146374990805038295646709020523046739855643558238071200134051795358177592661179297460148692132026306003931799564849444 4473161193725369420623475637450478267593973212703372805781343126621117387222492806333639834519303680389259309688995209252035278571980992380576236122849606523276970970764790391394231402133368690394808687684743308012268869946203470823716309724704725028106033141647014474120542138240308128347191009308620269749091536072252751286597749519507014468359570342661460253028153384827277644979007768898074458301080580762580282652539846712184990443942589188021 8806297599563142816384851120947134995242272909662562131057200278602521302716524357302013219950531711204193338562432181159685353143642809886601095854368526010852934463784118853718262721650745414154290924125763428168346424803581833399866073577309409498606570661584407016735064684551083448304103407143306886135064816123133500844233624141744252203847162068581577800344074422408997737952507722722425221632527079828648342393603199360077015781454854997327 9149571524204777183259862557471172176000475918686134657668007479138823888252605950369614563755509483645524943318493757958344708256511202977130548905985889360490419843661556802806391016931507941239844261414631452720749063421674666562208207338740544102755527732642572666260325434141645180646462013591074636904814091394881734915019090588786588657560805463319115395795199226915101752611355353654804491538052352430920956839133923664186021848657405653138 6585891803888290100495441053950428190852170956897098522266049149770344256341520113354359560162080483345705678582847518288694326457284709415507066390042021847428414815072932114255525384876823984059640369467558558706507780528881184370543707668539402043667908794727576997674271743908241142251517023195532601492920532485233164430336141058134808121187844540168004984186371953775079122509816883959439843743490500927690743049721973216682690786818942988655 4326039347996027915286663167424520499357683219759829614090609600277500754116118234136595195436476826597435387250343355756076030942645937176844352565845618941330436265854933396448813667814189940353781251863618098614310938046860842389417657170919837530273529460531821774849806764100727806893539487785620807660764628864349757813849167549694801333616458553592342187444390487282202327482790004380974372224090556657982792540792018271917640731568687889908 6982344333242984617134807794157926078943786937879321819276238320885621982562620537061570533650998666043733527800430297853858257772582081434930689509974690284212321480543625214410992658451320869835695037934121927877015483766846258848514803532821005762259531238439549984559771836617746969487713373602949024320140089369543524642846703906282961292533317560905458015241533626970463341560947714703878331140804553272026698516916550545808852623472270091856 8381152913251607557514732983104817451169011854473890500270796628135737332891521947351317150714211819622395064036066250793766101141090975719875195062790767199208415618383126232787053677949587209348085310337003707967698144333986531947300553955036137371690354044122744184825089725543411329141409921010502794060781343452745457489103978703959255767719730326629205850021841243056110147117266588588758581109801362242719178360150563008450612609580351146221 8689703926560067677522712781150869182409312639832388951433073092080618183670533272221996712213824392494133845030855374291395100606121406401527729920472162474690601996875361612930959443531967021387026224274713425295198346411502152585217190733435287605089694898596618737246471484457540042632111691306610800075901992768527723122943384537537344556192707318420770035251888198510000910588697024636141339463736403629167648502431395922261089143124584310802 4918533766365473795428101980063946754916567388220937206795502245397495279360432187604167371252941868904167875605071581918462839749951776189847012014172849225316599764249139615534630455967370036698271392447461722405377563884525060573831172206330995224613827515438426248418305454616142397679580757579289295535823158379105998810001363558358025381930496087484840623244213019673128572797569638089158911415106268293671325339044322044393512256271342583571 9375807555547099528058650927489148560615014905867221863018145395527154337744115748430146045421047237106590937458945560185074706555125049620797634952629628585741910611986843374359599027675135124284216278738270407361790182264211619056545235598213465009844346847498934255194190612568539471215509383577839973398535979920804409140140130196920588481624165779207438506165929884295428759267653257646127865813653869302306432495148722915683419489339773257723 8311018607285992138274399553167071797786946310241209656299251563690707097976574622302248111836993379540037289040035528138387916696451463050174466783026773391565848513133733221345559120169428199446355869119901046702572488630391431318926902723427880765595671435508100852332873676188833143306258402854461381790916491511389868861020424410969493039946188156434692259238227154237325561865763731911138393508298447375787630908881906697487503462616077362010 5614764919585888952617573029866000284492088330986935638966693573658315432198051146302918030353282391251226514579604511291362048141607426348368904872534774146049792896866547180431109637020693661800381564926460176322823546752577251006348108332460496397458189485625071592798514006882345658766432861696499447028761727860740162787937600313403053653720016336106731197354021657427455266137724641467970163423221094839273520539921618466844316578051485787487 3899561173561574229271079978937830411746342331723123687062988799395637969323438140930773031667385587583365894879219229299170292532195313106313751699564895556279207732633443995606991340123455661866002723864409129577681745674556204269696639791492485463176155558347884911203132980810938202001667082142619538393913519494332455874157725836948116349214048473354670485252762669909591444857090831604238663433552347995241933217431270826427571501537381144704 6489614779234323918836597604173276069183964760678663226749291933231611318776739191327131564491305693705855153395058229226297936692800988901273744011072991307584839194837251638752515268120935615506896612815652785043774385673706596865712904074504021396786409805016287163242664226733761382152956236522040211884309169244962016703983772402290077519119901733887256549451670248842314466733016979564931389538586123981116683082572022333724698573778725176730 1674688527011564277582005939357098122586901258892772753477512459695452503898261166802128775738056368563156444219945818740281065680175318556456529558228861695528627420028196403061439105900321537979539693021851942326880794685279140725877194846904117641691522747211068243909658349368174072439125672601413920553750443877850971869061283089542144509045453485238152261213609136327962561871364143164942213935544220600533827345153079867230668801356293013165 0176555377047163009150624792123739193705754138726037784409421730259112504923861549381900703973226982708445933093837163148061128341179486313084619959430789684964111687084337933440570079526478025532429988270212239589071572621544918831198911796492255687257951873764372652104196188623597080763708251916019748223448209944333236500401510330803345098734208212792141200420480180501079798561723216473504401369811485541058811972608739539425490862873783903746 8098832081722147968307431302693815436368453784576155752019947911774123367085935717692095928402888000062917208716273797741535129580502970994424191380762872308506357855702200290134327092777298737515761662474840473928515508631642153028208352650155756311959083682307340304392715181050027526500337086894984288132356849650072493988474010569473433805637338402382436072538873309111373884076450003773447847091001864804554117110025614054087836992886952741392 6193790851385229297895810628398059044992413872737639857194829128448347659740140414325981885024539106705917683246226948397361157181489852877065023792132178926953611637930446467710253991656844314443202029811685936616659255206559795684826916762997773403173737803087482081178487672545868373342463345241994141078015369212415987783399746699739542951868182009064969761036782152809895298760699571035690960283710085997898989463348720957080217923366574870714 6777367360972463992215753219402369880425601500007584041175731957498416740333035260394809737885653902886659099013584031964803732938986045942039868966162227548943655076000234581410708961509394692645277394235114694011127719149136925437858539483527264857552160208720481249169101852717995183756073284426677184767954071116218015353987918247749816185835646452280308632399771384992835920927055530786651556452768959162186920347015645557340287669263841325770 3601605964596904032255123102029559970989164180907129145748986244302977071138941462836484848715767856779487814312512432935502476872684689469338789309686193721724524216873927185950326411718319813570892707560107929918514562750286621924369798417811414045403196091642478439214390278338683726417115549439630419405888067523818774291085517880020788117679147787731136388027728566969401182727554750200093592740494837691964174174743764309935882811490241585671 7211865451819540327446308508490018672136527178874236275133685438258435726097657633985935364879062020368888102701585005808302800529052500592040995400955993382815605515780805692775037640593242285382169458924730837269334803451554408908180300009713590313876036950646295255811932331910420173976968511078545102058841174742956674264086276226066772160763338326092443117163266104428145958606250699868607477542904124446463286078462792080416316171887736540720 5146931212143251692342945354332472824172960433247902906354057442643551016576188688757552892490583073226688579406361072634713145128039096794093684979336814875713298697813211924730599496014027781864831950609839994902924848226451969076694936680918529246540254800772199089177291960931566054867802714844783766043906003147146452296723373821018725039173155245869955423886136497929893405730911868982296875692219878352678884816562012179932355718119339478997 2941131625038237716074760122507890913913600736981616449615507711562475184867186427418752220983699262511079458767442710260549101837714149395384601730899334493604769733019287791380270313507073210981882099042177479582446759902008357116817844883047873914753449351938140117520881370598439846549557055010189474633178513544780605002453222898695956109812744537200340506843316195198363031817037478986266327072440653794392777506117384377391003701560450854244 1718294622323098741599261379231030639797519629062149549367514934829553425573267340573662545638782087724780170125191080613807632941910483768620615503990171057754937943719814986022745743276873586654721193724736483688847386369550472304586168757789926241799192428880868466327656215489453775846426936601705490410696791396585650472314269792668892085692962878423316515400879707948404460626602059142071572641491184272577254451851792252299228998925524179313 2955616293338761041608491996663174423087794058873508394787307283099169773983497943684774634480157906910420838749535492617591718541229359751899008922262172191445930678861976035622188127806388132245635556068069415255297897496905210255587116668803946253165815590264701717990003990248334019184741861117791425087957832200374313389994388787901749321783285709136225934523987992119413582964860423871824067417098622812190185733368156857032359430919908413100 3274241630856070401839676454219756598215258342288679649061753328803833759251880213557889351191633363591256530761963446885955556790319313426753383306631643406076972503374612045657857542749445605773180947349044636421152998533043536983846609846137669343084617000549083610123916548740215520180743832046374678390499993518567810792289725874690367749579133853503513360755073213256002919103155131072831771162507725515312573049623272208602252146484022028427 9859329283668879907714081923988378503562205294533615680282037531395403317643158940563253112358682394728921042814777090452957049128759352412051358687603284514258273469448854564319334456061039277195821292194131087466667665924574913853915794463552398869067679969535565940340083926630948915637051551833293940005032264170884889946017449665907668684722866810183423473358074816786082569926361457941434157737969727619536251481604750464457139352852592175783 9527856441202769631859515199253706473854375073484198045852310995245664026394525671148305359686783111380040816192340692340326098970410456803793483601054492920692731323910928948941612252877254172588071576980029023276929926539672222312595423789781879617297369231269862904132940693047792690340796085936969553082870633498853589806317037906551023455503598110472263078432437887502680866528666197012358431075487193446996135110246538230763263859894685743530 6560582753001735912983069515639541943378121211180440701536153143845798731666720361840466592291400072861570470923183888837125901137751101546728156831261731358454449555693404016062515912214452026304007316786242123473984156636061570022957579512596067890949180714872199201151338603342012490334326901903152471111177053767490379250704771080007807243797219997486780512705438658097738366084557141592231311250769943850574957208447061617646428970167342485313 0726531131411329692244997325898693793362053823104304688116727029678179353151479252622771508731784134720117508291991814002438516518729332192236713933021839371801828431923462068612248771248161446437262384667227387169270434322667628213359572086575925299335704693016713770629372316184028128146654033939299764799450835563529313404481499746082157314367827706020903620002365614794817961669533898203303643151976058938824031310458646245390394575637688705927 9419144635131656563853034138055116073830115234965016026289833117526654089514276454873943642900031046497563418646706338393702640432719993444501765362119418398091405435431204661107102294914795728223004888150989288005202982221956031371555319180723675808735157394941586386346592426492982712468742873788710721177960934285282218507517612031632878650509567859784696943970668574363944173341905638350440729438621752610060673994465714452565082185110811234734 9770923533060731560343833666812802897283552949783468612079306536662298488684458973023686950573180717092710488020936988600525942346855824214663237148360334708879050834675141631859978731821377113609337967922671304808400635712740447619016990212805036249551464937562857255534722015529162736004842071745078807950761845913606957788248618747949602794821468325536369648055794751958042265961817575455372575780063850078828942880154045147286645076936364292616 5614640923760991944230253071776066476460974890130071283206700958344414867959642884426565334806269850089001435859793432049547007397901976240218318645022518735576819538466957130700628882926375616032787642159655931252924924221613295745040653822016726239861866164858143429888315192031590579600733663059264478017682428057937751925499116138740816555196180080619144877294851166256997724515082137146328190365180877334737532213901795694554698558946099509944 8197662316058273897392430853104944407870847269906403178359352904613848224060814013067392119403592658922911969016830434362279715304844598073159037135399085230555413585030330599426307530084474973121329228139004149372925731581039036715734392981372366096770703723997564711313836503606104054887160986190396184993610539032305603590895271652168824412076000293777205420054934505995932847657914451389480417920358508525299387445006490770503204262460392913479 1860529641815140735430834587703620162613635647536716676059747800859031429361333792933191750084855096043897181104098877520049212223706955858124962571331447606650693367882768887310324454243982890773510726773326678439323322019262193656446632205485521963628598869821245905948414538983552431719342491299006181463959235638285940616902975647631126229146674653662658235758329722166170996892121526322495409725300927609096890929815398547781047546039704805640 9701943861124378321613301721735201695386677893805184729999611330175309536392020079729438433442713241962980107195951189408020760785422475347076597267957086043738013371561484930232571019813287494389614948548783732970942781633625443633308269399055796881049489203758750785453764050536575757195557194024139210826876090887690522636865403018708227018835475847239992289403407907951367963796350726344224554191280957705903158772555892207789691111868653692807 2383024038923627104980728883128755350717511334248096928769720158667518914217143425576390489594698580750060927981004390924945240817662509527417274156016145431594518522171855749552684752772716738913902901472023505989549615741731698904285539944028302783837762365010859093691920154027694868144088268392159342531859686296886770735568178360341970518419116791939661833729700019382298015027248308350801097177309111058708948946723054289271511824641544091066 4532953239354505193052789909317281149964927253060347021598719613456500206310713361365178616544164970357368209762583749438630392248773435717559667110116693127919204620889828753887107153631368815546679590155314546236533727710941929274840416913145419700177540191661941927952326018882537303377523360121961711612555388978356176708377387852607563134205865681970192980420505034509501358373027020583244706964639692236906385933110811220139677100067477245536 1451739824657873343641455185212468580407288018781059764871776307978933254645800932156135484194842177917559330935785967194699195056191293167993441194597294243460001028579758994049694365666190975793295668054246701383744999094886569721752978624999444038632564887331676004076776907176911021713324616671369335776775179668748237981197416413893296651098321913188912306128832130617534730645943263123690219424876504426568006403723735652001243194823731911164 1586119940162345610705558803666260316221668784713489649977257144363570318750075329860063330828997051279145819777920607806942050549492682044404634256297157534094927435579725160157207979726607019969187009861222418896922478331223069883519302680013335158234809746911378369744867632078154664881263924082841865160249149549798644272098660518203571764568949935602043071048929581586506395191730563855938221751430131434807598669332650487479903805646835095656 1639841602315510479659885931684745229784532711563022567963824580570873833598486159426999235303174720562022037261527089760668460260887447119518675285250056178297288871967524660489541310791051300257310392626908884742371565183099163546737457239943835000925165391918101842370641827844631996490552888569939325282656262824286907604695912293388882636789052588962979926004365835129285916601681627115850385950992004502382880525787160799914857795117410714587 89278928594455422975748926639149060612255901846742420489830696032609924160537319803993095803184587418756119655169410302588427461326771528604167562599716689009197446205707887606193824714430682007869995158218691523480946205994733672841618743801837624468431146227199718354041


The Golden Section29 Fib on a c ci Sequence The golden section (Figure 7.10) is a symmetrical relation built from asymmetrical parts. Two numbers, shapes or elements embody the golden section when the smaller is to the larger as the larger is to the sum. That is, a : b = b : (a + b). In the language of algebra, this ratio is 1 : φ = 1 : ( 1 + √5 ) / 2, and in the language of trigonometry, it is 1 : (2 sin 54°). Its approximate value in decimal terms is 1: 1.61803. The second term of this ratio, φ (the Greek letter phi), is a number with several unusual properties. If you add one to cp, you get its square ( φ x φ ). If you subtract one from φ, you get its reciprocal (1 / φ ). And if you multiply φ endlessly by itself, you get an infinite series embodying a single proportion. That proportion is 1 : φ. If we rewrite these facts in the typographic form mathematicians like to use, they look like this:

Here each term after the first two is the sum of the two preceding. And the farther we proceed along this series, the closer we come to an accurate approximation of the number φ. Thus 5 : 8 = 1 : 1.6; 8 : 13 = 1:1.625 ; 13 : 21 = 1 : 1.625; 21 : 34 = 1: 1.619, and so on. In the world of pure mathematics, this spiral of increase, the Fibonacci series, proceeds without end. In the world of mortal living things, of course, the spiral soon breaks off. It is repeatedly interrupted by death and other practical considerations – but it is visible nevertheless in the short term. Abbreviated versions of the Fibonacci series, and the proportion 1 : φ, can be seen in the structure of pineapples, pinecones, sunflowers, sea urchins, snails, the chambered nautilus, and in the proportions of the human body as well.

φ + 1 = φ2 φ–1=1/φ φ-1 : 1 = 1 : φ = φ : φ2 = φ2 : φ3 = φ3 : φ4 = φ4 : φ5 ... If we look for a numerical approximation to this ratio, 1 : φ, we will find it in something called the Fibonacci series, named for the thirteenth-century mathematician Leonardo Fibonacci. Though he died two centuries before Gutenberg, Fibonacci is important in the history of European typography as well as mathematics. He was born in Pisa but studied in North Africa. On his return, he introduced Arabic numerals to the North Italian scribes. As a mathematician, Fibonacci took an interest in many problems, including the problem of unchecked propagation. What happens, he asked, if everything breeds and nothing dies? The answer is a logarithmic spiral of increase. Expressed as a series of integers, such a spiral takes the following form: 0 • 1 • 1 • 2 • 3 • 5 • 8 • 13 • 21 • 34 • 55 • 89 • 144 • 233 • 377 • 610 • 987 • 1597 • 2584 • 4181 • 6765 • 10,946 • 17,711 • 28,657 ...

FIGURE 6.11

84

29 Bringhurst, Robert. The Elements of Typographic Style. Point Roberts, WA: Hartley & Marks, 2004. Print. FIGURE 6.11 Bringhurst, Robert. The Elements of Typographic Style. Point Roberts, WA: Hartley & Marks, 2004. Print.


Mysterious Mathematics30 A S p iralled Shell

N a ture's Spirals

The cut-away of a chambered nautilus shell shows its compartments. Only the outermost is the animal's home at any given time. Collectively, these chambers form an equiangular spiral: the black spiral intersects all the white radii at exactly the same angle, so that the angles A, B, C and so on around the shell are always identical to one another (Figure 6.12).

Nature never has been content with simple shapes, but has created all kinds of intricate mathematical designs, including a variety of spirals. For example, the shell of the chambered nautilus is an equiangular, or logarithmic, spiral (Figure 6.12): the curve of the spiral always intersects the outreaching radii at a fixed angle. Logarithmic spirals also occur in the curve of elephants' tusks, the horns of wild sheep and even canaries' claws. Similar, though less precise, spirals are formed by the tiny florets in the core of daisy blossoms. The eye sees these spirals as two distinct sets, radiating clockwise and counter-clockwise, with each set always made up of a predetermined number of spirals. Most daisies have 21 and 34. Similar arrangements of opposing spirals are found in pine cone scales (5 one way, 8 the other), the bumps on pineapples (8 and 13) and the leaves of many trees. This phenomenon is made all the more mysterious by its relationship with a certain mathematical sequence known by the nickname of its medieval discoverer, Leonardo ("Fibonacci") daPisa. The Fibonacci series is produced by starting with 1 and adding the last two numbers to arrive at the next: 1, 1, 2, 3, 5, 8, 13, 21, 34, etc. The daisy's spiral ratio of 21 : 34 corresponds to two adjacent Fibonacci numbers, as do the pine cone's 5:8 and the pineapple's 8: 13 and the same is true of many other plants with a spiral leaf-growth pattern.

FIGURE 6.12

30 Bergamini, David. Mathematics. New York: Time, 1963. Print. FIGURE 6.12 Bergamini, David. Mathematics. New York: Time, 1963. Print. FIGURE 6.13 Hurlbut, Cornelius S. The Planet We Live On. New York: H. N. Abrams, 1976. Print.

85


86


87


88


On Nature

89


Growth & Continuity31 Life 's U n ive r s a l S ca ling L a ws Biological systems have evolved branching networks that transport a variety of resources. We argue that common properties of those networks allow for a quantitative theory of the structure, organization, and dynamics of living systems. Nearly 100 years ago, the eminent biologist D'Arcy Thompson began his wonderful book On Growth and Form by quoting Immanuel Kant. The philosopher had observed that "chemistry... was a science but not Science...for that the criterion of true Science lay in its relation to mathematics." Thompson then declared that, since a "mathematical chemistry" now existed, chemistry was thereby elevated to Science; whereas biology had remained qualitative, without mathematical foundations or principles, and so it was not yet Science. Although few today would articulate Thompson's position so provocatively, the spirit of his characterization remains to a large extent valid, despite the extraordinary progress during the intervening century. The basic question implicit in his discussion remains unanswered: Do biological phenomena obey underlying universal laws of life that can be mathematized so that biology can be formulated as a predictive, quantitative science? Most would regard it as unlikely that scientists will ever discover "Newton's laws of biology" that could lead to precise calculations of detailed biological phenomena. Indeed, one could convincingly argue that the extraordinary complexity of most biological systems precludes such a possibility. Nevertheless, it is reasonable to conjecture that the coarse-grained behavior of living systems might obey quantifiable universal laws that capture the systems' essential features. This more modest view presumes that, at every organizational level, one can construct idealized biological systems whose average properties are calculable. Such ideal constructs would provide a zeroth order point of departure for quantitatively understanding real biological systems, which can be viewed as manifesting "higher order corrections" due to local environmental conditions or historical evolutionary divergence. The search for universal quantitative laws of biology that supplement or complement the Mendelian laws of inheritance and the principle of natural selection might seem to

90

be a daunting task. After all, life is the most complex and diverse physical system in the universe, and a systematic science of complexity has yet to be developed. The life process covers more than 27 orders of magnitude in massâ&#x20AC;&#x201D;from molecules of the genetic code and metabolic machinery to whales and sequoiasâ&#x20AC;&#x201D;and the metabolic power required to support life across that range spans over 21 orders of magnitude. Throughout those immense ranges, life uses basically the same chemical constituents and reactions to create an amazing variety of forms, processes, and dynamical behaviors. All life functions by transforming energy from physical or chemical sources into organic molecules that are metabolized to build, maintain, and reproduce complex, highly organized systems. Understanding the origins, structures, and dynamics of living systems from molecules to the biosphere is one of the grand challenges of modern science. Finding the universal principles that govern life's enormous diversity is central to understanding the nature of life and to managing biological systems in such diverse contexts as medicine, agriculture, and the environment.

Entry I find it very intriguing that we can start understanding the biology of our world in the act of talking about relationships. I like thinking about the fact that we share the same growth rate and a lot of the same biological characteristics across all the various forms of life (Figure 7.2). I also believe that this is a unique insight into our own connection with nature, exemplifying the beauty in its infinite properties. If we can conclude that all things in nature grow and evolve proportionately, I feel we can start applying that same logic when considering relationships of stars and nebulae to atoms and molecules, helping us further understand our own place in the levels and ratios of existence.

31 West, Geoffrey B., and James H. Brown. "Life's Universal Scaling Laws." Physics Today (2004): 36. University of New Mexico Biology Department. Web.


FIGURE 7.2

FIGURE 7.2 Gorvin, Eric (Illustration) 2013. Information from: West, Geoffrey. "Geoffrey West: The Surprising Math of Cities and Corporations." Lecture. TEDGlobal. Ted.com. Web.

91


The Rhizome32 Fo rm a l D e fi n i ti o n (B ota ny) rhizome (Figure 7.3): a continuously growing horizontal underground stem that puts out lateral shoots and adventitious roots at intervals. Buds that form at the joints produce new shoots. Thus, if a rhizome is cut by a cultivating tool it does not die, as would a root, but becomes several plants instead of one.

In Nature A rhizome as subterranean stem is absolutely different from roots and radicles. Bulbs and tubers are rhizomes. Plants with roots or radicles may be rhizomorphic in other respects altogether: the question is whether plant life in its specificity is not entirely rhizomatic. Even some animals are, in their pack form. Rats are rhizomes. Burrows are too, in all of their functions of shelter, supply, movement, evasion, and breakout. The rhizome itself assumes very diverse forms, from ramified surface extension in all directions to concretion into bulbs and tubers. When rats swarm over each other. The rhizome includes the best and the worst: potato and couchgrass, or the weed. Animal and plant, couchgrass is crabgrass.

D e l e u ze & G u a t ta ri Let us summarize the principal characteristics of a rhizome: unlike trees or their roots, the rhizome connects any point to any other point, and its traits are not necessarily linked to traits of the same nature; it brings into play very different regimes of signs, and even nonsign states. The rhizome is reducible to neither the One or the multiple. It is not the One that becomes Two or even directly three, four, five etc. It is not a multiple derived from the one, or to which one is added (n+1). It is comprised not of units but of dimensions, or rather directions in motion. It has neither beginning nor end, but always a middle (milieu) from which it grows and which it overspills. It constitutes linear multiplicities with n dimensions having neither subject nor object, which can be laid out on a plane of coinsistency, and from which the one is always subtracted (n-1). When a multiplicity of this kind changes dimension, it necessarily changes in nature as well, undergoes a metamorphosis. Unlike a structure, which is defined by a set of points and positions, the rhizome is made only of lines; lines of segmentarity and stratification as its dimensions, and the line of flight or deterritorialization as the maximum dimension after which the multiplicity undergoes metamorphosis, changes in nature. These lines, or ligaments, should not be confused with lineages of the arborescent type, which are merely localizable linkages between points and positions...Unlike the graphic arts, drawing or photography, unlike tracings, the rhizome pertains to a map that must be produced, constructed, a map that is always detachable, connectable, reversible, modifiable, and has multiple entranceways and exits and its own lines of flight.

92

FIGURE 7.3

As H uman A rhizome ceaselessly establishes connections between semiotic chains, organizations of power, and circumstances relative to the arts, sciences, and social struggles. A semiotic chain is like a tuber agglomerating very diverse acts, not only linguistic, but also perceptive, mimetic, gestural, and cognitive: there is no language in itself, nor are there any linguistic universals, only a throng of dialects, patois, slangs, and specialized languages. There is no ideal speaker-listener, any more than there is a homogeneous linguistic community. Language is, in Weinreich's words, "an essentially heterogeneous reality.'' There is no mother tongue, only a power takeover by a dominant language within a political multiplicity. Language stabilizes around a parish, a bishopric, a capital. It forms a bulb. It evolves by subterranean stems and flows, along river valleys or train tracks; it spreads like a patch of oil. It is always possible to break a language down into internal structural elements, an undertaking not fundamentally different from a search for roots. There is always something genealogical about a tree. It is not a method for the people. A method of the rhizome type, on the contrary, can analyze language only by decentering it onto other dimensions and other registers. A language is never closed upon itself, except as a function of impotence.

32 Deleuze, Gilles, and FĂŠlix Guattari. "Introduction: Rhizome." A Thousand Plateaus: Capitalism and Schizophrenia. Minneapolis: University of Minnesota, 1987. N. pag. Print. FIGURE 7.3 J.U. & C.G. Lloyd. Drugs and Medicines of North America. Cincinnati: J.U. & C.G. Lloyd, 1884. Print.


Ma p s The rhizome is altogether different, a map and not a tracing. Make a map, not a tracing. The orchid does not reproduce the tracing of the wasp; it forms a map with the wasp, in a rhizome. What distinguishes the map from the tracing is that it is entirely oriented toward an experimentation in contact with the real. The map does not reproduce an unconscious closed in upon itself; it constructs the unconscious. It fosters connections between fields, the removal of blockages on bodies without organs, the maximum opening of bodies without organs onto a plane of consistency. It is itself a part of the rhizome. The map is open and connectable in all of its dimensions; it is detachable, reversible, susceptible to constant modification. It can be torn, reversed, adapted to any kind of mounting, reworked by an individual, group, or social formation. It can be drawn on a wall, conceived of as a work of art, constructed as a political action or as a meditation. Perhaps one of the most important characteristics of the rhizome is that it always has multiple entryways; in this sense, the burrow is an animal rhizome, and sometimes maintains a clear distinction between the line of flight as passageway and storage or living strata (cf. the muskrat). A map has multiple entryways, as opposed to the tracing, which always comes back "to the same." The map has to do with performance, whereas the tracing always involves an alleged "competence."

The tree and root inspire a sad image of thought that is forever imitating the multiple on the basis of a centered or segmented higher unity. If we consider the set, branches-roots, the trunk plays the role of opposed segment for one of the subsets running from bottom to top: this kind of segment is a "link dipole," in contrast to the "unit dipoles" formed by spokes radiating from a single center. Even if the links themselves proliferate, as in the radicle system, one can never get beyond the One-Two, and fake multiplicities. Regenerations, reproductions, returns, hydras, and medusas do not get us any further. Arborescent systems are hierarchical systems with centers of significance and subjectification, central automata like organized memories. In the corresponding models, an element only receives information from a higher unit, and only receives a subjective affection along preestablished paths. This is evident in current problems in information science and computer science, which still cling to the oldest modes of thought in that they grant all power to a memory or central organ.

â&#x20AC;&#x153;Principles of connection and heterogeneity: any point of a rhizome can be connected to anything other, and must be. This is very different from the tree or root, which plots a point, fixes an order.â&#x20AC;?­ 93


Make Rhizomes!

Th e Mid d le Those things which occur to me, occur to me not from the root up but rather only from somewhere about their middle. Let someone then attempt to seize them, let someone attempt to seize a blade of grass and hold fast to it when it begins to grow only from the middle."Why is this so difficult? The question is directly one of perceptual semiotics. It's not easy to see things in the middle, rather than looking down on them from above or up at them from below, or from left to right or right to left: try it, you'll see that everything changes. It's not easy to see the grass in things and in words (similarly, Nietzsche said that an aphorism had to be "ruminated"; never is a plateau separable from the cows that populate it, which are also the clouds in the sky).

Make rhizomes, not roots, never plant! Don't sow, grow offshoots! Don't be one or multiple, be multiplicities! Run lines, never plot a point! Speed turns the point into a line! Be quick, even when standing still! Line of chance, line of hips, line of flight. Don't bring out the General in you! Don't have just ideas, just have an idea (Godard). Have short-term ideas. Make maps, not photos or drawings. Be the Pink Panther and your loves will be like the wasp and the orchid, the cat and the baboon.

Picking Up Speed

â&#x20AC;&#x153;Many people have a tree growing in their heads, but the brain itself is much more a grass than a tree.â&#x20AC;?

94

A rhizome has no beginning or end; it is always in the middle, between things, interbeing, intermezzo. The tree is filiation, but the rhizome is alliance, uniquely alliance. The tree imposes the. verb "to be," but the fabric of the rhizome is the conjunction, "and ... and ... and . . . "This conjunction carries enough force to shake and uproot the verb "to be ... Where are you going? Where are you coming from? What are you heading for? These are totally useless questions. Making a clean slate, starting or beginning again from ground zero, seeking a beginning or a foundationâ&#x20AC;&#x201D;all imply a false conception of voyage and movement (a conception that is methodical, pedagogical, initiatory, symbolic ... ). But Kleist, Lenz, and Buchner have another way of traveling and moving: proceeding from the middle, through the middle, coming and going rather than starting and finishing. American literature, and already English literature, manifest this rhizomatic direction to an even greater extent; they know how to move between things, establish a logic of the AND, overthrow ontology, do away with foundations, nullify endings and beginnings. They know how to practice pragmatics. The middle is by no means an average; on the contrary, it is where things pick up speed. Between things does not designate a localizable relation going from one thing to the other and back again, but a perpendicular direction, a transversal movement that sweeps one and the other away, a stream without beginning or end that undermines its banks and picks up speed in the middle.

FIGURE 7.4 Hurlbut, Cornelius S. The Planet We Live On. New York: H. N. Abrams, 1976. Print.


95


96

FIGURE 7.4 Infinity Magazine. 1966. Print.


“To be rhizomorphous is to produce stems and filaments that seem to be roots, or better yet connect with them by penetrating the trunk, but put them to strange new uses. We're tired of trees. We should stop believing in trees, roots, and radicles. They've made us suffer too much. All of arborescent culture is founded on them, from biology to linguistics. Nothing is beautiful or loving or political aside from underground stems and aerial roots, adventitious growths and rhizomes.” —Deleuze & Guattari, A Thousand Plateaus

97


98

FIGURE 8.1 Gorvin, Eric. The Infinity Project. 2012.


On Paradox

99


Zeno's Paradoxes33 Ze n o O f Elea The paradoxes of Zeno of Elea are objects of beauty and charm, and sources of intense intellectual excitement. Using everyday occurrences, such as a footrace or the flight of an arrow, Zeno shows that simple considerations lead to profound difficulties. In his attempt to demonstrate the impossibility of plurality, motion, and change, he points to problems lying at the very heart of our concepts of space, time, motion, continuity, and infinity. Since these concepts play fundamental roles in philosophy, mathematics, and physics, the implications of the paradoxes are far-reaching indeed. It is perhaps amusing to be confronted by a simple argument which purports to demonstrate the unreality of something as obviously real as motion; it is deeply intriguing to find that the resolution of the paradox requires the subtlety of modern physics, mathematics, and philosophy. It is difficult to think of any other problem in science or philosophy which can be stated so simply and whose resolution carries one so far or so deep. Bertrand Russell was hardly exaggerating when he said, 'Zeno's arguments, in some form, have afforded grounds for almost all theories of space and time and infinity which have been constructed from his time to our own.'

Th e His t orical Zeno Precious little is known about Zeno of Elea. His fame derives mainly from four paradoxes of motion attributed to him by Aristotle. None of Zeno's writings have survived, but a few passages in other authors are purported to be direct quotations. At best, we have less than two hundred of Zeno's own words, and the paradoxes of motion are not included in this corpus. It is known that Zeno lived in the fifth century B.C., and that he was a devoted disciple of Parmenides. Parmenides maintained that reality is one, immutable, and unchanging; all plurality, change, and motion are mere illusions of the senses. Zeno, according to Plato's testimony, propounded a series of arguments designed to show the absurdity of the views of those who made fun of Parmenides. Zeno was no mere sophist whose sole aim was to confound by verbal trickery, nor was he a skeptic who denied the possibility of all knowledge. He seriously accepted the Parmenidean view, and posed his paradoxes as real difficulties for those who held a different metaphysic. Whether his arguments were directed specifically against the Pythagoreans, against some other particular philosophical school, or more generally against any view that affirmed plurality is still the subject of historical debate.

100

In addition to his paradoxes of motion, several other arguments of Zeno have come down to us, the most important being a paradox of plurality. Since the denial of plurality is the central thesis of Parmenides, it is likely that this paradox plays an even more fundamental role for Zeno than the more famous paradoxes of motion. Moreover, regardless of Zeno's estimate of the relative importance of the two kinds of paradoxes, we shall see that the paradox of plurality is logically more basic than the paradoxes of motion. Aristotle credits Zeno with the invention of dialectic, a method frequently exemplified in Greek philosophy (but related only indirectly to dialectic as conceived by Hegel and Marx). The Greek dialectical method involves a dialogue between two speakers, one of whom propounds and defends a thesis while the other attempts to reduce it to absurdity by deriving a contradiction, a method familiar from the Platonic dialogues. Dialectic involves extensive use of the argument by reductio ad absurdum. Although this form of argument had probably been discovered by mathematicians somewhat earlier than Zeno, he quite possibly imported the technique into philosophy and gave it a central place in philosophical method. This accomplishment secures for Zeno an important position in the early history of logic. Zeno's paradoxes have been the object of extensive historical research especially in the last hundred years. Due to the scantiness of material, various interpretations and reconstructions are possible. On some reconstructions Zeno is guilty of elementary logical and mathematical errors, while on others he displays extraordinary logical and mathematical acumen. Vlastos attributes to Zeno "crudities and blunders," and Booth claims that 'Zeno's arguments . .. involved elementary fallacies; they were not uttered with that full and marvelous understanding which some scholars have attributed to him.' Russell, on the other hand, says that Zeno 'invented four arguments, all immeasurably subtle and profound. . . .' While there may be serious doubt about the subtlety and profundity of the arguments Zeno actually propounded, there can be no doubt that subtle and profound problems have arisen from the consideration of his paradoxes.

33 Salmon, Wesley C. Zeno's Paradoxes. Indianapolis: Bobbs-Merrill, 1970. Print.


Th e Argu me n ts

#1 Achilles and the Tortoise

The orientation of [this book] is systematic rather than historical. Zeno's paradoxes have interested philosophers of all periods, but until the middle of the nineteenth century the paradoxes were almost always regarded as mere sophisms which could be removed with little trouble. In the last hundred years, however, they have been taken very seriously, and in the twentieth century have become the subject of vigorous philosophical discussion. This controversy, still continuing in the professional journals, testifies to the fact that Zeno has raised issues still very much alive. The articles selected for inclusion in [this book] represent attempts to deal with these issues; they are concerned only incidentally with the historicity of the arguments. There is this much historical justice in the approach: if Zeno is not the father of these problems, he certainly is their grandfather. We shall be concerned with five of Zeno's arguments, namely, the four famous paradoxes of motion and a "paradox of plurality" (which we shall construe as a geometrical paradox). Since we do not have any text which路 even pretends to quote Zeno directly on the four paradoxes of motion, we shall have to be content with paraphrases. Our primary source is Aristotle, who makes it quite clear that he is not quoting Zeno. Since Russell presents (below) a standard version of the paradoxes of motion, I shall simply attempt to make as clear as possible the gist of each.

Imagine that Achilles, the fleetest of Greek warriors, is to run a footrace against a tortoise. It is only fair to give the tortoise a head start. Under these Circumstances, Zeno argues, Achilles can never catch up with the tortoise, no matter how fast he runs. In order to overtake the tortoise, Achilles must run from his starting point A to the tortoise's original starting point T0 (see Figure 8.2). While he is doing that, the tortoise will have moved ahead to T1 Now Achilles must reach the point T1 While Achilles is covering this new distance, the tortoise moves still farther to T2. Again, Achilles must reach this new position of the tortoise. And so it continues; whenever Achilles arrives at a point where the tortoise was, the tortoise has already moved a bit ahead. Achilles can narrow the gap between him and the tortoise, but he can never actually catch up with him. This is the most famous of all of Zeno's paradoxes. It is sometimes known simply as "The Achilles."

1

2

3

FIGURE 8.2

FIGURE 8.2 Gorvin, Eric. "Zeno's Paradoxes". The Infinity Project. 2012.

101


# 2 Th e Dic h o to my

#3 The Arrow

This paradox comes in two forms. According to the first, Achilles cannot get to the end of any racecourse, tortoise or no tortoise; indeed, he cannot finish covering any finite distance. Thus he cannot even reach the original starting point To of the tortoise in the previous paradox. Zeno argues as follows. Before the runner can cover the whole distance he must cover the first half of it.

In this paradox, Zeno argues that an arrow in flight is always at rest. At any given instant, he claims, the arrow is where it is, occupying a portion of space equal to itself. During the instant it cannot move, for that would require the instant to have parts, and an instant is by definition a minimal and indivisible element of time. If the arrow did move during the instant it would have to be in one place at one part of the instant, and in a different place at another part of the instant. Moreover, for the arrow to move during the instant would require that during the instant it must occupy a space larger than itself, for otherwise it has no room to move. As Russell says," It is never moving, but in some miraculous way the change of position has to occur between the instants, that is to say, not at any time whatever". This paradox is more difficult to understand than "Achilles and the Tortoise" or either form of "The Dichotomy," but another remark by Russell is apt: "The more the difficulty is meditated, the more real it becomes"

Then he must cover the first half of the remaining distance, and so on. In other words, he must first run one-half, then an additional one-fourth, then an additional one-eighth, etc., always remaining somewhat short of his goal. Hence, Zeno concludes, he can never reach it. (This form of the paradox has very nearly the same force as "Achilles and the Tortoise," the only difference being that in "The Dichotomy" the goal is stationary, while in "Achilles and the Tortoise" it moves, but at a speed much less than that of Achilles.) The second form of "The Dichotomy" attempts to show, worse yet, that the runner cannot even get started (Figure 8.3). Before he can complete the full distance, he must run half of it . But before he can complete the first half, he must run half of that, namely, the first quarter. Before he can complete the first quarter, he must run the first eighth. And so on. In order to cover any distance no matter how short, Zeno concludes, the runner must already have completed an infinite number of runs. Since the sequence of runs he must already have completed has the form of a regression (...1/16, 1/8. 1/4. 1/2,), it has no first member, and hence, the runner cannot even get started.

FIGURE 8.3

102

FIGURE 7.2-7.6 Gorvin, Eric. The Infinity Project. 2012.

FIGURE 8.4


# 4 The Stadium

En di ng Comments

Consider three rows of objects, A, B, and C, arranged as indicated in the first position of Figure 8.5. Then, while row A remains at rest, rows B and C move in opposite directions until all three rows are lined up as shown in the second position (Figure 8.6). In the process, C passes twice as many B's as A's; it lines up with the first A to its left, but with the second B to its left. According to Aristotle, Zeno concluded that "double the time is equal to half."

It has been suggested that Zeno's arguments fit into an overall pattern. "Achilles and the Tortoise" and "The Dichotomy" are designed to refute the doctrine that space and time are continuous, while "The Arrow" and "The Stadium" are intended to refute the view that space and time have an atomic structure. Thus, it has been argued, Zeno tries to cut off all possible avenues of escape from the conclusion that space, time, and motion are not real but illusory.

Some such conclusion would be warranted if we assume that the time it takes for C to pass to the next B is the same as the time it takes to pass to the next A, but this assumption seems patently false. It appears that Zeno had no appreciation of relative speed, assuming that the speed of relative to B is the same as the speed of C relative to A. If that were the only foundation for the paradox we would have no reason to be interested in it, except perhaps as a historical curiosity. It turns out, however, as both Russell and Owen show, that there is an interpretation of this paradox which gives it serious import.

How, one might ask, has mathematics so successfully tamed and incorporated the infinite? Incorporated it moreover at such a basic, elemental level, in so allpervasive a way? How does infinity get to be an exact, rigorously specified mathematical object—an object about which mathematics delivers “true” and “objective” knowledge? Mathematics starts from the integers. Its entire formalism opens out from the sequence 1, 2, 3,... that mathematicians call the “natural” numbers. The question can therefore be particularized: What does it mean to say of these numbers that they are infinite, that they form a progression which is endless? In what sense are they natural, that is to say, before, independent, and outside of us?

Suppose, as people occasionally do, that space and time are atomistic in character, being composed of spaceatoms and time-atoms of nonzero size, rather than being composed of points and instants whose size is zero. Under these circumstances, motion would consist in taking up different discrete locations at different discrete instants. Now, if we suppose that the A's are not moving, but the B's move to the right at the rate of one place per instant while the C's move to the left at the same speed, some of the C's get past some of the B's without ever passing them. C begins at the right of B and it ends up at the left of B, but there is no instant at which it lines up with B; consequently, there is no time at which they pass each other—it never happens.

FIGURE 8.5

FIGURE 8.6

103


104


105


Change & Identity34 Th e S h ip o f These u s The "problem of change and identity" is generally explained with the story of the Ship of Theseus: In ancient times, there was a ship, called the "Theseus" after its famous former owner. As the years wore on, the Theseus started getting weak and creaky. The old boards were removed, put into a warehouse, and replaced with new ones. Then, the masts started tottering, and soon they, too, were warehoused and replaced. And in this way, after fifty years, this ship now has all new boards, masts, and everything. The question then arises: Is the ship in the harbor, now called S2, the same ship as the ship that was in the harbor, fifty years ago (called S1, for convenience)? In other words, is S2 really the "Theseus"? There is one answer which is a little too easy and quick. One might say: "No, of course not. The Theseus has changed a lot, so it's not the same ship. At the end of your life, you're not going to be the same person as you were, when you were a teenager. You're going to change a lot in the meantime." However, this is not quite answering the intended question. What is intended by the question is the sense of the word, "same", in which an old woman is the same person at the end of her life as she is at the beginning of her life. Certainly, the word, "same", has such a sense. After all, one implicitly depends on it when one says, for example, "She has changed a lot". In order for someone to change a lot, there has to be one person who underwent the change. (One could perhaps reject that sense, saying that objects do not change over time.) Going back to the definition of "change", an object changes with respect to a property if the object has that property at one time, and at a later time, the object does not have the property. What changes is the fact that the object has a particular property. The only way that that fact can change is if the object remains in existence. One can therefore think of a continuing object as the ground of change, or the arena where change occurs, as it were. To get back to the Theseus, the question is: Has the Theseus merely changed a lot, or is the Theseus gone, being replaced by a new ship?

106

One may say, "Sure, it's just a refurbished Theseus, greatly changed to be sure, but still the Theseus". If one thinks in this manner, then consider what happens when the story is extended further. Suppose someone buys all the planks, masts and whatever that is stored in the warehouse, and out of all of those materials, and absolutely no others, he builds a ship according to the same plans that were used to build the ship, christened "the Theseus". And this ship, called S3, is launched and sits on the other side of the harbor where S2 sits. Is S3 the same as S1? In other words, is this recently-constructed ship the same ship as the ship originally called the "Theseus", considering that S3 was built out of the same materials, and according to the same plans as S1. One could take this concept even further by considering not only the properties of the ship, but also the subject matter of the "ship". What if instead the warehoused planks, masts, and other materials were used to build something completely different from a ship, like a house. (A concept explored by the artist Simon Starling, who turned a shed into a working boat and then back into a shed, winning him the 2005 Turner Prize.) The same materials and supplies are being used; yet they have taken on a new form. This relates to the concept of recreation vs. destruction. Inevitably, the problem arises: How can one ever say that both S2 and S3 are the same ship as S1, the original Theseus? This is because if they were both the same as S1, then they would have to be the same as each other. This follows from transitivity, which states that if x = y and x = z, then y = z. With S2 and S3 being clearly different ships, sitting on opposite sides of the harbor, three choices present themselves: 1) S2 is the same ship as S1; 2) S3 is the same ship as S1; or 3) neither is the same ship as S1, and S1 has ceased to exist.

How does one then decide which is the correct answer in this case? It is difficult to tell. Whenever one makes an

34 "Identity and Change." Wikipedia. Wikimedia Foundation, 5 Mar. 2012. Web. 9 Apr. 2012.


Entry identity claim (i.e. a claim which states that two things are the same), one almost always uses two different descriptions. Sometimes, one may say, "x = x", like "I am I", but such claims are not particularly interesting or informative. The interesting identity claims are claims where two different descriptions are used for one and the same thing. As an example, take these two descriptions: "the Morning Star", and "the Evening Star". Sometimes, one can look in the sky just before dawn, and see a very bright point of light — that has been called "the Morning Star". And then also, one can look in the sky just after sunset, and see a very similar point — that has been called "the Evening Star". The Morning Star is, in fact, identical to the Evening Star — both are the planet Venus. As such, they are "two" things, only in description, but in actuality, are one and the same thing under two different descriptions. It is a similar case with S1, S2, and S3, those being three different abbreviations, standing for the following descriptions: "S1", referring to the ship which sat in the harbor fifty years ago, newly christened "the Theseus"; "S2", referring to the ship which sits in the harbor now, with the new planks; and "S3", referring to the ship which sits in the harbor, recently constructed out of the old planks.

When one, therefore, asks a question like, "Is S2 the same as S1?", one can be understood to mean this: "Is the ship which sits in the harbor now, with the new planks, the same ship as the ship which sat in the harbor fifty years ago, newly christened 'the Theseus'?" Do those two descriptions refer to the same thing, or do they not?

The problem of identity & change over time seems like it may be better fit, if anything, in the chapter "On Time". But, I think it suits us better to talk about it here. To me, the Ship of Theseus talks about this problem of time and change, but more broadly it's talking about identity. I think this is the really important part. We are always naming things, identifying with things, defining our lives by things, and everything becomes about things that we can name. In fact, this very problem in semantics has become the root study of many famed philosophers. The problem with identifying something is that you are not just identifying it in space, but also in time. This creates a paradoxical situation where the thing is being defined by the thing and it doesn't work anymore—hence, "the problem of change and identity". This problem permeates much of infinity and should certainly considered when thinking about its relationship with paradox and the self-reflective process that identity constantly undergoes.

Philosophers are not interested in the "Ship of Theseus" problem per se, but to a more basic problem which is this: How does one decide that X is the same as Y, where X describes something at one time, and Y describes another thing at a later time? This is called the "problem of identity over time", or alternatively, the "problem of change".

107


108

FIGURE 8.8 Bergamini, David. Mathematics. New York: Time, 1963. Print.


“It is clear that nothing can be in itself as its primary place. Zeno's puzzle—that if places exist then they will be in something—is not difficult to resolve. For nothing prevents the primary place of a thing from being in something else— but not in it as in a place.”—Early Greek Philosophy, pg. 157

“If there are many, they must be just as many as they are and neither more nor less than that. But if they are as many as they are, they would be limited. If there are many, things that are are unlimited. For there are always others between the things that are, and again others between those, and so the things that are are unlimited.”—Aristotle, Physics

109


110

FIGURE 9.1 Christopher Dela Pole, "Distant Lovers". 2009.


On Time

111


112


“But now the sight of day and night, and the months and the revolutions of the years, have created number, and have given us a conception of time, and the power of enquiring about the nature of the universe; and from this source we have derived philosophy, than which no greater good ever was or will be given by the gods to mortal man.”—Plato, Timaeus

113


Formal Time35 De finitio n Time is a dimension in which events can be ordered from the past through the present into the future, and also the measure of durations of events and the intervals between them. Time has long been a major subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars. Nevertheless, diverse fields such as business, industry, sports, the sciences, music, dance, and the live theater all incorporate some notion of time into their respective measuring systems. Some simple, relatively uncontroversial definitions of time include "time is what clocks measure" and "time is what keeps everything from happening at once".

In Ph ilo so phy Two contrasting viewpoints on time divide many prominent philosophers. One view is that time is part of the fundamental structure of the universeâ&#x20AC;&#x201D;a dimension independent of events, in which events occur in sequence. Sir Isaac Newton subscribed to this realist view, and hence it is sometimes referred to as Newtonian time. The opposing view is that time does not refer to any kind of "container" that events and objects "move through", nor to any entity that "flows", but that it is instead part of a fundamental intellectual structure (together with space and number) within which humans sequence and compare events. This second view, in the tradition of Gottfried Leibniz and Immanuel Kant, holds that time is neither an event nor a thing, and thus is not itself measurable nor can it be travelled.

continuum called spacetime bring questions about space into questions about time, questions that have their roots in the works of early students of natural philosophy. Furthermore, it may be that there is a subjective component to time, but whether or not time itself is "felt", as a sensation or an experience, has never been settled. Temporal measurement has occupied scientists and technologists, and was a prime motivation in navigation and astronomy. Periodic events and periodic motion have long served as standards for units of time. Examples include the apparent motion of the sun across the sky, the phases of the moon, the swing of a pendulum, and the beat of a heart. Currently, the international unit of time, the second, is defined in terms of radiation emitted by caesium atoms. Time is also of significant social importance, having economic value ("time is money") as well as personal value, due to an awareness of the limited time in each day and in human life spans.

In Ph y sics Time is one of the seven fundamental physical quantities in the International System of Units (Figure 9.2). Time is used to define other quantities â&#x20AC;&#x201C; such as velocity â&#x20AC;&#x201D; so defining time in terms of such quantities would result in circularity of definition. An operational definition of time, wherein one says that observing a certain number of repetitions of one or another standard cyclical event (such as the passage of a free-swinging pendulum) constitutes one standard unit such as the second, is highly useful in the conduct of both advanced experiments and everyday affairs of life. The operational definition leaves aside the question whether there is something called time, apart from the counting activity just mentioned, that flows and that can be measured. Investigations of a single

114

35 "Time." Wikipedia. Wikimedia Foundation, 15 Mar. 2013. Web. FIGURE 9.2 Gorvin, Eric. "International System of Units". The Infinity Project. 2013.

FIGURE 9.2


FIGURE 9.3 Williams, John E., and Charles Elwood Dull. "Matter and Energy." Modern Physics. New York: Holt, Rinehart and Winston, 1968. 25. Print.

115


116


“This time of the present is explicated as a sequence Constantly rolling through the now, a sequence Whose directional sense is said to be singular and irreversible. Everything that occurs rolls out of an infinite future into an irretrievable past...” —Martin Heidegger, The Concept of Time

117


Infancy & History36 Th e C ontin u u m Since the human mind has the experience of time but not its representation, it necessarily pictures time by means of spatial images. The Graeco-Roman concept of time is basically circular and continuous. Puech writes: "Dominated by a notion of intelligibility which assimilates the full, authentic being to what is in him and corresponds to him, to the eternal and the immutable, the Greek regards movement and becoming as inferior degrees of reality, where correspondence is at best only understood as permanence and perpetuity, in other words as return. Circular movement, which guarantees the unchanged preservation of things through their repetition and continual return, is the most direct and most perfect expression (and therefore the closest to the divine) of the zenith of the hierarchy: absolute immobility." In Plato's Timaeus time is measured by the cyclical revolution of the celestial spheres and defined as a moving image of eternity. 'The creator of the world constructed a moving image of eternity, and, in ordering the heavens, from eternity one and unshifting he made this image which ever moves according to the laws of number and which we call time.' Aristotle confirms the circular nature of time in these terms: "...and so time is regarded as the rotation of the sphere, inasmuch as all other orders of motion are measured by it, and time itself is standardized by reference to it. And this is the reason of our habitual way of speaking; for we say that human affairs and those of all other things that have natural movement...seem to be in a way circular, because all these things come to pass in time and have their beginning and end as it were 'periodically'; for time itself is conceived as coming round; and this again because time and such a standard rotation mutually determine each other. Hence, to call the happenings of a thing a circle is saying that there is a sort of circle of time…" The first outcome of this conception is that time, being essentially circular, has no direction. Strictly speaking, it has no beginning, no middle and no end—or rather, it has them only in so far as its circular motion returns unceasingly back on itself. A singular passage in Aristotle's Problemata explains that from this point of view it is impossible to say whether we are before or after the Trojan War:

118

"Do those who lived at the time of the Trojan War come before us, and before them those who lived in an even more ancient time, and so on to infinity, those men most remote in the past coming always before the rest? Or else, if it is true that the universe has a beginning, a middle and an end; that what in aging reaches its end to find itself therefore back at the beginning; if this is true, on the other hand, that the things that are closest to the beginning come before, what then prevents us from being closer to the beginning than those who lived at the time of the Trojan War?… If the sequence of events forms a circle, since the circle has indeed neither beginning nor end, we cannot, by being closer to the beginning, come before them any more than they can be said to come before us." But the fundamental character of the Greek experience of time—which, through Aristotle's Physics, has for two millennia determined the Western representation of time—is its being a precise, infinite, quantified continuum. Aristotle thus defines time ..as 'quantity of movement according to the before and the after and its continuity is assured by its division into discrete instants [the now], analogous to the geometric point. The instant in itself is nothing more than the continuity of time, a pure limit which both joins and divides past and future. As such, it is always elusive, and Aristotle expresses its paradoxically nullified character in the statement that in dividing time infinitely, the now is always 'other'; yet in uniting past and future and ensuring continuity, it is always the same; and in this is the basis of the radical 'otherness' of time, and of its 'destructive' character: "And besides, since the 'now' is the end and the beginning of time, but not of the same time, but the end of time past and the beginning of time to come, it must present a relation analogous to the kind of identity between the convexity and the concavity of the same circumference, which necessitates a difference between that with respect to which it bears the other."

36 Agamben, Giorgio. Infancy and History: The Destruction of Experience. London: Verso, 1993.


3 Conceptions of Time Outlo o ks 37 Contemporary science represents a progressive view of the world that relies on the incessant accumulation of data to improve knowledge and reach through it new stages of enlightenment. By virtue of such accumulation, Science knows today more than yesterday and less than tomorrow (the technological applications serving as measure of her knowledge). As a result we sense a forward movement in time which expands the physical powers of humanity. This movement conveys the idea that there is more enlightenment and power farther on the same road, science itself being the vehicle taking us to our destination. From this progressive perspective, the present appears illuminated if compared to the past, but dark when compared to the future. Accordingly, the present looks like a "twilight zone" from which we perceive the light ahead and the darkness behind. We notice the present's intrinsical weakness only as it plunges into the past, being turned into "Darkness"--a metaphor for ignorance, superstition, and inability to develop complex technologies (Figure 9.6). On the other hand, the study of antiquity, and particularly of mythology, invites an opposite posture. "Recent sources" are seldom as respectable as the most ancient, while "later additions" often awake suspicion. It is as if a light were shining in a remote past. The closer to that light an author is, the more "authentic" his testimony will be. For it is assumed that later authors "invented", "filled gaps", "committed errors", or even "lied", thus obscuring the real meaning of their tradition. A typical traditionalist cherishes the past, persuaded that a legacy of wisdom was condensed in it for all times to come. He believes that as Time gradually removes us from the original source of everything, we forget our nature, our identity, and our purpose. One hundred and eighty degrees separate the traditionalist view from the progressive (Figure 9.7). Yet a third conception may be distinguished, generally embraced by religions contemplating salvation. For the salvationist, revelation is the light of the past, and redemption that of the future. In this manner both preceding views are combined: the past enlightens man, and the future redeems him. The Progressive and Salvationist views tend to be linear in their appreciation of Time whereas the Traditionalist conception often implies that light and darkness recur in a circle or cycle (Figure 9.8).

Progressive View Past

Present

Future

FIGURE 9.6

Today is worse than tomorrow but better than yesterday. The past is the darkest or â&#x20AC;&#x153;worstâ&#x20AC;? section of time.

Traditionalist View Past

Present

Future

FIGURE 9.7

Today is worse than yesterday but better than tomorrow. The future is the darkest or "worst" section of time.

Salvationist View Past

Present

Future

FIGURE 9.8

Revelation is in the past and redemption is in the future. The present is the darkest or "worst" section of time.

Linea r & Cyclical Time 38 Ancient cultures such as Incan, Mayan, Hopi, and other Native American Tribes, plus the Babylonians, Ancient Greeks, Hinduism, Buddhism, Jainism, and others have a concept of a wheel of time, that regards time as cyclical and quantic consisting of repeating ages that happen to every being of the Universe between birth and extinction. In general, the Judaeo-Christian concept, based on the Bible, is that time is linear, beginning with the act of creation by God. The general Christian view is that time will end with the end of the world.

37 Parada, Carlos, and Maicar FĂśrlag. "Chronos." Greek Mythology Link. N.p., 1997. Web. 38 "Time." Wikipedia. Wikimedia Foundation, 15 Mar. 2013. Web.

119


The Arrow Of Time A n In t roductio n 39 The words past and future do not appear in the laws of physics. There is no difference between one direction of time and the other in the ultimate elementary laws of physics. What we do is we assign the words past and future to the direction of lower entropy and higher entropy. Entropy is a way of measuring the disorderliness of any system—whether it is the universe or a cup of coffee or anything like that. So if things are precisely organized, in particular if they’re segregated so that your cream is over here and your coffee is over here, that’s low entropy, that’s a high amount of organization. Then you mix them together and the entropy goes up. And it’s a law of nature if you leave things by themselves entropy always goes up. Things go from being orderly, very delicately organized, to being messier, to being more disorganized. And so we tend therefore to associate time with not just change, but a certain directed kind of change. The direction of time in which the entropy was lower we call the past. The direction of time in which entropy is increasing we call the future. That’s what defines the arrow of time. And all of that is part of this underlying dynamic caused by the fact that the universe started very organized and is becoming ever more disorganized as it expands and cools and things happen.

In t e r vie w W it h Sea n Carro ll 40 What is the arrow of time? The past is different from the future. One of the most obvious features of the macroscopic world is irreversibility: heat doesn't flow spontaneously from cold objects to hot ones, we can turn eggs into omelets but not omelets into eggs, ice cubes melt in warm water but glasses of water don't spontaneously give rise to ice cubes. We remember the past, but not the future; we can take actions that affect the future, but not the past (we can't unto our mistakes). We are all born, then age, then die; never the other way around. The distinction between past and future seems to be consistent throughout the observable universe. The arrow of time is simply that distinction, pointing from past to future. Why is there such an arrow? Irreversible processes are summarized by the Second Law of Thermodynamics: the entropy of a closed system will (practically) never decrease into the future. It's a bedrock foundation of modern physics.

120

What's "entropy"? Entropy is a measure of the disorder of a system. A nice organized system, like an unbroken egg or a neatlyarranged pile of papers, has a low entropy; a disorganized system, like a broken egg or a scattered mess of papers, has a high entropy. Left to its own devices, entropy goes up as time passes. But entropy decreases all the time; we can freeze water to make ice cubes, after all. And life evolved. Not all systems are closed. The Second Law doesn't forbid decreases in entropy in open systems -- by putting in the work, you are able to tidy up your room, decreasing its entropy but still increasing the entropy of the whole universe (you make noise, burn calories, etc.). Nor is it in any way incompatible with evolution or complexity or any such thing. Should we be surprised? The first mystery of the arrow of time is that it's nowhere to be found in the fundamental laws of physics. Those laws work perfectly well if we run processes backwards in time. (More rigorously, for every allowed process there exists a time-reversed process that is also allowed, obtained by switching parity and exchanging particles for antiparticle—the CPT Theorem.) Nevertheless, the macroscopic world we observe is full of irreversible processes. The puzzle is to reconcile microscopic reversibility with macroscopic irreversibility. And how do we reconcile them? The observed macroscopic irreversibility is not a consequence of the fundamental laws of physics, it's a consequence of the particular configuration in which the universe finds itself. In particular, the unusual lowentropy conditions in the very early universe, near the Big Bang. Understanding the arrow of time is a matter of understanding the origin of the universe. Wasn't this all figured out over a century ago? Not exactly. In the late 19th century, Boltzmann and Gibbs figured out what entropy really is: it's a measure of the number of individual microscopic states that are macroscopically indistinguishable. An omelet is higher entropy than an egg because there are more ways to re-arrange its atoms while keeping it indisputably an omelet, than there are for the egg. That provides half of the explanation for the Second Law: entropy tends to increase because there are more ways to be high entropy than low entropy. The other half of the question still remains: why was the entropy ever low in the first place?

39 Levin, David. "Sean Carroll on Time." Nova Beta. PBS, 08 Nov. 2011. Web. 08 June 2012 40 "Arrow of Time FAQ : Cosmic Variance." Cosmic Variance. Discovery Magazine, 3 Dec. 2007. Web. 08 June 2012.


A New Rationality41 Is the origin of the Second Law really cosmological? We never talked about the early universe back when I took thermodynamics. Trust me, it is (or trust Richard Feynman, if you don't trust me). Of course you don't need to appeal to cosmology to use the Second Law, or even to "derive" it under some reasonable-sounding assumptions. However, those reasonable-sounding assumptions are typically not true of the real world. Using only time-symmetric laws of physics, you can't derive time-asymmetric macroscopic behavior (as pointed out in the "reversibility objections" of Lohschmidt and Zermelo back in the time of Boltzmann and Gibbs); every trajectory is precisely as likely as its timereverse, so there can't be any overall preference for one direction of time over the other. The usual "derivations" of the second law, if taken at face value, could equally well be used to predict that the entropy must be higher in the past -- an inevitable answer, if one has recourse only to reversible dynamics. But the entropy was lower in the past, and to understand that empirical feature of the universe we have to think about cosmology.

Earlier this century in The Open Universe: An Argument for Indeterminism, Karl Popper wrote, “Common sense inclines, on the one hand, to assert that every event is caused by some preceding events, so that every event can be explained or predicted .... On the other hand,... commonsense attributes to mature and sane human persons . . . the ability to choose freely between alternative possibilities of acting.” This “dilemma of determinism,” as William James called it, is closely related to the meaning of time. Is the future given, or is it under perpetual construction? A profound dilemma for all of mankind, as time is the fundamental dimension of our existence. It was the incorporation of time into the conceptual scheme of Galilean physics that marked the origins of modern science. This triumph of human thought is also at the root of the main problem addressed by this book: the denial of what has been called the arrow of time. As is well known, Albert Einstein often asserted, “Time is an illusion.” Indeed time, as described by the basic laws of physics, from classical Newtonian dynamics to relativity and quantum physics, does not include any distinction between past and future. Even today, for many physicists it is a matter of faith that as far as the fundamental description of nature is concerned, there is no arrow of time. (Continued on pg. 124)

41 Prigogine, I., and Isabelle Stengers. The End of Certainty: Time, Chaos, and the New Laws of Nature. New York: Free, 1997. Print

121


122

FIGURE 9.6 Gorvin, Eric. "Moleskine Entry". The Infinity Project. 2013.


Entry I keep thinking of time more and more relatively. It's easy to get caught up in the scientific side of things. Once I learned of the arrow of time I got really caught up in the lack of possibility for any kind of infinite recursion. But when we talk about the arrow of time, we're really talking about entropy. And entropy is really talking about the movement of order to disordered and its relationship to the development of the universe. So, in effect, the arrow of time is really talking about the genesis of the universe, the origin of matter. Since I'm talking about infinite, imaginary time (not just what has occurred in the last 14 billion years â&#x20AC;&#x201D; though, this is also important to know), I'm looking for the what's next, and what's after that. If we can manage to zoom out even further from our 14 billion year old universe and look at what is at the start and the finish line of its trajectory, it becomes more and more obvious to me that everything appears to be an arbitrary node traveling through space. There may be many universes everywhere doing what we are doing - traveling from a state of low entropy to high entropy - and there may even be universes that travel backwards in time thus reversing the arrow of time all together (many prefer to think that this might be the eventuality of our universe!). If it is theoretically possible for the arrow of time to be reversed, I have to conclude that time (the 4th dimension) is just as much a malleable and changeable of a dimension as the other 3 dimensions. I like to think that mastering the fourth dimension is at the frontier of human evolution. I believe that if we can successfully harness time as it's own changeable medium, we will begin to understand some of the truths associated with it much more thoroughly, getting us much closer to understanding why we exist.

123


Yet everywhere in chemistry, geology, cosmology, biology, and the human sciences—past and future play different roles. How can the arrow of time emerge from what physics describes as a time-symmetrical world? This is the time paradox. The time paradox was identified only in the second half of the nineteenth century after the Viennese physicist Ludwig Boltzmann tried to emulate what Charles Darwin had done in biology in an effort to formulate an evolutionary approach to physics. The laws of Newtonian physics had long since been accepted as expressing the ideal of objective knowledge. As they implied the equivalence between past and future, any attempt to confer a fundamental meaning on the arrow of time was resisted as a threat to this ideal. Isaac Newton’s laws were considered final in their domain of application, somewhat the way quantum mechanics is now considered to be final by many physicists. How then can we introduce unidirectional time without destroying these amazing achievements of the human mind? Since Boltzmann, the arrow of time has been relegated to the realm of phenomenology. We, as imperfect human observers, are responsible for the difference between past and future through the approximations we introduce in our description of nature. This is still the prevailing scientific wisdom. Certain experts lament that we stand before an unsolvable mystery for which science can provide no answer. We believe that this is no longer the case because of two recent developments: the spectacular growth of nonequilibrium physics and the dynamics of unstable systems, beginning with the idea of chaos. Over the past several decades, a new science has been born, the physics of nonequilibrium processes, and has led to concepts such as self-organization and dissipative structures, which are widely used today in a large spectrum of disciplines, including cosmology, chemistry, and biology, as well as ecology and the social sciences. The physics of nonequilibrium processes describes the effects of unidirectional time and gives fresh meaning to the term irreversibility. In the past, the arrow of time appeared in physics only through simple processes such as diffusion or viscosity, which could be understood without any extension of the usual time-reversible dynamics. This is no longer the case. We now know that irreversibility leads to a host of novel phenomena, such as vortex formation, chemical oscillations, and laser light,

124

all illustrating the essential constructive role of the arrow of time. Irreversibility can no longer be identified with a mere appearance that would disappear if we had perfect knowledge. Instead, it leads to coherence, to effects that encompass billions and billions of particles. Figuratively speaking, matter at equilibrium, with no arrow of time, is “blind,” but with the arrow of time, it begins to “see.” Without this new coherence due to irreversible, nonequilibrium processes, life on earth would be impossible to envision. The claim that the arrow of time is “only phenomenological,” or subjective, is therefore absurd. We are actually the children of the arrow of time, of evolution, not its progenitors. The second crucial development in revising the concept of time was the formulation of the physics of unstable systems. Classical science emphasized order and stability; now, in contrast, we see fluctuations, instability, multiple choices, and limited predictability at all levels of observation. Ideas such as chaos have become quite popular, influencing our thinking in practically all fields of science, from cosmology to economics. As we shall demonstrate, we can now extend classical and quantum physics to include instability and chaos. We are then able to obtain a formulation of the laws of nature appropriate for the description of our evolving universe, a description that contains the arrow of time, since past and future no longer play symmetrical roles. In the classical view-and here we include quantum mechanics and relativity-laws of nature express certitudes. When appropriate initial conditions are given, we can predict with certainty the future, or “retrodict” the past. Once instability is included, this is no longer the case, and the meaning of the laws of nature changes radically, for they now express possibilities or probabilities. Here we go against one of the basic traditions of Western thought, the belief in certainty. As stated by Gerd Gigerenzer et al. in The Empire of Chance, “Despite the upheavals in science in the over two millennia separating Aristotle from the Paris of Claude Bernard, they shared at least one attitude of faith: Science was about causes, not chance. Kant even promoted universal causal determinism to the status of a necessary condition of all scientific knowledge.” There were, however, dissenting voices. The great physicist James Clerk Maxwell spoke of a “new kind of knowledge” that would overcome the prejudice of determinism. But, on the whole, the prevailing opinion was that probabilities were states of mind rather than states of the world. This is so even today in spite of the fact that

41 Prigogine, I., and Isabelle Stengers. The End of Certainty: Time, Chaos, and the New Laws of Nature. New York: Free, 1997. Print


quantum mechanics has included statistical concepts in the core of physics. But the fundamental object of quantum mechanics, the wave function, satisfies a deterministic, time-reversible equation. To introduce probability and irreversibility, the orthodox formulation of quantum mechanics requires an observer. Through his measurements, the observer would bring irreversibility to a time-symmetric universe. Again, as in the time paradox, we would be responsible in some sense for the evolutionary patterns of the universe. This role of the observer, which gave quantum mechanics its subjective flavor, was the main reason that prevented Einstein from endorsing quantum mechanics, and it has since led to unending controversies.   The role of the observer was a necessary concept in the introduction of irreversibility, or the flow of time, into quantum theory. But once it is shown that instability breaks time symmetry, the observer is no longer essential. In solving the time paradox, we also solve the quantum paradox, and obtain a new, realistic formulation of quantum theory. This does not mean a return to classical deterministic orthodoxy; on the contrary, we go beyond the certitudes associated with the traditional laws of quantum theory and emphasize the fundamental role of probabilities. In both classical and quantum physics, the basic laws now express possibilities. We need not only laws, but also events that bring an element of radical novelty to the description of nature. This novelty leads us to the “new kind of knowledge” anticipated by Maxwell. For Abraham De Moivre, one of the founders of the classical theory of probabilities, chance can neither be defined nor understood. As we shall illustrate, we are now able to include probabilities in the formulation of the basic laws of physics. Once this is done, Newtonian determinism fails; the future is no longer determined by the present, and the symmetry between past and future is broken. This confronts us with the most difficult questions of all: What are the roots of time? Did time start with the “big bang”? Or does time preexist our universe?   These questions place us at the very frontiers of space and time. A detailed explanation of the cosmological implications of our position would require a special monograph. Briefly stated, however, we believe that the big bang was an event associated with an instability within the medium that produced our universe. It marked the start of our universe but not the start of time. Although our universe has an age, the medium that produced our universe has none. Time has no beginning, and probably no end.

But here we enter the world of speculation. The main purpose of this book is to present the formulation of the laws of nature within the range of low energies. This is the domain of macroscopic physics, chemistry, and biology. It is the domain in which human existence actually takes place. The problems of time and determinism have remained at the core of Western thought since the pre-Socratics. How can we conceive of human creativity or ethics in a deterministic world?   This question reflects a profound contradiction in Western humanistic tradition, which emphasizes the importance of knowledge and objectivity, as well as individual responsibility and freedom of choice as implied by the ideal of democracy. Popper and many other philosophers have pointed out that we are faced with an unsolvable problem as long as nature is described solely by a deterministic science. Considering ourselves as distinct from the natural world would imply a dualism that is difficult for the modern mind to accept. Our aim in this work is to show that we can now overcome this obstacle. If 'the passion of the western world is to reunite with the ground of its being,' as Richard Tarnas has written, perhaps it is not too bold to say that we are closing in on the object of our passion.   Mankind is at a turning point, the beginning of a new rationality in which science is no longer identified with certitude and probability with ignorance. We agree completely with Yvor Leclerc when he writes, 'In the present century we are suffering from the separation of science and philosophy which followed upon the triumph of Newtonian physics in the eighteenth century. Jacob Bronowski beautifully expressed the same thought in this way: 'The understanding of human nature and of the human condition within nature is one of the central themes of science.'   At the end of this century, it is often asked what the future of science may be. For some, such as Stephen W. Hawking in his Brief History of Time, we are close to the end, the moment when we shall be able to read the “mind of God.” In contrast, we believe that we are actually at the beginning of a new scientific era. We are observing the birth of a science that is no longer limited to idealized and simplified situations but reflects the complexity of the real world, a science that views us and our creativity as part of a fundamental trend present at all levels of nature.

125


126

FIGURE 9.7 Harold E. Edgerton courtesy E.G.&G. Inc., Boston.


FIGURE 9.8 Differential Equation: Differential equations are prominent in engineering, physics, economics, mathematics and many more disciplines. The Second Law of Thermodynamics (The Arrow of Time) is one of many famous differential equations.

127


128

FIGURE 10.1 Guzmán, Andrés. The Infinity Project. 2012.


On Space

129


The Universe42 P yt h a g ore a n s, On S pace In the first book of his work on Pythagorean philosophy Aristotle writes that the universe is one, and that time and breath and the void, which differentiates the places of all individual things, are drawn into the universe from the unlimited. ... All the things that exist must be either limiting or unlimited, or both limiting and unlimited. But they cannot be only unlimited. So since they evidently arise neither from things that are all limiters nor from things that are all unlimited, it clearly follows that the universe and its components were harmonized out of both things which limit and things which are unlimited. And the facts of things also make this clear, since some things arise from limiters and are limiters, while others arise from both limiters and unlimiteds and both limit and fail to impose limit, and others arise from unlimiteds and are plainly unlimited. ... On the subject of nature and harmony, this is how things stand: the being of things, qua eternal, and nature, itself are accessible only to divine and not human knowledge except that it is impossible for any of the things that exist and are known by us to have arisen without the prior existence of the being of the things out of which the universe is composed, namely limiters and unlimiteds. Now, since these sources existed in all their dissimilarity and incompatibility, it would have been impossible for them to have been made into an orderly universe unless harmony had been present in some form or other. Things that were similar and compatible had no need of harmony, but things that were dissimilar and incompatible and incommensurate had to be connected by this kind of harmony, if they are to persist in an ordered universe. ... The first thing to be harmonized, the one, in the centre of the sphere, is called the hearth. ... The universe is single. It originally arose from the centre, and from the centre upwards and downwards in the same way. For what is above the centre is the opposite in disposition to what is below, in the sense that to lower things the lowest part is like the highest part, and the same goes for the upper things too. For the relation to the centre is the same in either case, except that their positions are reversed.

FIGURE 10.2

FIGURE 10.3

FIGURE 10.4

130

42 Waterfield, Robin. The First Philosophers: The Presocratics and Sophists. Oxford: Oxford UP, 2000. Print. FIGURE 10.2-10.3 Chaisson, Eric. Cosmic Dawn: The Origins of Matter and Life. Boston: Little, Brown, 1981. Print. FIGURE 10.4 Crab Nebula. FIGURE 10.5 (opposite page) Andromeda Galaxy. The closest galaxy to our own.


131


Powers Of 1043 Out to Spa ce f ro m Earth

132

43 Powers of Ten, 1978. Pyramid Films, 1978. Film.


In to Sk in/ Qu antu m

133


134


â&#x20AC;&#x153;The Pythagoreans also claim that there is such a thing as a void. According to them, it enters the universe from the infinite breath because the universe breathes in void as well as breath. What void does, they say, is differentiate things; they think of void as being a kind of separation and distinction when one thing comes after another. This happens first among the numbers, because on their view it is the void that distinguishes one number from another.â&#x20AC;?â&#x20AC;&#x201D;Aristotle

135


On Relationships Dark M atter Distribu tio n in Our Univ erse

FIGURE 10.6

Pho to gra ph o f Bra in N euro n s

FIGURE 10.7

136

FIGURE 10.6 Bizony, Piers. Science: The Definitive Guide. London: Quercus, 2010. Print.


Flight Pattern s in th e USA

FIGURE 10.8

M ap Of Th e In tern e t

FIGURE 10.9

FIGURE 10.8 "Flight Patterns." UCLA Design|Media Arts User Pages. Web. 01 May 2012. FIGURE 10.9 Courtesy of The Opte Project

137


138

FIGURE 10.10 Gorvin, Eric. "Studio Relationships". The Infinity Project. 2012.


139


140


141


142

FIGURE 10.11 (Previous page) Gorvin, Eric. "Spiderwebs". The Infinity Project. 2013. FIGURE 10.12 Gorvin, Eric. "Ellipse Study". The Infinity Project. 2012.


â&#x20AC;&#x153;The universe is single. It originally arose from the centre, and from the centre upwards and downwards in the same way. For what is above the centre is the opposite in disposition to what is below, in the sense that to lower things the lowest part is like the highest part, and the same goes for the upper things too. For the relation to the centre is the same in either case, except that their positions are reversed.â&#x20AC;?â&#x20AC;&#x201D;Philolaus

143


144

FIGURE 10.13 Gorvin, Eric. "Mars & The Moon". The Infinity Project. 2012.


Entry In & Ou t The relativity of the relationships astonishing. Just help immensely in

the Universe is something I've been thinking a lot about. All of that exist from the micro to macro view of our Universe/earth are being aware of our size in relation to the rest of the Universe can thinking about infinity.

In my first year of school at MCAD, I took the Introduction to Graphic Design class with Kindra Murphy. She assigned some kind of collage project as our first in-class project, and I don't really remember what the prompt was. But I do remember that I chose to make a hypothetical advertisement about going to space as a vacation spot or recreational destination. "See the world!" was the headline. As primitive as the collage was, my supporting argument was that I thought that if I everyone in the world went into orbit for even just one hour, that it would be enough to change anyone's perspective permanently. There are some things that you can't unsee, good and bad. I would argue that even the simplest of people would be changed forever. I would imagine that all of our differences with eachother would subside, and that the human race might just flourish and exist peacefully. A lot of people said that wasn't possible... But I dream of a day (that I believe to be rather soon) where going to space is just as expensive as international travel. I think this could be the first step in the humbling and unification of man-kind.

On Drea ms I like to dream up the fast-forward time lapse of the history of our earth, and watch as mankind makes its brief cameo. I like to think of all the other sped up time lapses of the rest of the planets in the Universe as well. Through all of the billions of years, and billions of planets, orbiting billions of stars, I like to think about all of the countless times civilizations shined as bright as ours. I like to think of all the permutations of different kinds of creatures and civilizations that might exist. I like to think of pure forms, I like to think of polluted forms. I like to dream that there are creatures like jellyfish that are the size of stars, or the size of whole star clusters, moving at a pace relative to their own size and unfathomable to ours. Observing the miracles of our Earth, I like to think about how they can be observed in the cosmos. I like to think about death. I like to dream of cyclical systems where void and matter are one. I like to conjure new galaxies where trees float above the land of their planets in a warm mist. I like to think about monsters. I like to think about dinosaurs, and how they are our closest idea to what is possible in alien life elsewhere. I like to hope that we will make contact with outside life. I like to think we will. I like to think about the Universe. I like understanding that it's you and me.

FIGURE 10.12 (next page) The Orion Nebula.

145


148


“It was as if everything she thought, felt, remembered, had an aura; behind the briefest eye-blink, least flicker of touch, a shadow, a kind of ghost presence. This aura wasn't part of her, nor was it in any sense that she could fathom produced by her, nor did it seem answerable to her, even though—of this she was certain—only she was aware of it. Neither did it seem to precede her and her business: it wasn't there before— couldn't be anywhere—before she felt what she was able to feel, before she perceived what she—her body—decided she could perceive. And yet there it was, ghost of things present, faint pulsation of the real; at times like the glow on the surface of the universe, at others the dark outline of a world dazzled by there being nothing in it but its own presence. Often it was neither light, nor dark, nor anything visible, but just a presence—simply there—clinging to the motion of her being in space–like the field of a magnet, or radiation from the earth's rocks. Of late it had occurred to her: perhaps it was the aura that was real, felt things, had a body, sat and moved through space and perceived the countless pulsations of light and energy in the universe, and that she was the shadow clinging to it, following it around, copying its business before it had time to look around and be aware of who she was and how her very presence was no more than a confirmation of the aura's desperate need for something— anything—to keep it company.”—Brian Rotman, Aura 149



The Infinity Project was created by

Eric Gorvin in Minneapolis, MN USA. 2011-2013 .

CONTACT ericgorvin@gmail.com ericgorvin.com @ericgorvin facebook.com/ericgorvin ericgorvin.tumblr.com soundcloud.com/theinfinityproject theinfinityproject.bandcamp.com

STORE theinfinityproject.bigcartel.com


E R I C

G O R V I N

The Infinity Book  

A book conducted through the eyes of Eric Gorvin, exploring the concepts of Infinity. Designed elegantly and organized in a loose coffee-tab...

The Infinity Book  

A book conducted through the eyes of Eric Gorvin, exploring the concepts of Infinity. Designed elegantly and organized in a loose coffee-tab...

Advertisement