Page 1

HOME .I/":.,

HELP

*

a: V t

OAK RIDGE NATIONAL LABORATORY operated by

UNION CARBIDE CORPORATION NUCLEAR DIVISION for the

U.S. ATOMIC ENERGY COMMISSION ORNL- TM-2180

DATE-March

2

.. '

ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES. A REVIEW.

G. D. Robbins

.

ZI

"b, c

NOTICE This document contains information of a preliminary nature and was prepared primarily for internol use at the Oak Ridge National Loborotory. It i s subject to revision or correction and therefore does not represent o final report.

26, 1968


_ _ _LEGAL ~NOTICE T h i s report was prepared os an occount of Government sponsored work.

Neither the United States,

nor the Commission, nor any person acting on behalf of the Commission:

A. Maker any worronty or representation, expressed or implied, w i t h respect completeness, or usefulness of the any

information,

apparatus,

msthod,

t o the accuracy,

information contoined i n t h i s report, or that the use of

or process disclosed in t h i s report may not infringe

privately owned rights; or

B. Assumes any l i a b i l i t i e s w i t h respect to the use of, or for damages resulting from the use of any information, opporatus, method, or process disclosed i n t h i s report. As used i n the obove, “person

acting on behalf of the

Commission�

controctor of the Commission, or employee of such controctor, or contractor

of the Commission,

or employee of

includes ony employee or

t o the extent that such employee

such controctor

prepares,

disseminates,

or

provides access to, any informotion pursuont t o h i s employment or contract with the Commission, or h i s employment w i t h such controctor.

r

A


iii

ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES.

A REVIEW G. D. R o b b i n s

Reactor C h e m i s t r y D i v i s i o n Oak R i d g e N a t i o n a l L a b o r a t o r y Oak R i d g e , T e n n e s s e e

ABSTRACT/SUMMARY

A review of electrical c o n d u c t i v i t y measurements i n m o l t e n f l u o r i d e s y s t e m s c o v e r i n g t h e p e r i o d 1927 t o 1967 h a s b e e n made, w i t h p a r t i c u l a r e m p h a s i s on e x p e r i -

I t is p o i n t e d o u t t h a t t h e common p r a c t i c e of m e a s u r i n g r e s i s t a n c e w i t h a W h e a t s t o n e b r i d g e h a v i n g a p a r a l l e l r e s i s t a n c e and c a p a c i t a n c e , R and C i n t h e b a l a n c i n g arm c a n r e s u l t i n c o n s i d e r P P’ able e r r o r i f t h e r e l a t i o n R P = Rs[ 1 + Rp2CpZ (2IIf)’] is

mental approach.

n o t employed i n d e t e r m i n g t h e s o l u t i o n r e s i s t a n c e , Rs. The f r e q u e n c y d e p e n d e n c e o f t h e m e a s u r e d r e s i s t a n c e a n d t h e p r a c t i c e of e x t r a p o l a t i n g measured r e s i s t a n c e s t o i n f i n i t e f r e q u e n c y v e r s u s 1 / d f is examined i n terms of e l e c t r o d e p r o c e s s c o n c e p t s . A summary o f e x p e r i m e n t a l a p p r o a c h e s a n d r e s u l t s f o r 56 m o l t e n f l u o r i d e s y s t e m s

is p r e s e n t e d .

.~

r------lEGAL

I


1

ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES.

A REVIEW* Introduction I n v e s i t g a t i o n of t h e e l e c t r i c a l c o n d u c t i v i t y o f m o l t e n

s a l t s y s t e m s h a s been a n area o f l i v e l y r e s e a r c h i n r e c e n t y e a r s , a n d a number o f r e v i e w s h a v e a p p e a r e d w h i c h d e a l w i t h t h i s a s p e c t of t r a n s p o r t phenomena. (1-3)

I t w i l l be t h e

i n t e n t of t h i s review to l i m i t i t s e l f t o t h e s u b j e c t of conductance measurements i n molten f l u o r i d e s .

The c o n t a i n m e n t

p r o b l e m s e n c o u n t e r e d w i t h t h e s e m a t e r i a l s s e t them a p a r t from t h e o t h e r m o l t e n h a l i d e s w i t h respect t o e x p e r i m e n t a l d i f f i c u l t i e s a n d t h e c o n s e q u e n t p r e c i s i o n o f measurement w h i c h c a n be e x p e c t e d .

By l i m i t i n g t h i s r e v i e w t o f u s e d f l u o r i d e s , it

is hoped t h a t s u f f i c i e n t d e t a i l s may be p r e s e n t e d t o p e r m i t workers i n t h e f i e l d t o o b t a i n a comprehensive survey covering t h e p e r i o d 1927 t o 1 9 6 7 .

To o u r knowledge, n o s u c h r e v i e w

e x i s t s w h i c h a d d r e s s e s i t s e l f t o t h e q u e s t i o n s which w e p o s e be l o w . Many i n v e s t i g a t i o n s i n t h e p a s t h a v e been c o n c e r n e d w i t h c r y o l i t e - c o n t a i n i n g melts b e c a u s e o f t h e i r r e l e v a n c e t o t h e aluminum i n d u s t r y , a n d a r e v i e w o f t h e s e s y s t e m s h a s been g i v e n by G r j o t h e i m a n d M a t i a s o v s k y . (4) Renewed i n t e r e s t i n t h e t r a n s p o r t p r o p e r t i e s of f u s e d f l u o r i d e s i n g e n e r a l h a s r e s u l t e d from t h e i r u s e as f u e l , b l a n k e t , a n d c o o l a n t materials i n m o l t e n

s a l t reactors. ( 5 )

*R e s e a r c h

s p o n s o r e d by t h e U.S. A t o m i c E n e r g y Commission u n d e r c o n t r a c t w i t h t h e Union Carbide C o r p o r a t i o n . V


2

B e c a u s e o f t h e h i g h s p e c i f i c c o n d u c t a n c e of most mol t e n

s a l t s (1-6

Q-1

cm-'

1, (6

e x p e r i m e n t a l a p p r o a c h e s have t e n d e d

t o f a l l i n t o t w o groups''):

(1) u s e of c a p i l l a r y - c o n t a i n i n g

c e l l s , which r e s u l t s i n a c e l l c o n s t a n t of s e v e r a l hundred

cm-',

t h e c a p i l l a r i e s b e i n g c o n s t r u c t e d from e l e c t r i c a l l y

i n s u l a t i n g m a t e r i a l s ; or ( 2 ) u s e of m e t a l l i c c e l l s i n w h i c h t h e c o n t a i n e r is u s u a l l y one e l e c t r o d e , w i t h a s e c o n d e l e c t r o d e positioned i n the m e l t .

The l a t t e r t y p e o f c e l l s h a v e c e l l

c o n s t a n t s o f t h e o r d e r of a f e w t e n t h s c m - ' ,

requiring very

a c c u r a t e m e a s u r i n g b r i d g e s a n d d e t e r m i n a t i o n of l e a d resistances.

S i n c e t h e v a l u e of m e a s u r e d r e s i s t a n c e i n s u c h c e l l s

is l e s s t h a n

la,

errors due t o t e m p e r a t u r e g r a d i e n t s , c h a n g e s

i n c e l l c o n s t a n t w i t h t e m p e r a t u r e , a n d p o l a r i z a t i o n become a s i g n i f i c a n t problem.

Hence, c e l l s of t y p e (1) are c l e a r l y

d e s i r a b l e for u s e i n m o l t e n s a l t s .

However, e l e c t r i c a l l y

i n s u l a t i n g m a t e r i a l s for c a p i l l a r y c o n s t r u c t i o n w h i c h are r e s i s t a n t t o a t t a c k by m o l t e n f l u o r i d e s are scarce. Measurement o f e l e c t r i c a l c o n d u c t i v i t y i n m o l t e n s a l t s d i f f e r s from s i m i l a r s t u d i e s i n a q u e o u s s o l u t i o n s i n s e v e r a l significant aspects.

I t is o f t e n t h e p r a c t i c e t o employ some

form o f a W h e a t s t o n e b r i d g e '7)

( F i g u r e 1) i n w h i c h t h e t w o

u p p e r arms a r e m a t c h e d , s t a n d a r d r e s i s t a n c e s , a n d t h e impeda n c e of t h e c e l l i n one l o w e r a r m is b a l a n c e d by a v a r i a b l e impedance, 2 , i n t h e f o u r t h a r m .

The b a l a n c i n g impedance is

and c a p a c i t a n c e , RP cP , The s o l u t i o n r e s i s t a n c e , R s , a n d

usually a variable resistance, connected i n p a r a l l e l . solution-electrode

i n t e r f a c i a l c a p a c i t a n c e s , Cs,

are c o n s i d e r e d t o be i n s e r i e s ( 8 ) ( F i g u r e 2 ) .

i n the cell

By r e q u i r i n g


3 v a

o n e e l e c t r o d e t o h a v e a much g r e a t e r area t h a n t h e o t h e r , t h e impedance associated w i t h s u c h a n e l e c t r o d e becomes n e g l i g i b l e , a n d t h e e q u i v a l e n t c i r c u i t r e d u c e s t o t h a t shown i n F i g u r e 3 . ( A l t e r n a t i v e l y , o n e c a n employ e l e c t r o d e s o f s i m i l a r area a n d

t r e a t t h e c a p a c i t a n c e r e s u l t i n g from t h e i r s e r i e s c o m b i n a t i o n 1

as a s i n g l e t o t a l c a p a c i t a n c e ,

- 1

- r + r.) S I

The c a p a c i -

3 . 2

t a n c e r e s u l t i n g from t h e electrode leads is i n p a r a l l e l across t h e e n t i r e c e l l shown i n F i g u r e 2 .

However, a t f r e q u e n c i e s

o r d i n a r i l y e m p l o y e d , a n d w i t h some care i n p o s i t i o n i n g , t h i s c a p a c i t a n c e can be n e g l e c t e d . When a s i n u s o i d a l a l t e r n a t i n g p o t e n t i a l is i m p r e s s e d a c r o s s the cell, a sinusoidal alternating current results.

If t h e

p o t e n t i a l is i n s u f f i c i e n t t o c a u s e e l e c t r o c h e m i c a l r e a c t i o n s

t o o c c u r a t t h e electrodes, t h e e q u i v a l e n t c i r c u i t o f F i g u r e 3

is v a l i d , a n d t h e i n t e r f a c i a l c a p a c i t a n c e is c h a r g e d a n d d i s charged during each half-cycle

through t h e s o l u t i o n r e s i s t a n c e .

By e m p l o y i n g a n o s c i l l o s c o p e as t h e n u l l d e t e c t o r , one c a n b a l a n c e t h e c e l l impedance w i t h t h e p a r a l l e l c o m b i n a t i o n of R a n d Cp shown i n F i g u r e 1.

P The two b a l a n c e e q u a t i o n s (when t h e

s t a n d a r d r e s i s t a n c e s are matched) are RS

Rp

+

C P=1 cS

and RsRpCsCp(211f)Z

=

1

T h e s e may be combined i n t o RP

=

Rs[l

-F

CpZRp2(211f)2]

(3 1

I t is o f t e n t h e p r a c t i c e t o e q u a t e R

( t h e v a l u e o f t h e bridge P d i a l s ) t o Rs ( t h e t r u e s o l u t i o n r e s i s t a n c e ) . (9y10) ( I n t h e case

o f unmatched s t a n d a r d r e s i s t o r s , t h e i r r a t i o is u s e d . )

This


4 is u s u a l l y v a l i d i n a q u e o u s s o l u t i o n s w h e r e Rs a n d Cs a r e s u c h

a s t o r e s u l t i n R 2 C 2(211f)2 b e i n g n e g l i g i b l y s m a l l e r t h a n P P unity. However, i n m o l t e n s a l t s e x p e r i m e n t a l c o n d i t i o n s f o r t h e measurement o f e l e c t r i c a l c o n d u c t a n c e c a n r e s u l t i n c o n s i d e r a b l e e r r o r i f t h e s e e q u a t i o n s are n o t c o n s i d e r e d when u s i n g p a r a l l e l components i n t h e b a l a n c i n g arm o f a W h e a t s t o n e bridge.

For e x a m p l e , on r e w r i t i n g e q u a t i o n s ( 2 ) and ( 3 ) i n

t h e form

Rp

=

Rs[l

1

Cs2Rs2 (211f)2

4-

1

(4)

i t is e v i d e n t t h a t i n m o l t e n s a l t s , w h e r e RsZ may be smaller by a f a c t o r of 1 O 1 O

t h a t i n aqueous s o l u t i o n s

*

(Cs h a v i n g a p p r o x i -

m a t e l y s i m i l a r v a l u e s ( 1 3 ) ) , a n a w a r e n e s s o f t h e s e r e l a t i o n s is necessary. U s e o f e q u a t i o n ( 3 ) t o c a l c u l a t e Rs

i s l i m i t e d by t h e

a c c u r a c y w i t h which t h e v a l u e s of t h e v a r i a b l e capacitance,

C p , a n d t h e f r e q u e n c y a r e known.

U s e of p r e c i s i o n c a p a c i t o r s

c a n be a v o i d e d by e m p l o y i n g a b r i d g e i n w h i c h t h e b a l a n c i n g components a r e i n s e r i e s . ( 1 4 )

Then i n t h e case of no e l e c t r o -

c h e m i c a l r e a c t i o n , t h e v a l u e o f Rs

is w e l l r e p r e s e n t e d by t h e

r e a d i n g on t h e b a l a n c e d b r i d g e ; however, t h i s method does r e q u i r e t h e u s e of l a r g e c a p a c i t o r s . When a s u f f i c i e n t l y l a r g e a . c . p o t e n t i a l i s i m p r e s s e d on t h e c e l l t h a t c h a r g e is t r a n s f e r r e d a c r o s s t h e s o l u t i o n -

e l e c t r o l y t e i n t e r f a c e s d u r i n g part of each h a l f - c y c l e ,

corres-

p o n d i n g t o a n e l e c t r o c h e m i c a l r e a c t i o n , t h e s i t u a t i o n becomes

-----

c o n s i d e r a b l y more c o m p l e x . ~

However, i t is u n d e r t h e s e c o n d i t i o n s

The m e a s u r e d r e s i s t a n c e o f 0 . 0 0 0 5 m K C 1 i n c e l l s employed

by J o n e s a n d B o l l i n g e r (I1) w a s a p p r o x i m a t e l y 5 0 , 0 0 0 0.

Cuthbertson

a n d Waddington ( 1 2 ) r e p o r t a m e a s u r e d r e s i s t a n c e o f a p p r o x i m a t e l y 0 . 5 $2 i n m o l t e n c r y o l i t e .

W


5

.

W

t h a t c o n d u c t i v i t y measurements are u s u a l l y p e r f o r m e d .

Based

on t h e work o f J o n e s a n d C h r i s t i a n , ( 1 5 ) r e s i s t a n c e i n a q u e o u s s y s t e m s is g e n e r a l l y m e a s u r e d a t a s e r i e s o f f r e q u e n c i e s a n d e x t r a p o l a t e d t o i n f i n i t e frequency employing t h e f u n c t i o n a l

-1

form f-’.

U s e of t h i s p a r t i c u l a r f u n c t i o n a l form is a t t r i -

b u t e d ( 1 5 ) t o Warburg ( 16’17) a n d Neumann (18) who, on t h e b a s i s of F i c k ’ s l a w s of d i f f u s i o n , p r e d i c t e d t h a t t h e p o l a r i z a t i o n r e s i s t a n c e ( t h a t p a r t o f t h e measured r e s i s t a n c e d u e t o elect r o d e p o l a r i z a t i o n ) was i n v e r s l y p r o p o r t i o n a l t o d f . A p p l y i n g t h e c o n c e p t s r e s u l t i n g from electrode p r o c e s s (19-21) studies,

o n e may e n v i s i o n t h e e q u i v a l e n t c i r c u i t shown

i n Figure 4 f o r an e l e c t r o d e - s o l u t i o n c h a r g e is b e i n g t r a n s f e r r e d .

i n t e r f a c e across which

r e p r e s e n t s t h e impedance r associated w i t h t h e r e a c t i o n , which is i n p a r a l l e l w i t h t h e

solution-electrode

Z

i n t e r f a c i a l capacitance.

Under t h e e x a c t -

z r may be re-

i n g a s s u m p t i o n s o f f a r a d a i c impedance s t u d i e s ,

p r e s e n t e d by a f r e q u e n c y - i n d e p e n d e n t r e s i s t a n c e , 0, i n s e r i e s w i t h a f r e q u e n c y - d e p e n d e n t impedance, -W-, ance.

t h e Warburg imped-

The l a t t e r is c o n v e n i e n t l y r e p r e s e n t e d as a r e s i s t a n c e

a n d c a p a c i t a n c e i n s e r i e s , Rr a n d C r , (Figure 5).

a t constant frequency

A t a g i v e n f r e q u e n c y t h e impedances r e s u l t i n g from 1

Rr a n d Cr are e q u a l .

However, b o t h v a r y as f - ” .

The a s s u m p t i o n s upon w h i c h t h e m a t h e m a t i c a l a n a l y s i s 1 1 w h i c h r e s u l t s i n f-” d e p e n d a n c e o f Rr a n d 2nfcr rests i n c l u d e 1 ) s e m i - i n f i n i t e l i n e a r d i f f u s i o n of r e a c t a n t s and p r o d u c t s a n d 2 ) a s m a l l a m p l i t u d e a . c . p o t e n t i a l s u p e r i m p o s e d on a n e t d.c. p o l a r i z i n g p o t e n t i a l .

T h e s e are n o t t h e c o n d i t i o n s of

c o n d u c t i v i t y measurements.

However, d u r i n g t h a t p a r t of e a c h


6 h a l f - c y c l e d u r i n g w h i c h r e a c t i o n is o c c u r r i n g a t t h e e l e c t r o d e s , t h e e q u i v a l e n t c i r c u i t o f F i g u r e 4 is a u s e f u l c o n c e p t , e v e n though 2

r

may n o t be t r e a t e d r i g o r o u s l y a c c o r d i n g t o F i g u r e 5 .

T h a t t h e above c o n s i d e r a t i o n s lead t o t h e same f r e q u e n c y d e p e n d e n c e as t h a t e x p e r i m e n t a l l y d e t e r m i n e d f o r many conduct i v i t y m e a s u r e m e n t s (15? r e n d e r s t h i s c o n c e p t u a l a n a l y s i s worth cons i d e r i n g

.

I n b r i e f , t h e n , o n e may c o n s i d e r t h e e q u i v a l e n t c i r c u i t of Figure 4 as a rough analog of t h e s o l u t i o n r e s i s t a n c e , electrode-solution

i n t e r f a c i a l c a p a c i t a n c e , and reaction

impedance ( b e a r i n g i n mind t h a t Zr c a n n o t be r e p r e s e n t e d e x a c t l y by a n y f i n i t e c o m b i n a t i o n o f r e s i s t a n c e , c a p a c i t a n c e , and i n d u c t a n c e which w i l l r e n d e r i t f r e q u e n c y i n d e p e n d e n t ) . During t h a t p a r t of each half-cycle

i n w h i c h t h e p o t e n t i a l is

below t h a t w h i c h r e s u l t s i n a n e l e c t r o d e r e a c t i o n , t h e e q u i v a l e n t c i r c u i t of Figure 4 reduces t o t h a t of Figure 3 , i . e . , becomes i n f i n i t e . I t is a l s o u s e f u l t o c o n s i d e r t h e e q u i r v a l e n t c i r c u i t o f F i g u r e 4 i n view o f t h e p r a c t i c e o f e x t r a -

Z

p o l a t i n g measured r e s i s t a n c e t o i n f i n i t e frequency.

I t can

be s e e n t h a t a t i n f i n i t e f r e q u e n c y t h e impedance o f Cs is

i n f i n i t e l y l e s s t h a n t h a t of Z r ,

and F i g u r e 4 a g a i n r e d u c e s

t o Figure 3. I t s h o u l d be e m p h a s i z e d t h a t w h i l e one m e a s u r e s r e s i s t -

a n c e a t a series o f f r e q u e n c i e s and e x t r a p o l a t e s t o i n f i n i t e f r e q u e n c y , one does n o t make measurements a t f r e q u e n c i e s which a p p r o a c h i n f i n i t y .

I n f a c t , v e r y h i g h f r e q u e n c y measure-

m e n t s ( i n t h e m e g a h e r t z r a n g e ) are t o be a v o i d e d b e c a u s e of t h e i n c r e a s e d a d m i t t a n c e of t h e l e a d s a n d t h e f a c t t h a t a t v e r y h i g h f r e q u e n c i e s o n e ceases t o m e a s u r e a p r o p e r t y a s s o i c a t e d w i t h i o n i c


7 m o b i l i t y a n d o b s e r v e s p r o p e r t i e s a s s o c i a t e d w i t h d i p o l e moments and p o l a r i z a b i l i t i e s . viz, -

Hence t h e q u e s t i o n o f c o n c e r n r e m a i n s

w h a t f u n c t i o n a l form of t h e f r e q u e n c y d o e s o n e employ t o

e x t r a p o l a t e t h e measured r e s i s t a n c e t o i n f i n i t e frequency? R o b i n s o n a n d S t o k e s ( 2 2 ) c o n s i d e r t h i s q u e s t i o n i n terms o f electrode p r o c e s s c o n c e p t s as a p p l i e d t o a q u e o u s media a n d give balance equations for a bridge with a parallel-component b a l a n c i n g a r m , a s s u m i n g v a r i o u s r e l a t i v e m a g n i t u d e s of Rs, 0, a n d Rr

.

Under t h e c o n d i t i o n s employed by J o n e s a n d C h r i s t i a n , ( 1 5 )

1

f-'

d e p e n d e n c e is p r e d i c t e d .

Robinson and S t o k e s c o n c l u d e t h a t

o n e s h o u l d m e a s u r e r e s i s t a n c e as a f u n c t i o n o f f r e q u e n c y a n d e x t r a p o l a t e t o i n f i n i t e frequency i n accordance w i t h t h e observed behavior.

T h i s is a l s o t h e c o n c l u s i o n of N i c h o l a n d FUOSS,( 2 3 )

who o b s e r v e d a

f-I

f r e q u e n c y d e p e n d e n c e of r e s i s t a n c e i n m e t h a n o l

solutions. I n m o l t e n s a l t s f r e q u e n c y d e p e n d e n c e of t h e r e s i s t a n c e h a s been r e p o r t e d a t p o l a r i z i n g p o t e n t i a l s much l o w e r t h a n r e q u i r e d

for f a r a d a i c p r o c e s s e s . ( 2 4 * 2 5 )

Buckel and T s a u s s o g l o u (2 6 , have

found t h a t measured r e s i s t a n c e v s . f r e q u e n c y p l o t s show a p l a t e a u in t h e range 1 0 - 1 0 0 k H z i n aqueous potassium c h l o r i d e a n d m o l t e n

p o t a s s i u m bromide.

They s u g g e s t t h a t e x t r a p o l a t i o n of r e s i s t a n c e

1

vs. -

f-"

would l e a d t o e r r o n e o u s c o n d u c t a n c e s a n d t h a t o n e s h o u l d

s t u d y f r e q u e n c y d i s p e r s i o n i n a p a r t i c u l a r a p p a r a t u s and s e l e c t

a frequency-independent r e g i o n f o r performing conductivity experiments.

D e N ~ o i j e r ' ~r e~p)o r t e d t h a t i n m o l t e n n i t r a t e

m e l t s p l o t s of measured r e s i s t a n c e

E.

-1

f - 2 were n o t l i n e a r , b u t

a p p r o a c h e d l i n e a r i t y as t h e f r e q u e n c y a p p r o a c h e d i n f i n i t y .

His


8 W

v a l u e s o f m e a s u r e d r e s i s t a n c e a t 2 0 kHz o n l y d i f f e r e d from v a l u e s e x t r a p o l a t e d t o i n f i n i t e f r e q u e n c y by a b o u t 0 . 1 %. W i n t e r h a g e r a n d Werner ( 2 8 ' 2 9 ) h a v e c o n s i d e r e d f r e q u e n c y d i s p e r s i o n i n m o l t e n n i t r a t e , c h l o r i d e , and f l u o r i d e m e l t s and have a p p l i e d "electrical l o c u s c u r v e t h e o r y " (30) t o t h e i r r e s u l t s o b t a i n e d e m p l o y i n g a Thomson-type b r i d g e .

They c o n c l u d e t h a t a t s u f f i c i e n t l y h i g h

f r e q u e n c i e s m e a s u r e d r e s i s t a n c e becomes i n d e p e n d e n t o f f r e q u e n c y , a n d t h e y employ a m e a s u r i n g f r e q u e n c y of 5 0 kHz.

Therefore, i n

t h i s r e v i e w p a r t i c u l a r a t t e n t i o n w i l l be g i v e n t o t h e o b s e r v e d b e h a v i o r of r e s i s t a n c e w i t h f r e q u e n c y a n d t o t h e c o n d i t i o n o f t h e electrode s u r f a c e s , s i n c e i n a q u e o u s mdeia i t is observed t h a t f r e q u e n c y d i s p e r s i o n is less i n cases o f h e a v y p l a t i n i z a t i o n ( i n c r e a s e d C,).

(11)

I n l i g h t of the foregoing d i s c u s s i o n t h e f o l l o w i n g informat i o n w a s s o u g h t from e a c h s t u d y w h i c h was c o n s u l t e d : A.

C e l l material, its g e n e r a l d e s i g n , and t h e r e s u l t i n g c e l l

constant,

( ! , / a ) , or g e n e r a l r a n g e o f m e a s u r e d r e s i s t a n c e ,

B.

E l e c t r o d e m a t e r i a l , s h a p e , s i z e , and s u r f a c e c h a r a c t e r .

C.

Type of b r i d g e employed.

D.

F r e q u e n c y r a n g e employed.

E.

Dependence o f m e a s u r e d r e s i s t a n c e on f r e q u e n c y .

F.

Voltage a p p l i e d t o t h e bridge.

G.

Results.

*

*

R e s u l t s a r e r e p o r t e d e i t h e r i n terms of t h e

The g e n e r a l t y p e s of b r i d g e c i r c u i t s employed a r e shown i n Appendix I a s a n a i d i n d e s c r i p t i o n . The c i r c u i t s a c t u a l l y For employed were u s u a l l y m o d i f i e d v e r s i o n s of t h o s e shown. d e t a i l s of c i r c u i t y , t h e r e a d e r is r e f e r r e d t o t h e c i t e d work.


9 Y

s p e c i f i c conductance,

K

,

t h e e q u i v a l e n t c o n d u c t a n c e , Aeq,

or t h e molar c o n d u c t a n c e , Am.

These q u a n t i t i e s are d e f i n e d

as

Aeq

= K.

Am

=

equivalent weight density

(6)

.molecular weight

(7)

density

These q u a n t i t i e s are r e p o r t e d as f u n c t i o n s of t e m p e r a t u r e f o r t h e minimum, maximum, a n d o n e i n t e r m e d i a t e v a l u e f o r p u r e s a l t s .

For b i n a r y m i x t u r e s a 3 x 3 g r i d a l s o s t a t i n g t h e extremes a n d o n e i n t e r m e d i a t e v a l u e o f c o m p o s i t i o n is employed where convenC o n d u c t i v i t i e s o f m i x t u r e s o f more t h a n two components

ient.

a r e p r e s e n t e d i n a manner d e s i g n e d t o c o n v e y maximum i n f o r m a t i o n . The t a b u l a t i o n is o r d e r e d a c c o r d i n g t o t h e s y s t e m u n d e r c o n s i d e r a t i o n ; a n d w i t h i n e a c h s y s t e m , by d a t e o f p u b l i c a t i o n , the earliest appearing f i r s t .

Where one i n v e s t i g a t i o n h a s

c o v e r e d s e v e r a l s y s t e m s , a c r o s s r e f e r e n c e is g i v e n . v a l u e s of

K

Additional

a n d A may be f o u n d i n J a n z ' s Molten S a l t s Handbook ( 3 1 )

f o r many o f t h e s y s t e m s r e p o r t e d h e r e .

A s previously s t a t e d ,

t h e p r i m a r y c o n c e r n o f t h i s r e v i e w is t o p i c s A-F.

The r e s u l t s

p r e s e n t e d h e r e i n are g i v e n f o r comparison and c o m p l e t e n e s s and

w e r e , i n a l l cases, t a k e n from t h e o r i g i n a l p u b l i c a t i o n s (exception:

Appendix 11).

I t w i l l be o b s e r v e d below t h a t a number of p u b l i c a t i o n s

h a v e n o t a d d r e s s e d t h e m s e l v e s t o some of t h e q u e s t i o n s r a i s e d above.

If t h i s r e v i e w s e r v e s o n l y t o remedy t h i s p r a c t i c e , i t

is c o n s i d e r e d j u s t i f i e d .


TABULATION I'ridge

-.( D e t e c t o r )

f Range (kHz)

R

Wheatstone (telephone)

- ..

.

..

~

electrodes.

-

~

-

__

-

P t c r u c l b l e ( 0 . 2 mm wall) IR)

r,. ...

-

f

N.S. Not Stated

VPP (v)

N.S

TT Specially devel oped by E. F a i r s t e i n . (34) f range-.2-6 kH R range-.oi-ion ("scill0sc"pe)

905 950 995

20.3 23.4 27.2

1040 IORO

5.74 5.95

997

w

N.S.

W h e a t s t o n e , no capacit u r s (oscilloscope)

appreciably between 1 and

(osrilloncope)

a t lower f , independent a t

Jones ( n u l l detector)

1-20 kHZ

-

Kelvin I

extrapolated t o f - m

0.02 R Crucible and a P t c y l i n d e r (area 2 cm'), b o t h p l a t l n i z e d

-

$3

ii3

~

-~

1003

4.960

ion6 1138

5.179

e-1.2

Aeq

860 1000

4.14 1.28 4.77

869

Y

900

#2

42

#2

5.15

Y

.Xeq

~

1040

113

(* 1%)

5.335 =

91

I

_ I

-

(*several %) 5.2,-

1020

K

ii2

=

0-1.05

li

iil

;+-

Results

-

___

l;raphttp crucible ( i d 3.5", 5" ~ ( m t a i n i n gL BN c y l i n d e r s ( i d enoase,d I " .. vraD . h i t P and e n l a r g e d a t toI) t o ~s c c a_ m o d a_t e r ~ t ' o d e_ a .( f /~ aj 100cn' _l r r t _ P t c r u c i b l e ( 4 0 0 ml), ( ? / a ) 0.0815cm' H e m i s p h e r i c a l P t e l e c t r o d e f i . platinized originally. _.

VII.

-

5.29

-

+ 5.64x10-'(T-1I13O0C)

156.6

(t19

(is t o in%) -3.493

+ 1.480x10-zT(oC)

-6.60R~lO'~T~

(o-.oo~~-~c~-~)


System

[R)

Rcf

Cell or ( j / a )

Bridge (Detector)

Electrodes

f Range

R vs. f

(kHz)

VPP (V) _ .

#3

#3

__

14

KF

2R

#4

#4

iy4

VgO, s i n g l e c r y s t a l , d i p c e l l ; P t

C o n t a i n e r and P t e l e c t r o d e

Jones

.5-1(

:i2

#2

#2

'4

29

:: 43

33

$4

Y4

859 938 1012

3.573 3.793 4.021

N.S.

905

3.77

Y2

725921

u

737 784 852

2.51 2.73 3.03

590 670

4.0* 6.0*

700 800 950

0.71 x 15.3 x 236 x

1418

Y

#4

940 990

4.75* 5.W

#4

970

2.2*

-

1110

2.5*

#4

900

3.2,*

960

3.7'

-

cOntalner

v a r i e d <0.3%

I

*2

#15

#2

#15

#15

__ #4

#4

Pt-Rh (?/a)

20

I

CaF,

146

I Carbon

(20%) c r u c i b l e ( i d o r .28cm-I

=

2",

h t . = 2+*) C r u c i b l e a n d P t - R h

= .ll

crucible

]Yo e l e c t r o d e s

(20%)

bob

(+2%)

__

"Wheatstone 2-10 R-C b r i d g e " ( s c o p e or VTVM)

I N.S.

f independenl 2 - 1 0 kHz

N.S.

__ 1N.S.

N.S.

N.S.

=

-4.511 + 1 . 6 4 2 ~ 1 0 - ' T ( ~ C ) ((I-. 009R-' cm-' -7.63 Z X ~ O - ~ T ~

)

lo-' (tlO%)

= 3.56

_ .

#4 22

CuF,

28 29

#4

#4

#4

#4

#4

zi

ZnF,

28 29

i,4

#4

#4

#4

#4

24

PbF,

28

l ~ 4

#4

#4

84

#4

#4

820 1000

5.1* 5.8.

-

29 25

KBF,

28 L9

1'4

#4

#4

#4

#4

#4

545 569 652

1.052 1.1Zb 1.245

26

Na,TaF,

28 29

114

#4

#4

#4

#4

54

702 733 814

1.165 1.396 1.595

27

K,TiF,

28

"4

#4

#4

#4

#4

#4

843 888 976

1.346 1.435 1.604

64

d14

747 800 887

0.7285 0.9193 1.0366

__ 29

..

-2

t-J

P


... . .- . I,z,AIF6

- .. .

N~,AIF;

iI

3..

Nn 3 A l F,,

:f,

Y6

A 1 F,

Y7

#7

Nn,AlF6

I'3

#3

N.7,

1000

2.80

1040

2.90

1080

3.00

1013

M

1000

2.80* 2.958

1'1

1h

K,AIF,

37

I.iF ThF,

- && (

several9

2.82* 284 a t 10100 296 a t 1040'

H4

Y4 h n t a i n e r and P t rod (d

Nn,AIF,

2.744

A-

lo60 Nil, AIFa

-

Aeq

-

Thomaon p l u s

3 mm)

phase I n d i c a t n

HJ

Y3

1000

2.84 2.92

in4n

loan

3.00

1000 1060

2.22' 2.42.

-

.~~ ~ . .

LIF

15

+

ThF

-

&(myq)

7.14 + 10.97x10-'(T-H8O0C) Aeq 117.2. for fl 1 . 2

78-22(.4.)

2.50 + 7.58x10-'(T-64OoC) .zeq 2 9 . 9 . for 0 1.2

I

50.2-49.H(rn%)

I

- --

,z=q 3H

LxFtUF,

85 I

A"

60-4O(n%)

x

x

-~ NaF + CaF, (6 7

C u r c i b l c a n d P t rod, b o t h p l a t l n i z e d or l g i n a l l y

Carey-Foster

900 1000

W'l,)

1100

.

-

e -

+ 4.19x10-'(T-820째C)

3 1 . 0 , for

1.2

,*,n

7.55 + 5.86x10-'(T-900째C)

-

9 9 . 3 , for e 1.2 2 . l i + 5.68x10-'(T-70O0C) 2 3 . 8 . for

e

1.2 2.89 + 3.29x10-'(T-9OO0C) heq 33.5. for e 1.2 (114.)

40-60(m%)

',

2.13

--

~~q

.~ >

-

4.837 5.373 5.879

~

(*.5%)


Svstcm

Cell

- . Ket

___ ~.

Ra6ge

Bridge (Detector)

Electrodes

1\39

1139

Hot-pressed Be0 tube in a cylindrical Pt crucible <!/s) 24 cm-'

115

1139

Pt crucible across bottom of the tube and Pt rod at top

439

1139

I

#39

#39 #39

#39

N.S.

and fl in parallel 0.ci110sc0

Results or .4(cmln-'eq-'

p(oc) -

(kHz)

N.S

u(n-' em-'

?OO 1000 1100

4.441 4.961 5.642

300

4.027 4.602 5.319

1000 1100

*

E % g 30.52 &)m . r (1.73 Ts;m 0.92 565'

730'

k5

#5

m)

67-33(&)

#5

I #5

#5

#5

I

=

-

-

NaBF,

Described in R e f . 51, not readily available

Pt electrodes

Wheatstone, with balancing

5

N.S.

d

-

(oscillosco~~

#6

#b

#6

Na,AlF6

#45

Pt cell

#4 5

#45

1 I

46

#45

-

645

N.:

(oscilloscope)

-

(*lo%)

~

1.48 + 5.23~10-~(T-800~C) Aeq 28.6, for e * 1.2 (*lqa) I(

K

=

~

--

=

65-35(m%)

1.37 + 4 . 6 5 ~ 1 0 - ~ ( T - 7 0 0 ~ C ) Aeq 26.6, for 8 1.2

25-75(n%)

2.18 + 3.56~lO-~(T-90O~C) Aeq = 36.9, for e = 1.2 (Llqo)

w;s;3 40-60(w%) 10-90(w%)

#6

4 45

* .5%)

2.81 + 3.56~lO-~(T-850~C) 3%) Aeq 57.7, for e 1.2

5 0-5 0 (m%) - 35.7-64.3(a%)

#6

N.S.

N.S.

N.S

(

1.76 + 3.88x10-'(T-80OoC) 1.2 28.1, for e

=

I

* .5%)

3.49 + 3.74x10-'(T-90O0C) Aeq 71.3, for 0 1.2 I

Aeq

50-50(.%)

(

885'

- 50-50(m%)

#5

#5

(mol-' ) )

K

K

~

-

=

so

450'

0,905 2.408

6.350 8.801

P

800' ?Ti02 14.105 14.978

W

1000D

;040째

1080'

A ~ ~ O O o

3.19 3.12

3.30 3.23

3.41 3.33

99 100

450'

650'

-

40-60(w%) 2.255 3.601 lO-sO(w%) 0.281 7data taxen from grapns)

800' -KT61 11.495 12.703


f

System CaFI 4 Nn,AlF,

Rrf 53

12

.R:,

Cell or V / a )

G r a p h i t e c r u c i b l e K R j W 0.511

Bridge (Detector)

Electrodes

Carbon anode and m o l t e n A 1 cathode

Wheatstone, and e* i n

Range

(w;)i

;,;;, i

f.

d f'*

( 1 I ti3

/t6

11

I

*6

#3

43 43

1010 1040 AlF -Na AIF * - T ;0 h

*1070'

2.5-97.5(1%) 7.5-92.5(~%)

2 . 86

AlF,-NI AlF . - 82'1(&) 11.6-88.4(m%)

m

#4R

P48

t48

&6

&6

46

#P

t 3

#3

13

#3

C u r r e n t e l e c t r o d e s : crucible and P t spherc; potential electrodea: c r u c i b l e and P t c y l i n d e r s u r r o u n d i n g mphcre

No bridge: VTW a n d ammeter

.5

N.S.

N.S.

P55

155

455

232

242

.

740

2.12'

880

2.R2*

565 675 815

1.18' 1.528

1000'

2.68

1040'

10BOo

rn

276

2.77

2.86

'?:0Oo

7Fb 88

1.80'

"#55

#55

NIP-ZrF -VF 33.5-4046.fim%) 50-46-4 ( d o )

565' m 8 0.79

730' m 8 1.08

885'

P

.r

n 3 1.60

* I n t e r p o l a t e d f r a a l i n e a r p l o t of

I

VS.

T


15

REFERENCES 1.

J a n z , G. J. and R. D. Reeves, "Molten-Salt T r a n s p o r t P r o p e r t i e s , " i n Adv.

Electrolytes

-

i n Electrochem.

and E l e c . Eng., V o l . 5 , C . W. T o b i a s , E d . , John Wiley and Sons, New York, 1967. 2.

Sundheim, B. R . ,

" T r a n s p o r t P r o p e r t i e s of L i q u i d E l e c t r o -

--

l y t e s " i n F u s e d S a l t s , B. R . Sundheim, E d . ,

McGraw-Hill,

New York, 1964. 3.

Klemm, A . ,

" T r a n s p o r t P r o p e r t i e s of M o l t e n S a l t s , " i n

Molten S a l t Chemistry, M. Blander, Ed.,

John Wiley and

Sons, New York, 1964. 4.

--

G r j o t h e i m , K. and K. Matiasovsky, T i d s s k r . K j e m i Bergv.

M e t a l l u r g i , 2 6 , 226 ( 1 9 6 6 ) . 5.

G r i m e s , W. R . ,

"Materials P r o b l e m s i n M o l t e n S a l t Reactors ,"

i n M a t e r i a l s a n d F u e l s for High T e m p e r a t u r e Nuclear E n e r g y A p p l i c a t i o n s by M . T. Simnad a n d L . R . Zumwalt, t h e M.I.T.

Press, Mass., 1 9 6 4 . 6.

Y a f f e , I . S . a n d E. R . Van A r t s d a l e n , J . P h y s . Chem., 60,

1125 (1956). 7.

J o n e s , G . and R . C . J o s e p h s , J . Am. Chem. S O C . , 5 0 , 1049 (1928).

-

8.

Grahame, D . C . ,

9.

D a n i e l s , F., e t a l . , Experimental P h y s i c a l Chemistry, 5 t h

J . Am. Chem. S O C . , 6 3 , 1 2 0 7 ( 1 9 4 1 ) .

ed., McGraw-Hill,

10.

New York, 1 9 5 6 , p. 3 9 6 .

G l a s s t o n e , S . a n d D. L e w i s , E l e m e n t s of P h y s i c a l C h e m i s t r y , Van N o s t r a n d , P r i n c e t o n , N e w J e r s e y , 1 9 6 0 , p. 4 3 0 .

11.

J o n e s , G . a n d G. M .

B o l l i n g e r , J . Am. Chem. S O C . , 53, 411

(1931). 12.

C u t h b e r t s o n , J. W. 3 2 . 745 ( 1 9 3 6 ) .

a n d J . Waddington, T r a n s F a r a d a y S O C . ,


13.

K . E. J o h n s o n , a n d H . A . L a i t i n e n , i n M o l t e n

Liu, C.H.,

S a l t C h e m i s t r y , M.

Blander, Ed.,

Interscience Publishers,

N e w York, 1 9 6 4 , p . 715. 14.

R o b b i n s , G . D. a n d J . B r a u n s t e i n , Reactor C h e m i s t r y D i v i s i o n A n n u a l Progress R e p o r t for Period E n d i n g

December 3 1 , 1 9 6 7 , ORNL-4229, 15.

p.

57.

J o n e s , G . a n d S . M . C h r i s t i a n , J . A m . Chem. S O C . , 5 7 , 272 (1935).

16.

Warburg, E . , Wied. Ann. P h y s i k , 6 7 , 493 ( 1 8 9 9 ) .

17.

Warburg, E . , D r u d e Ann. P h y s i k , 6 , 125 (1901).

18.

Neumann, E . , Wied. Ann. P h y s i k , 67, 500 (1899).

19.

Grahame, D . C . ,

J. Electrochem. SOC., 9 9 , 370C ( 1 9 5 2 ) .

20.

Grahame, D . C . ,

Ann. Rev. P h y s . Chem., 6 , ( 1 9 5 5 ) , pp. 345-6.

21.

Delahay , P.

,

N e w I n s t r u m e n t a l Methods i n E l e c t r o c h e m i s t r y ,

I n t e r s c i e n c e P u b l i s h e r s , N e w York, 1 9 5 4 , pp. 146-168. 22.

R o b i n s o n , R . A . a n d R . H. Stokes, E l e c t r o l y t e S o l u t i o n s , B u t t e r w o r t h s , London, 2nd e d . ( r e v i s e d ) ,

23.

Nichol, J. C . and R . M.

1 9 6 5 , pp. 88-95.

FUOSS, J . A m . Chem. S O C . , 77, 198

(1955). 24.

H i l l s , G.

-

J . a n d K . E. J o h n s o n , J . E l e c t r o c h e m . S O C . , 1 0 8 ,

1013 (1961). 25.

H i l l , D. L . , G . J . H i l l s , L. Young, a n d J . O'M.

Bockris,

J . E l e c t r o a n a l . Chem., 1, 79 ( 1 9 5 9 ) .

26.

B u c k l e , E . R . a n d P. E . T s a o u s s o g l o u , J . Chem. S O C . , London, 667 ( 1 9 6 4 ) .

27.

De N o o i j e r , B . , "The E l e c t r i c a l C o n d u c t i v i t y of M o l t e n N i t r a t e s a n d B i n a r y N i t r a t e s , ' I t h e s i s , U n i v e r s i t y of A m s t e r d a m , The N e t h e r l a n d s , 1 9 6 5 .

W


17 W

28.

W i n t e r h a g e r , H. a n d L . Werner, F o r s c h u n g s b e r . des W i t s c h a f t s - u . Verkehrsministeriums Nordrhein-Westfalen,

29.

Ibid., -

30.

Oberdorfer, G . ,

No.

438, 1957.

N o . 341, 1956.

-

L e h r b u c h der E l e k t r o t e c h n i k , B d . 1 1 , 1 9 4 4 ,

p. 2 1 2 .

31.

J a n z , G . J . , M o l t e n S a l t s Handbook, Academic P r e s s , N e w York, 1 9 6 7 .

2. E l e k t r o c h e m . ,

39,

531 (1933).

32.

Ryschkewitsch, E.,

33.

Yaffe, I . S . a n d E . R . Van A r t s d a l e n , C h e m i s t r y D i v i s i o n S e m i a n n u a l P r o g r e s s R e p o r t f o r Period E n d i n g J u n e 2 0 , 1 9 5 6 ,

34.

Fairstein, E.,

I n s t r u m e n t a t i o n and C o n t r o l s Semiannual

P r o g r e s s Report f o r P e r i o d E n d i n g J u l y 3 1 , 1 9 5 5 , ORNL-1997, P. 9 . 35.

Y i m , E. W .

a n d M.

F e i n l e i b , J. Electrochem. SOC., 1 0 4 , 622

(1957). 626 ( 1 9 5 7 ) .

36.

Ibid.,

37.

Brown, E. A . a n d B. P o r t e r , "U.S. D e p a r t m e n t of I n t e r i o r , B u r e a u of M i n e s , " 1 2 8 . 2 3 : 6500 ( 1 9 6 4 ) .

38.

Edwards, J. D . , C.

S. Taylor, L . A . C o s g r o v e , a n d A . S.

R u s s e l l , J. E l e c t r o c h e m . SOC., 1 0 0 , 508 ( 1 9 5 3 ) . 39.

Edwards, J. D . ,

C . S. T a y l o r , A . S . R u s s e l l , a n d L. F .

Maranville, i b i d ., 9 9 , 527 ( 1 9 5 2 ) . 40.

L a n d o n , G . J . a n d A . R . U b b e l o h d e , Proc. R o y a l S O ~ . , A240, 1 6 0 ( 1 9 5 7 ) .

41.

B r o n s t e i n , H. R . a n d M . A . B r e d i g , C h e m i s t r y D i v i s i o n A n n u a l Progress Report f o r Period E n d i n g J u n e 2 0 , 1 9 5 9 , ORNL-2782,

p . 59.


18 42.

Ibid.,

J . Am. Chem. S O C . ,

43.

B r o n s t e i n , H. R . ,

80, 2077

(1958).

A . S . Dworkin, a n d M .

A. Bredig, Chemistry

D i v i s i o n Annual P r o g r e s s R e p o r t for P e r i o d E n d i n g J u n e 2 0 , 1 9 6 0 , ORNL-2983,

p . 65.

27, -

45.

I b i d . , Rev. S c i . I n s t r . ,

46.

Bagk, T . , Acta Chem. S c a n d . ,

47.

B a j c s y , J . , M . M a l i n o v s k y , a n d K. M a t i a s o v s k y , E l e c t r o c h i m .

Acta, 48.

8,

1727 ( 1 9 5 4 ) .

7 , 543 ( 1 9 6 2 ) .

Thompson, M . deK. a n d A . L. Kaye, T r a n s . E l e c t r o c h e m . S O C . , 67, -

169 ( 1 9 3 5 ) .

49.

Greene, N. D . ,

50.

S e l i v a n o v , V . G. a n d V . V .

4, 51.

297 ( 1 9 5 6 ) .

ORNL-CF-54-8-64

(1954).

S t e n d e r , R u s s i a n J . I n o r g . Chem.,

934 ( 1 9 5 9 ) .

M e e r s o n , G . A . a n d M . P . S m i r n o v , Khimiva R e d k i k h E l e m e n t o v , Akad. Nauk SSSR, 2 , 133 (1955).

52.

B a t s l a v i k , E. and A .

3, 53.

No.

I . B e l y a y e v , R u s s i a n J . I n o r g . Chem.

4 , 324 ( 1 9 5 8 ) .

1, P e a r s o n , T . G . a n d J . Waddington, D i s c . F a r a d a y S O C . , -

307 ( 1 9 4 7 ) . 54.

M a l m s t a d t , H . V . a n d C . G. E n k e , E l e c t r o n i c s for S c i e n t i s t s , W.

55.

A . B e n j a m i n , N e w Y o r k , 1 9 6 2 , p . 273.

Dike, P. H.,Rev.

2, Sci. Instr., -

379 ( 1 9 3 1 ) .


19 DRNL-DWG 68-2215

F i g u r e 1:

Wheatstone b r i d g e :

parallel-component balancing

arm. ORNL-DWG 6 8 - 2216

Figure 2:

E q u i v a l e n t c i r c u i t of c e l l i n a b s e n c e of r e a c t i o n . ORNL-DWG

68-2217

RS GS

Figure 3 :

E q u i v a l e n t c i r c u i t of s o l u t i o n r e s i s t a n c e and electrode-solution i n t e r f a c i a l capacitance i n

Y

a b s e n c e of r e a c t i o n .


20

ORNL-DWG

F i g u r e 4:

68-2248

Equivalent c i r c u i t including reaction.

ORNL-DWG 68-2219

CONSTANT FREQUENCY

F i g u r e 5:

E q u i v a l e n t c i r c u i t f o r f a r a d a i c impedance s t u d i e s .


21

ORNL-DWG 68-2220

APPENDIX I IMPEDANCE BRIDGES

A.

WHEATSTONE BRIDGE, NO

@ DETECTOR

DETECTOR

DETECTOR

C. KELVIN BRIDGE(38)

1 ,+qT

D. THDMSON BRI!d4') ~

1

I

Z = IMPEDANCE OF CONNECTIOYS

CAREY-FOSTER BRI DGE(48)

F. (CELL AND S ARE INTER-

-

CHANGEABLE)

TYPE " BRIDGE( 28129) E. (EMPLOYED BY WINTERHAGER AND WERNER)

Z = IMPEDANCE OF .CONNECTIONS


22

APPENDIX I1 For t h e s a k e of c o m p l e t e n e s s , r e f e r e n c e s t o t h o s e c r y o l i t e s y s t e m s w,,ich c o u l d n o t be c o n s u l t e d

are l i s t e d i n t h i s a p p e n d i x .

n the or-ginal

An i n d i c a t i o n o f t h e i r c o n t e n t ,

t o g e t h e r w i t h t h e s e c o n d a r y s o u r c e , is g i v e n . Batashev, K. and A. Zhurin, M e t a l l u r g , 1 0 , 67 ( 1 9 3 5 ) ;

30, (K

G.,

70189 ( 1 9 3 6 ) . o f KF-AlF,

s y s t e m v s . T)

-

B a t a s h e v , K . P . , L e g k i e M e t a l l y , 1 0 , 48 ( 1 9 3 6 ) ; r e f . 4 . (K

of c r y o l i t e v s . T)

B a t a s h e v , c i t e d by M a s h o v e t s i n The E l e c t r o m e t a l l u r g y o f Aluminum ( R u s s i a n ) , 1 9 3 8 ; r e f . 5 3 .

+ NaF a n d c r y o l i t e + AlF6) Alluminio, 1 9 , 215 ( 1 9 5 0 ) ; C . A . , 44,

(Am o f c r y o l i t e Vayna, A . ,

10,54?d

(1950) and r e f . 4 . (K

o f c r y o l i t e v s . T;

NaF, CaF,, Abramov, G . A . ,

or AlF, M. M.

K

of c r y o l i t e w i t h a d d i t i o n s of

n e a r 1000째C)

V e t y u k o v , I . P. G u p a l o , A . A . K o s t y u k o v ,

and L. N . Lozhkin, " T e o r e t i c h e s k i e osnovy e l e c t r o m e t a l l u r g i i a l y m i n i a , " M e t a l l u r i z d a t , Moscow ( 1 9 5 3 ) ; r e f . 4 . (K

o f c r y o l i t e v s . T)

Ponomarev, V. G . ,

F. M . K o l o m i l s k i i , Yu. M . P u t i l i n , I z v e s t .

Vysshikh. Ucheb., Z a v e d e n i i , T s v e t n a y a M e t . , 78; C.A., (K

Of K2TiF6

Belyaev, A.

53, (K

53, -

1958, No.

6,

1 4 , 6 7 0 i (1959). VS.

T)

-

I . , Tsvetnye M e t a l l y , 3 1 , No. 1 0 , 6 1 ( 1 9 5 8 ) ; C . A . ,

6832i (1959).

of c r y o l i t e w i t h a d d i t i o n s of L i F , NaF, BeF,,

CaF,,

BaF,,

o r AlF,)

MgF,, Y


23

A n t i p i n , L. N . ,

S. F. Vazhenin, and V. K.

D o k l a d y Vysshe!

S h c h e r b a k o v , Nauch.

Met. 1 9 5 8 , 11; C.A., Shkoly, -

55, -

1241f

(1961). (K

r a t i o s of 1 . 6 t o 3 . 9 )

o f NaF/AlF,

A n t i p i n , L . N . a n d S. F. V a z h e n i n , T s v e t n y e M e t a l l y , 3 1 , No.

53,

1 2 , 56 ( 1 9 5 8 ) ; C . A . , (K

7824e ( 1 9 5 9 ) .

o f c r y o l i t e w i t h a d d i t i o n s o f CaF,

Chu, Y . A . a n d A .

o r MgF,)

I . Belyaev, I z v e s t . Vysshikh. Ucheb.,

--

Z a v e d e n i f , T s v e t n a y a Met., 2 , No. 2 , 69 ( 1 9 5 9 ) ; C.A.,>, 24,025i (1960). (K

o f c r y o l i t e a n d c r y o l i t e w i t h a d d i t i o n s o f L i F or BeF,)

Belyaev, A.

I . and E. A.

Zhemchuzhina, T s v e t n y e M e t a l l y , 33,

- 55,

No. 4 , 45 ( 1 9 6 0 ) ; C . A . , (K

of NaF/AlF,

1242a ( 1 9 6 1 ) .

r a t i o o f 2 . 2 t o 2 . 7 8 w i t h a d d i t i o n s of MgF2)

K u v a k i n , M . A . a n d P. S. K u s a k i n , T r u d y I n s t . M e t . , SSSR, Unal. (K

MOSCOW,

(K

2255i (1961).

I . , " E l e k t r o l i t alyuminievykh vann," M e t a l l u r g i z d a t , 1961; r e f . 4.

of cryolite with EkF,

Matiasovsky, K . , 17, -

55,

of c r y o l i t e )

Belyaev, A.

(K

Filial, 5 , 145 (1960); C.A.,

Akad. Nauk.

additions u p to 17 wt. 70 at 1000째C)

S. O r d z o v e n s k y , a n d M . M a l i n o v s k y , Chem. z v e s t i ,

839 ( 1 9 6 3 ) ; r e f . 4 . o f c r y o l i t e v s . T)

Vakhobov, A . V . a n d A .

I . Belyaev, " V i i a m i e r a z l i c h n y k h solevykh

komponentov (dobavok) n a e l e k t r o p r o v o d n o s t e l k t r o l i t a a l y u m i n i e v y k h vann , " i n " F i z i c h e s k a y a khima r a s p l a v l e m y k h

s o l e i , " e d . by The I n s t i t u t e o f G e n e r a l a n d I n o r g a n i c C h e m i s t r y of t h e S o v i e t Academy of S c i e n c e . , M e t a l l u r g i z d a t ,


24

Moscow, 1965, pp. 99-104; ref. 4. (K

of cryolite with additions of LiF, MgF,, CaF,, BaF,,

orAlF, up to 20 wt. 70 at 1000째C)


25

ORNL-TM-2180

Y

INTERNAL DISTRIBUTION 1. 2. 3. 4. 5. 6. 7. 8.

9. 10. 11. 12. 13. 14. 15. 16. '17.

18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

32. 33. 34.

R. G. R. L. A. C. S. C. C. H. S. U. C. E. P. F. R'. E. C. C. J. M. R. H. G. J. S. W. G. E. W. L. J. F.

K. A d a m s U. Adamson G. A f f e l G. A l e x a n d e r L. B a c a r e l l a F. B a e s J. B a l l E. Bamberger J. B a r t o n F . Bauman E. B e a l l Ber t o c c i E. B e t t i s S. B e t t i s B. B i e n F. B l a n k e n s h i p E. B l a n c o G. Bohlmann J. Borkowski E . Boyd Braunst e i n A. B r e d i g B. B r i g g s R. Bronstein D. B r u n t o n B r y n e stad Cant o r L. Carter I. Cathers L . Compere H. Cook T. C o r b i n L. Crowley L . C u l l e r , Jr.

35.

J. M.

36.

D. S. B. L. A. J. E. D. L. H. J. E.

37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47*

Dale

G. D a v i s J. D i t t o c. Duggins A . Dunn S . Dworkin R. Engle P. E p l e r E. Ferguson M. Ferris A. Friedman H. F r y e , Jr. L. F u l l e r

48. 49. 50.

51. 52. 53. 54. 55. 56. 57. 58. 59. 60.

61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81.

C. R. L. W. A. R. B.

c.

P. D. J. M. B. H. H. R. T. R. H. H. G. W. P. M. C. H.

s.

H. J.

c. J. R. A. M.

82.

R.

83.

H. R.

84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94.

G. D.

w.

C. H. H. C. C. L. R.

H. Gabbard B. Gammage 0. G i l p a tr i c k R. G r i m e s G. G r i n d e l l H . Guymon A. Hannaford S. H a r r i l l N. Haubenreich N. Hess R. Hightower R. H i l l F. H i t c h W . Hoffman F. H o l m e s W. Horton L. Hudson F. H y l a n d Inouye W. J e n k i n s H. J e n k s H. J o r d a n R. Kasten T. K e l l e y R . Kennedy T . Kerr S. K i r s l i s W . Kohn W. Krewson E . Lamb A. Lane B. L i n d a u e r P. L i t m a n I. Lundin N . Lyon G. MacPherson E. MacPherson Maman t o v L. Manning L. M a r s h a l l D. M a r t i n E . McCoy F. M c D u f f i e K. McGlothlan J . McHargue E . McNeese E. Mesmer


26

95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105-119. 120. 121. 122. 123-124. 125. 126. 127. 128. 129.

A . S . Meyer R . L . Moore D. M . M o u l t o n T. R . Mueller J . P. N i c h o l s E . L. N i c h o l s o n L. C . Oakes F. A . Posey J . L. R e d f o r d J . D . Redman G . D. R o b b i n s R. C . Robertson W. C . Robinson K . A . Romberger M. W. Rosen t h a l R . G . Ross H. C . S a v a g e Dunlap S c o t t J . H. S h a f f e r M. J. S k i n n e r

130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145 - 14 6.. 147. 148-150. 151. 152.

G. R. H. R. J. R. L. J. C. A. J. M. J.

P. S m i t h W. S t e l z n e r H. S t o n e A. Strehlow R. Tallackson E . Thoma M. T o t h S . Watson F . Weaver M. Weinberg R . Weir E. Whatley C . White F . L. W h i t i n g J . P. Young Central Research Library Document R e f e r e n c e S e c t i o n L a b o r a t o r y Records D e p t . L a b o r a t o r y R e c o r d s , ORNL ORNL P a t e n t O f f i c e

EXTERNAL DISTRIBUTION 153-154. 155. 156. 157-158. 159. 160-161. 162. 163. 164-178. 179-180. 181.

D. F. Cope, A E C , O R 0 A . Giambusso, AEC, W a s h i n g t o n , D. C . W. J. L a r k i n , AEC, OR0 T. W . M c I n t o s h , A E C , W a s h i n g t o n , D . C . H. M . R o t h , AEC, OR0 M . Shaw, A E C , W a s h i n g t o n , D . C . W . L. S m a l l e y , A E C , O R 0 R . F . Sweek, A E C , W a s h i n g t o n , D . C . D i v i s i o n of T e c h n i c a l I n f o r m a t i o n E x t e n s i o n Reactor D i v i s i o n , O R 0 R e s e a r c h and Development D i v i s i o n , OR0

W

ORNL-TM-2180  

http://www.energyfromthorium.com/pdf/ORNL-TM-2180.pdf

Read more
Read more
Similar to
Popular now
Just for you