Issuu on Google+

HOME .I/":.,

HELP

*

a: V t

OAK RIDGE NATIONAL LABORATORY operated by

UNION CARBIDE CORPORATION NUCLEAR DIVISION for the

U.S. ATOMIC ENERGY COMMISSION ORNL- TM-2180

DATE-March

2

.. '

ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES. A REVIEW.

G. D. Robbins

.

ZI

"b, c

NOTICE This document contains information of a preliminary nature and was prepared primarily for internol use at the Oak Ridge National Loborotory. It i s subject to revision or correction and therefore does not represent o final report.

26, 1968


_ _ _LEGAL ~NOTICE T h i s report was prepared os an occount of Government sponsored work.

Neither the United States,

nor the Commission, nor any person acting on behalf of the Commission:

A. Maker any worronty or representation, expressed or implied, w i t h respect completeness, or usefulness of the any

information,

apparatus,

msthod,

t o the accuracy,

information contoined i n t h i s report, or that the use of

or process disclosed in t h i s report may not infringe

privately owned rights; or

B. Assumes any l i a b i l i t i e s w i t h respect to the use of, or for damages resulting from the use of any information, opporatus, method, or process disclosed i n t h i s report. As used i n the obove, “person

acting on behalf of the

Commission�

controctor of the Commission, or employee of such controctor, or contractor

of the Commission,

or employee of

includes ony employee or

t o the extent that such employee

such controctor

prepares,

disseminates,

or

provides access to, any informotion pursuont t o h i s employment or contract with the Commission, or h i s employment w i t h such controctor.

r

A


iii

ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES.

A REVIEW G. D. R o b b i n s

Reactor C h e m i s t r y D i v i s i o n Oak R i d g e N a t i o n a l L a b o r a t o r y Oak R i d g e , T e n n e s s e e

ABSTRACT/SUMMARY

A review of electrical c o n d u c t i v i t y measurements i n m o l t e n f l u o r i d e s y s t e m s c o v e r i n g t h e p e r i o d 1927 t o 1967 h a s b e e n made, w i t h p a r t i c u l a r e m p h a s i s on e x p e r i -

I t is p o i n t e d o u t t h a t t h e common p r a c t i c e of m e a s u r i n g r e s i s t a n c e w i t h a W h e a t s t o n e b r i d g e h a v i n g a p a r a l l e l r e s i s t a n c e and c a p a c i t a n c e , R and C i n t h e b a l a n c i n g arm c a n r e s u l t i n c o n s i d e r P P’ able e r r o r i f t h e r e l a t i o n R P = Rs[ 1 + Rp2CpZ (2IIf)’] is

mental approach.

n o t employed i n d e t e r m i n g t h e s o l u t i o n r e s i s t a n c e , Rs. The f r e q u e n c y d e p e n d e n c e o f t h e m e a s u r e d r e s i s t a n c e a n d t h e p r a c t i c e of e x t r a p o l a t i n g measured r e s i s t a n c e s t o i n f i n i t e f r e q u e n c y v e r s u s 1 / d f is examined i n terms of e l e c t r o d e p r o c e s s c o n c e p t s . A summary o f e x p e r i m e n t a l a p p r o a c h e s a n d r e s u l t s f o r 56 m o l t e n f l u o r i d e s y s t e m s

is p r e s e n t e d .

.~

r------lEGAL

I


1

ELECTRICAL CONDUCTIVITY OF MOLTEN FLUORIDES.

A REVIEW* Introduction I n v e s i t g a t i o n of t h e e l e c t r i c a l c o n d u c t i v i t y o f m o l t e n

s a l t s y s t e m s h a s been a n area o f l i v e l y r e s e a r c h i n r e c e n t y e a r s , a n d a number o f r e v i e w s h a v e a p p e a r e d w h i c h d e a l w i t h t h i s a s p e c t of t r a n s p o r t phenomena. (1-3)

I t w i l l be t h e

i n t e n t of t h i s review to l i m i t i t s e l f t o t h e s u b j e c t of conductance measurements i n molten f l u o r i d e s .

The c o n t a i n m e n t

p r o b l e m s e n c o u n t e r e d w i t h t h e s e m a t e r i a l s s e t them a p a r t from t h e o t h e r m o l t e n h a l i d e s w i t h respect t o e x p e r i m e n t a l d i f f i c u l t i e s a n d t h e c o n s e q u e n t p r e c i s i o n o f measurement w h i c h c a n be e x p e c t e d .

By l i m i t i n g t h i s r e v i e w t o f u s e d f l u o r i d e s , it

is hoped t h a t s u f f i c i e n t d e t a i l s may be p r e s e n t e d t o p e r m i t workers i n t h e f i e l d t o o b t a i n a comprehensive survey covering t h e p e r i o d 1927 t o 1 9 6 7 .

To o u r knowledge, n o s u c h r e v i e w

e x i s t s w h i c h a d d r e s s e s i t s e l f t o t h e q u e s t i o n s which w e p o s e be l o w . Many i n v e s t i g a t i o n s i n t h e p a s t h a v e been c o n c e r n e d w i t h c r y o l i t e - c o n t a i n i n g melts b e c a u s e o f t h e i r r e l e v a n c e t o t h e aluminum i n d u s t r y , a n d a r e v i e w o f t h e s e s y s t e m s h a s been g i v e n by G r j o t h e i m a n d M a t i a s o v s k y . (4) Renewed i n t e r e s t i n t h e t r a n s p o r t p r o p e r t i e s of f u s e d f l u o r i d e s i n g e n e r a l h a s r e s u l t e d from t h e i r u s e as f u e l , b l a n k e t , a n d c o o l a n t materials i n m o l t e n

s a l t reactors. ( 5 )

*R e s e a r c h

s p o n s o r e d by t h e U.S. A t o m i c E n e r g y Commission u n d e r c o n t r a c t w i t h t h e Union Carbide C o r p o r a t i o n . V


2

B e c a u s e o f t h e h i g h s p e c i f i c c o n d u c t a n c e of most mol t e n

s a l t s (1-6

Q-1

cm-'

1, (6

e x p e r i m e n t a l a p p r o a c h e s have t e n d e d

t o f a l l i n t o t w o groups''):

(1) u s e of c a p i l l a r y - c o n t a i n i n g

c e l l s , which r e s u l t s i n a c e l l c o n s t a n t of s e v e r a l hundred

cm-',

t h e c a p i l l a r i e s b e i n g c o n s t r u c t e d from e l e c t r i c a l l y

i n s u l a t i n g m a t e r i a l s ; or ( 2 ) u s e of m e t a l l i c c e l l s i n w h i c h t h e c o n t a i n e r is u s u a l l y one e l e c t r o d e , w i t h a s e c o n d e l e c t r o d e positioned i n the m e l t .

The l a t t e r t y p e o f c e l l s h a v e c e l l

c o n s t a n t s o f t h e o r d e r of a f e w t e n t h s c m - ' ,

requiring very

a c c u r a t e m e a s u r i n g b r i d g e s a n d d e t e r m i n a t i o n of l e a d resistances.

S i n c e t h e v a l u e of m e a s u r e d r e s i s t a n c e i n s u c h c e l l s

is l e s s t h a n

la,

errors due t o t e m p e r a t u r e g r a d i e n t s , c h a n g e s

i n c e l l c o n s t a n t w i t h t e m p e r a t u r e , a n d p o l a r i z a t i o n become a s i g n i f i c a n t problem.

Hence, c e l l s of t y p e (1) are c l e a r l y

d e s i r a b l e for u s e i n m o l t e n s a l t s .

However, e l e c t r i c a l l y

i n s u l a t i n g m a t e r i a l s for c a p i l l a r y c o n s t r u c t i o n w h i c h are r e s i s t a n t t o a t t a c k by m o l t e n f l u o r i d e s are scarce. Measurement o f e l e c t r i c a l c o n d u c t i v i t y i n m o l t e n s a l t s d i f f e r s from s i m i l a r s t u d i e s i n a q u e o u s s o l u t i o n s i n s e v e r a l significant aspects.

I t is o f t e n t h e p r a c t i c e t o employ some

form o f a W h e a t s t o n e b r i d g e '7)

( F i g u r e 1) i n w h i c h t h e t w o

u p p e r arms a r e m a t c h e d , s t a n d a r d r e s i s t a n c e s , a n d t h e impeda n c e of t h e c e l l i n one l o w e r a r m is b a l a n c e d by a v a r i a b l e impedance, 2 , i n t h e f o u r t h a r m .

The b a l a n c i n g impedance is

and c a p a c i t a n c e , RP cP , The s o l u t i o n r e s i s t a n c e , R s , a n d

usually a variable resistance, connected i n p a r a l l e l . solution-electrode

i n t e r f a c i a l c a p a c i t a n c e s , Cs,

are c o n s i d e r e d t o be i n s e r i e s ( 8 ) ( F i g u r e 2 ) .

i n the cell

By r e q u i r i n g


3 v a

o n e e l e c t r o d e t o h a v e a much g r e a t e r area t h a n t h e o t h e r , t h e impedance associated w i t h s u c h a n e l e c t r o d e becomes n e g l i g i b l e , a n d t h e e q u i v a l e n t c i r c u i t r e d u c e s t o t h a t shown i n F i g u r e 3 . ( A l t e r n a t i v e l y , o n e c a n employ e l e c t r o d e s o f s i m i l a r area a n d

t r e a t t h e c a p a c i t a n c e r e s u l t i n g from t h e i r s e r i e s c o m b i n a t i o n 1

as a s i n g l e t o t a l c a p a c i t a n c e ,

- 1

- r + r.) S I

The c a p a c i -

3 . 2

t a n c e r e s u l t i n g from t h e electrode leads is i n p a r a l l e l across t h e e n t i r e c e l l shown i n F i g u r e 2 .

However, a t f r e q u e n c i e s

o r d i n a r i l y e m p l o y e d , a n d w i t h some care i n p o s i t i o n i n g , t h i s c a p a c i t a n c e can be n e g l e c t e d . When a s i n u s o i d a l a l t e r n a t i n g p o t e n t i a l is i m p r e s s e d a c r o s s the cell, a sinusoidal alternating current results.

If t h e

p o t e n t i a l is i n s u f f i c i e n t t o c a u s e e l e c t r o c h e m i c a l r e a c t i o n s

t o o c c u r a t t h e electrodes, t h e e q u i v a l e n t c i r c u i t o f F i g u r e 3

is v a l i d , a n d t h e i n t e r f a c i a l c a p a c i t a n c e is c h a r g e d a n d d i s charged during each half-cycle

through t h e s o l u t i o n r e s i s t a n c e .

By e m p l o y i n g a n o s c i l l o s c o p e as t h e n u l l d e t e c t o r , one c a n b a l a n c e t h e c e l l impedance w i t h t h e p a r a l l e l c o m b i n a t i o n of R a n d Cp shown i n F i g u r e 1.

P The two b a l a n c e e q u a t i o n s (when t h e

s t a n d a r d r e s i s t a n c e s are matched) are RS

Rp

+

C P=1 cS

and RsRpCsCp(211f)Z

=

1

T h e s e may be combined i n t o RP

=

Rs[l

-F

CpZRp2(211f)2]

(3 1

I t is o f t e n t h e p r a c t i c e t o e q u a t e R

( t h e v a l u e o f t h e bridge P d i a l s ) t o Rs ( t h e t r u e s o l u t i o n r e s i s t a n c e ) . (9y10) ( I n t h e case

o f unmatched s t a n d a r d r e s i s t o r s , t h e i r r a t i o is u s e d . )

This


4 is u s u a l l y v a l i d i n a q u e o u s s o l u t i o n s w h e r e Rs a n d Cs a r e s u c h

a s t o r e s u l t i n R 2 C 2(211f)2 b e i n g n e g l i g i b l y s m a l l e r t h a n P P unity. However, i n m o l t e n s a l t s e x p e r i m e n t a l c o n d i t i o n s f o r t h e measurement o f e l e c t r i c a l c o n d u c t a n c e c a n r e s u l t i n c o n s i d e r a b l e e r r o r i f t h e s e e q u a t i o n s are n o t c o n s i d e r e d when u s i n g p a r a l l e l components i n t h e b a l a n c i n g arm o f a W h e a t s t o n e bridge.

For e x a m p l e , on r e w r i t i n g e q u a t i o n s ( 2 ) and ( 3 ) i n

t h e form

Rp

=

Rs[l

1

Cs2Rs2 (211f)2

4-

1

(4)

i t is e v i d e n t t h a t i n m o l t e n s a l t s , w h e r e RsZ may be smaller by a f a c t o r of 1 O 1 O

t h a t i n aqueous s o l u t i o n s

*

(Cs h a v i n g a p p r o x i -

m a t e l y s i m i l a r v a l u e s ( 1 3 ) ) , a n a w a r e n e s s o f t h e s e r e l a t i o n s is necessary. U s e o f e q u a t i o n ( 3 ) t o c a l c u l a t e Rs

i s l i m i t e d by t h e

a c c u r a c y w i t h which t h e v a l u e s of t h e v a r i a b l e capacitance,

C p , a n d t h e f r e q u e n c y a r e known.

U s e of p r e c i s i o n c a p a c i t o r s

c a n be a v o i d e d by e m p l o y i n g a b r i d g e i n w h i c h t h e b a l a n c i n g components a r e i n s e r i e s . ( 1 4 )

Then i n t h e case of no e l e c t r o -

c h e m i c a l r e a c t i o n , t h e v a l u e o f Rs

is w e l l r e p r e s e n t e d by t h e

r e a d i n g on t h e b a l a n c e d b r i d g e ; however, t h i s method does r e q u i r e t h e u s e of l a r g e c a p a c i t o r s . When a s u f f i c i e n t l y l a r g e a . c . p o t e n t i a l i s i m p r e s s e d on t h e c e l l t h a t c h a r g e is t r a n s f e r r e d a c r o s s t h e s o l u t i o n -

e l e c t r o l y t e i n t e r f a c e s d u r i n g part of each h a l f - c y c l e ,

corres-

p o n d i n g t o a n e l e c t r o c h e m i c a l r e a c t i o n , t h e s i t u a t i o n becomes

-----

c o n s i d e r a b l y more c o m p l e x . ~

However, i t is u n d e r t h e s e c o n d i t i o n s

The m e a s u r e d r e s i s t a n c e o f 0 . 0 0 0 5 m K C 1 i n c e l l s employed

by J o n e s a n d B o l l i n g e r (I1) w a s a p p r o x i m a t e l y 5 0 , 0 0 0 0.

Cuthbertson

a n d Waddington ( 1 2 ) r e p o r t a m e a s u r e d r e s i s t a n c e o f a p p r o x i m a t e l y 0 . 5 $2 i n m o l t e n c r y o l i t e .

W


5

.

W

t h a t c o n d u c t i v i t y measurements are u s u a l l y p e r f o r m e d .

Based

on t h e work o f J o n e s a n d C h r i s t i a n , ( 1 5 ) r e s i s t a n c e i n a q u e o u s s y s t e m s is g e n e r a l l y m e a s u r e d a t a s e r i e s o f f r e q u e n c i e s a n d e x t r a p o l a t e d t o i n f i n i t e frequency employing t h e f u n c t i o n a l

-1

form f-’.

U s e of t h i s p a r t i c u l a r f u n c t i o n a l form is a t t r i -

b u t e d ( 1 5 ) t o Warburg ( 16’17) a n d Neumann (18) who, on t h e b a s i s of F i c k ’ s l a w s of d i f f u s i o n , p r e d i c t e d t h a t t h e p o l a r i z a t i o n r e s i s t a n c e ( t h a t p a r t o f t h e measured r e s i s t a n c e d u e t o elect r o d e p o l a r i z a t i o n ) was i n v e r s l y p r o p o r t i o n a l t o d f . A p p l y i n g t h e c o n c e p t s r e s u l t i n g from electrode p r o c e s s (19-21) studies,

o n e may e n v i s i o n t h e e q u i v a l e n t c i r c u i t shown

i n Figure 4 f o r an e l e c t r o d e - s o l u t i o n c h a r g e is b e i n g t r a n s f e r r e d .

i n t e r f a c e across which

r e p r e s e n t s t h e impedance r associated w i t h t h e r e a c t i o n , which is i n p a r a l l e l w i t h t h e

solution-electrode

Z

i n t e r f a c i a l capacitance.

Under t h e e x a c t -

z r may be re-

i n g a s s u m p t i o n s o f f a r a d a i c impedance s t u d i e s ,

p r e s e n t e d by a f r e q u e n c y - i n d e p e n d e n t r e s i s t a n c e , 0, i n s e r i e s w i t h a f r e q u e n c y - d e p e n d e n t impedance, -W-, ance.

t h e Warburg imped-

The l a t t e r is c o n v e n i e n t l y r e p r e s e n t e d as a r e s i s t a n c e

a n d c a p a c i t a n c e i n s e r i e s , Rr a n d C r , (Figure 5).

a t constant frequency

A t a g i v e n f r e q u e n c y t h e impedances r e s u l t i n g from 1

Rr a n d Cr are e q u a l .

However, b o t h v a r y as f - ” .

The a s s u m p t i o n s upon w h i c h t h e m a t h e m a t i c a l a n a l y s i s 1 1 w h i c h r e s u l t s i n f-” d e p e n d a n c e o f Rr a n d 2nfcr rests i n c l u d e 1 ) s e m i - i n f i n i t e l i n e a r d i f f u s i o n of r e a c t a n t s and p r o d u c t s a n d 2 ) a s m a l l a m p l i t u d e a . c . p o t e n t i a l s u p e r i m p o s e d on a n e t d.c. p o l a r i z i n g p o t e n t i a l .

T h e s e are n o t t h e c o n d i t i o n s of

c o n d u c t i v i t y measurements.

However, d u r i n g t h a t p a r t of e a c h


6 h a l f - c y c l e d u r i n g w h i c h r e a c t i o n is o c c u r r i n g a t t h e e l e c t r o d e s , t h e e q u i v a l e n t c i r c u i t o f F i g u r e 4 is a u s e f u l c o n c e p t , e v e n though 2

r

may n o t be t r e a t e d r i g o r o u s l y a c c o r d i n g t o F i g u r e 5 .

T h a t t h e above c o n s i d e r a t i o n s lead t o t h e same f r e q u e n c y d e p e n d e n c e as t h a t e x p e r i m e n t a l l y d e t e r m i n e d f o r many conduct i v i t y m e a s u r e m e n t s (15? r e n d e r s t h i s c o n c e p t u a l a n a l y s i s worth cons i d e r i n g

.

I n b r i e f , t h e n , o n e may c o n s i d e r t h e e q u i v a l e n t c i r c u i t of Figure 4 as a rough analog of t h e s o l u t i o n r e s i s t a n c e , electrode-solution

i n t e r f a c i a l c a p a c i t a n c e , and reaction

impedance ( b e a r i n g i n mind t h a t Zr c a n n o t be r e p r e s e n t e d e x a c t l y by a n y f i n i t e c o m b i n a t i o n o f r e s i s t a n c e , c a p a c i t a n c e , and i n d u c t a n c e which w i l l r e n d e r i t f r e q u e n c y i n d e p e n d e n t ) . During t h a t p a r t of each half-cycle

i n w h i c h t h e p o t e n t i a l is

below t h a t w h i c h r e s u l t s i n a n e l e c t r o d e r e a c t i o n , t h e e q u i v a l e n t c i r c u i t of Figure 4 reduces t o t h a t of Figure 3 , i . e . , becomes i n f i n i t e . I t is a l s o u s e f u l t o c o n s i d e r t h e e q u i r v a l e n t c i r c u i t o f F i g u r e 4 i n view o f t h e p r a c t i c e o f e x t r a -

Z

p o l a t i n g measured r e s i s t a n c e t o i n f i n i t e frequency.

I t can

be s e e n t h a t a t i n f i n i t e f r e q u e n c y t h e impedance o f Cs is

i n f i n i t e l y l e s s t h a n t h a t of Z r ,

and F i g u r e 4 a g a i n r e d u c e s

t o Figure 3. I t s h o u l d be e m p h a s i z e d t h a t w h i l e one m e a s u r e s r e s i s t -

a n c e a t a series o f f r e q u e n c i e s and e x t r a p o l a t e s t o i n f i n i t e f r e q u e n c y , one does n o t make measurements a t f r e q u e n c i e s which a p p r o a c h i n f i n i t y .

I n f a c t , v e r y h i g h f r e q u e n c y measure-

m e n t s ( i n t h e m e g a h e r t z r a n g e ) are t o be a v o i d e d b e c a u s e of t h e i n c r e a s e d a d m i t t a n c e of t h e l e a d s a n d t h e f a c t t h a t a t v e r y h i g h f r e q u e n c i e s o n e ceases t o m e a s u r e a p r o p e r t y a s s o i c a t e d w i t h i o n i c


7 m o b i l i t y a n d o b s e r v e s p r o p e r t i e s a s s o c i a t e d w i t h d i p o l e moments and p o l a r i z a b i l i t i e s . viz, -

Hence t h e q u e s t i o n o f c o n c e r n r e m a i n s

w h a t f u n c t i o n a l form of t h e f r e q u e n c y d o e s o n e employ t o

e x t r a p o l a t e t h e measured r e s i s t a n c e t o i n f i n i t e frequency? R o b i n s o n a n d S t o k e s ( 2 2 ) c o n s i d e r t h i s q u e s t i o n i n terms o f electrode p r o c e s s c o n c e p t s as a p p l i e d t o a q u e o u s media a n d give balance equations for a bridge with a parallel-component b a l a n c i n g a r m , a s s u m i n g v a r i o u s r e l a t i v e m a g n i t u d e s of Rs, 0, a n d Rr

.

Under t h e c o n d i t i o n s employed by J o n e s a n d C h r i s t i a n , ( 1 5 )

1

f-'

d e p e n d e n c e is p r e d i c t e d .

Robinson and S t o k e s c o n c l u d e t h a t

o n e s h o u l d m e a s u r e r e s i s t a n c e as a f u n c t i o n o f f r e q u e n c y a n d e x t r a p o l a t e t o i n f i n i t e frequency i n accordance w i t h t h e observed behavior.

T h i s is a l s o t h e c o n c l u s i o n of N i c h o l a n d FUOSS,( 2 3 )

who o b s e r v e d a

f-I

f r e q u e n c y d e p e n d e n c e of r e s i s t a n c e i n m e t h a n o l

solutions. I n m o l t e n s a l t s f r e q u e n c y d e p e n d e n c e of t h e r e s i s t a n c e h a s been r e p o r t e d a t p o l a r i z i n g p o t e n t i a l s much l o w e r t h a n r e q u i r e d

for f a r a d a i c p r o c e s s e s . ( 2 4 * 2 5 )

Buckel and T s a u s s o g l o u (2 6 , have

found t h a t measured r e s i s t a n c e v s . f r e q u e n c y p l o t s show a p l a t e a u in t h e range 1 0 - 1 0 0 k H z i n aqueous potassium c h l o r i d e a n d m o l t e n

p o t a s s i u m bromide.

They s u g g e s t t h a t e x t r a p o l a t i o n of r e s i s t a n c e

1

vs. -

f-"

would l e a d t o e r r o n e o u s c o n d u c t a n c e s a n d t h a t o n e s h o u l d

s t u d y f r e q u e n c y d i s p e r s i o n i n a p a r t i c u l a r a p p a r a t u s and s e l e c t

a frequency-independent r e g i o n f o r performing conductivity experiments.

D e N ~ o i j e r ' ~r e~p)o r t e d t h a t i n m o l t e n n i t r a t e

m e l t s p l o t s of measured r e s i s t a n c e

E.

-1

f - 2 were n o t l i n e a r , b u t

a p p r o a c h e d l i n e a r i t y as t h e f r e q u e n c y a p p r o a c h e d i n f i n i t y .

His


8 W

v a l u e s o f m e a s u r e d r e s i s t a n c e a t 2 0 kHz o n l y d i f f e r e d from v a l u e s e x t r a p o l a t e d t o i n f i n i t e f r e q u e n c y by a b o u t 0 . 1 %. W i n t e r h a g e r a n d Werner ( 2 8 ' 2 9 ) h a v e c o n s i d e r e d f r e q u e n c y d i s p e r s i o n i n m o l t e n n i t r a t e , c h l o r i d e , and f l u o r i d e m e l t s and have a p p l i e d "electrical l o c u s c u r v e t h e o r y " (30) t o t h e i r r e s u l t s o b t a i n e d e m p l o y i n g a Thomson-type b r i d g e .

They c o n c l u d e t h a t a t s u f f i c i e n t l y h i g h

f r e q u e n c i e s m e a s u r e d r e s i s t a n c e becomes i n d e p e n d e n t o f f r e q u e n c y , a n d t h e y employ a m e a s u r i n g f r e q u e n c y of 5 0 kHz.

Therefore, i n

t h i s r e v i e w p a r t i c u l a r a t t e n t i o n w i l l be g i v e n t o t h e o b s e r v e d b e h a v i o r of r e s i s t a n c e w i t h f r e q u e n c y a n d t o t h e c o n d i t i o n o f t h e electrode s u r f a c e s , s i n c e i n a q u e o u s mdeia i t is observed t h a t f r e q u e n c y d i s p e r s i o n is less i n cases o f h e a v y p l a t i n i z a t i o n ( i n c r e a s e d C,).

(11)

I n l i g h t of the foregoing d i s c u s s i o n t h e f o l l o w i n g informat i o n w a s s o u g h t from e a c h s t u d y w h i c h was c o n s u l t e d : A.

C e l l material, its g e n e r a l d e s i g n , and t h e r e s u l t i n g c e l l

constant,

( ! , / a ) , or g e n e r a l r a n g e o f m e a s u r e d r e s i s t a n c e ,

B.

E l e c t r o d e m a t e r i a l , s h a p e , s i z e , and s u r f a c e c h a r a c t e r .

C.

Type of b r i d g e employed.

D.

F r e q u e n c y r a n g e employed.

E.

Dependence o f m e a s u r e d r e s i s t a n c e on f r e q u e n c y .

F.

Voltage a p p l i e d t o t h e bridge.

G.

Results.

*

*

R e s u l t s a r e r e p o r t e d e i t h e r i n terms of t h e

The g e n e r a l t y p e s of b r i d g e c i r c u i t s employed a r e shown i n Appendix I a s a n a i d i n d e s c r i p t i o n . The c i r c u i t s a c t u a l l y For employed were u s u a l l y m o d i f i e d v e r s i o n s of t h o s e shown. d e t a i l s of c i r c u i t y , t h e r e a d e r is r e f e r r e d t o t h e c i t e d work.


9 Y

s p e c i f i c conductance,

K

,

t h e e q u i v a l e n t c o n d u c t a n c e , Aeq,

or t h e molar c o n d u c t a n c e , Am.

These q u a n t i t i e s are d e f i n e d

as

Aeq

= K.

Am

=

equivalent weight density

(6)

.molecular weight

(7)

density

These q u a n t i t i e s are r e p o r t e d as f u n c t i o n s of t e m p e r a t u r e f o r t h e minimum, maximum, a n d o n e i n t e r m e d i a t e v a l u e f o r p u r e s a l t s .

For b i n a r y m i x t u r e s a 3 x 3 g r i d a l s o s t a t i n g t h e extremes a n d o n e i n t e r m e d i a t e v a l u e o f c o m p o s i t i o n is employed where convenC o n d u c t i v i t i e s o f m i x t u r e s o f more t h a n two components

ient.

a r e p r e s e n t e d i n a manner d e s i g n e d t o c o n v e y maximum i n f o r m a t i o n . The t a b u l a t i o n is o r d e r e d a c c o r d i n g t o t h e s y s t e m u n d e r c o n s i d e r a t i o n ; a n d w i t h i n e a c h s y s t e m , by d a t e o f p u b l i c a t i o n , the earliest appearing f i r s t .

Where one i n v e s t i g a t i o n h a s

c o v e r e d s e v e r a l s y s t e m s , a c r o s s r e f e r e n c e is g i v e n . v a l u e s of

K

Additional

a n d A may be f o u n d i n J a n z ' s Molten S a l t s Handbook ( 3 1 )

f o r many o f t h e s y s t e m s r e p o r t e d h e r e .

A s previously s t a t e d ,

t h e p r i m a r y c o n c e r n o f t h i s r e v i e w is t o p i c s A-F.

The r e s u l t s

p r e s e n t e d h e r e i n are g i v e n f o r comparison and c o m p l e t e n e s s and

w e r e , i n a l l cases, t a k e n from t h e o r i g i n a l p u b l i c a t i o n s (exception:

Appendix 11).

I t w i l l be o b s e r v e d below t h a t a number of p u b l i c a t i o n s

h a v e n o t a d d r e s s e d t h e m s e l v e s t o some of t h e q u e s t i o n s r a i s e d above.

If t h i s r e v i e w s e r v e s o n l y t o remedy t h i s p r a c t i c e , i t

is c o n s i d e r e d j u s t i f i e d .


TABULATION I'ridge

-.( D e t e c t o r )

f Range (kHz)

R

Wheatstone (telephone)

- ..

.

..

~

electrodes.

-

~

-

__

-

P t c r u c l b l e ( 0 . 2 mm wall) IR)

r,. ...

-

f

N.S. Not Stated

VPP (v)

N.S

TT Specially devel oped by E. F a i r s t e i n . (34) f range-.2-6 kH R range-.oi-ion ("scill0sc"pe)

905 950 995

20.3 23.4 27.2

1040 IORO

5.74 5.95

997

w

N.S.

W h e a t s t o n e , no capacit u r s (oscilloscope)

appreciably between 1 and

(osrilloncope)

a t lower f , independent a t

Jones ( n u l l detector)

1-20 kHZ

-

Kelvin I

extrapolated t o f - m

0.02 R Crucible and a P t c y l i n d e r (area 2 cm'), b o t h p l a t l n i z e d

-

$3

ii3

~

-~

1003

4.960

ion6 1138

5.179

e-1.2

Aeq

860 1000

4.14 1.28 4.77

869

Y

900

#2

42

#2

5.15

Y

.Xeq

~

1040

113

(* 1%)

5.335 =

91

I

_ I

-

(*several %) 5.2,-

1020

K

ii2

=

0-1.05

li

iil

;+-

Results

-

___

l;raphttp crucible ( i d 3.5", 5" ~ ( m t a i n i n gL BN c y l i n d e r s ( i d enoase,d I " .. vraD . h i t P and e n l a r g e d a t toI) t o ~s c c a_ m o d a_t e r ~ t ' o d e_ a .( f /~ aj 100cn' _l r r t _ P t c r u c i b l e ( 4 0 0 ml), ( ? / a ) 0.0815cm' H e m i s p h e r i c a l P t e l e c t r o d e f i . platinized originally. _.

VII.

-

5.29

-

+ 5.64x10-'(T-1I13O0C)

156.6

(t19

(is t o in%) -3.493

+ 1.480x10-zT(oC)

-6.60R~lO'~T~

(o-.oo~~-~c~-~)


System

[R)

Rcf

Cell or ( j / a )

Bridge (Detector)

Electrodes

f Range

R vs. f

(kHz)

VPP (V) _ .

#3

#3

__

14

KF

2R

#4

#4

iy4

VgO, s i n g l e c r y s t a l , d i p c e l l ; P t

C o n t a i n e r and P t e l e c t r o d e

Jones

.5-1(

:i2

#2

#2

'4

29

:: 43

33

$4

Y4

859 938 1012

3.573 3.793 4.021

N.S.

905

3.77

Y2

725921

u

737 784 852

2.51 2.73 3.03

590 670

4.0* 6.0*

700 800 950

0.71 x 15.3 x 236 x

1418

Y

#4

940 990

4.75* 5.W

#4

970

2.2*

-

1110

2.5*

#4

900

3.2,*

960

3.7'

-

cOntalner

v a r i e d <0.3%

I

*2

#15

#2

#15

#15

__ #4

#4

Pt-Rh (?/a)

20

I

CaF,

146

I Carbon

(20%) c r u c i b l e ( i d o r .28cm-I

=

2",

h t . = 2+*) C r u c i b l e a n d P t - R h

= .ll

crucible

]Yo e l e c t r o d e s

(20%)

bob

(+2%)

__

"Wheatstone 2-10 R-C b r i d g e " ( s c o p e or VTVM)

I N.S.

f independenl 2 - 1 0 kHz

N.S.

__ 1N.S.

N.S.

N.S.

=

-4.511 + 1 . 6 4 2 ~ 1 0 - ' T ( ~ C ) ((I-. 009R-' cm-' -7.63 Z X ~ O - ~ T ~

)

lo-' (tlO%)

= 3.56

_ .

#4 22

CuF,

28 29

#4

#4

#4

#4

#4

zi

ZnF,

28 29

i,4

#4

#4

#4

#4

24

PbF,

28

l ~ 4

#4

#4

84

#4

#4

820 1000

5.1* 5.8.

-

29 25

KBF,

28 L9

1'4

#4

#4

#4

#4

#4

545 569 652

1.052 1.1Zb 1.245

26

Na,TaF,

28 29

114

#4

#4

#4

#4

54

702 733 814

1.165 1.396 1.595

27

K,TiF,

28

"4

#4

#4

#4

#4

#4

843 888 976

1.346 1.435 1.604

64

d14

747 800 887

0.7285 0.9193 1.0366

__ 29

..

-2

t-J

P


... . .- . I,z,AIF6

- .. .

N~,AIF;

iI

3..

Nn 3 A l F,,

:f,

Y6

A 1 F,

Y7

#7

Nn,AlF6

I'3

#3

N.7,

1000

2.80

1040

2.90

1080

3.00

1013

M

1000

2.80* 2.958

1'1

1h

K,AIF,

37

I.iF ThF,

- && (

several9

2.82* 284 a t 10100 296 a t 1040'

H4

Y4 h n t a i n e r and P t rod (d

Nn,AIF,

2.744

A-

lo60 Nil, AIFa

-

Aeq

-

Thomaon p l u s

3 mm)

phase I n d i c a t n

HJ

Y3

1000

2.84 2.92

in4n

loan

3.00

1000 1060

2.22' 2.42.

-

.~~ ~ . .

LIF

15

+

ThF

-

&(myq)

7.14 + 10.97x10-'(T-H8O0C) Aeq 117.2. for fl 1 . 2

78-22(.4.)

2.50 + 7.58x10-'(T-64OoC) .zeq 2 9 . 9 . for 0 1.2

I

50.2-49.H(rn%)

I

- --

,z=q 3H

LxFtUF,

85 I

A"

60-4O(n%)

x

x

-~ NaF + CaF, (6 7

C u r c i b l c a n d P t rod, b o t h p l a t l n i z e d or l g i n a l l y

Carey-Foster

900 1000

W'l,)

1100

.

-

e -

+ 4.19x10-'(T-820째C)

3 1 . 0 , for

1.2

,*,n

7.55 + 5.86x10-'(T-900째C)

-

9 9 . 3 , for e 1.2 2 . l i + 5.68x10-'(T-70O0C) 2 3 . 8 . for

e

1.2 2.89 + 3.29x10-'(T-9OO0C) heq 33.5. for e 1.2 (114.)

40-60(m%)

',

2.13

--

~~q

.~ >

-

4.837 5.373 5.879

~

(*.5%)


Svstcm

Cell

- . Ket

___ ~.

Ra6ge

Bridge (Detector)

Electrodes

1\39

1139

Hot-pressed Be0 tube in a cylindrical Pt crucible <!/s) 24 cm-'

115

1139

Pt crucible across bottom of the tube and Pt rod at top

439

1139

I

#39

#39 #39

#39

N.S.

and fl in parallel 0.ci110sc0

Results or .4(cmln-'eq-'

p(oc) -

(kHz)

N.S

u(n-' em-'

?OO 1000 1100

4.441 4.961 5.642

300

4.027 4.602 5.319

1000 1100

*

E % g 30.52 &)m . r (1.73 Ts;m 0.92 565'

730'

k5

#5

m)

67-33(&)

#5

I #5

#5

#5

I

=

-

-

NaBF,

Described in R e f . 51, not readily available

Pt electrodes

Wheatstone, with balancing

5

N.S.

d

-

(oscillosco~~

#6

#b

#6

Na,AlF6

#45

Pt cell

#4 5

#45

1 I

46

#45

-

645

N.:

(oscilloscope)

-

(*lo%)

~

1.48 + 5.23~10-~(T-800~C) Aeq 28.6, for e * 1.2 (*lqa) I(

K

=

~

--

=

65-35(m%)

1.37 + 4 . 6 5 ~ 1 0 - ~ ( T - 7 0 0 ~ C ) Aeq 26.6, for 8 1.2

25-75(n%)

2.18 + 3.56~lO-~(T-90O~C) Aeq = 36.9, for e = 1.2 (Llqo)

w;s;3 40-60(w%) 10-90(w%)

#6

4 45

* .5%)

2.81 + 3.56~lO-~(T-850~C) 3%) Aeq 57.7, for e 1.2

5 0-5 0 (m%) - 35.7-64.3(a%)

#6

N.S.

N.S.

N.S

(

1.76 + 3.88x10-'(T-80OoC) 1.2 28.1, for e

=

I

* .5%)

3.49 + 3.74x10-'(T-90O0C) Aeq 71.3, for 0 1.2 I

Aeq

50-50(.%)

(

885'

- 50-50(m%)

#5

#5

(mol-' ) )

K

K

~

-

=

so

450'

0,905 2.408

6.350 8.801

P

800' ?Ti02 14.105 14.978

W

1000D

;040째

1080'

A ~ ~ O O o

3.19 3.12

3.30 3.23

3.41 3.33

99 100

450'

650'

-

40-60(w%) 2.255 3.601 lO-sO(w%) 0.281 7data taxen from grapns)

800' -KT61 11.495 12.703


f

System CaFI 4 Nn,AlF,

Rrf 53

12

.R:,

Cell or V / a )

G r a p h i t e c r u c i b l e K R j W 0.511

Bridge (Detector)

Electrodes

Carbon anode and m o l t e n A 1 cathode

Wheatstone, and e* i n

Range

(w;)i

;,;;, i

f.

d f'*

( 1 I ti3

/t6

11

I

*6

#3

43 43

1010 1040 AlF -Na AIF * - T ;0 h

*1070'

2.5-97.5(1%) 7.5-92.5(~%)

2 . 86

AlF,-NI AlF . - 82'1(&) 11.6-88.4(m%)

m

#4R

P48

t48

&6

&6

46

#P

t 3

#3

13

#3

C u r r e n t e l e c t r o d e s : crucible and P t spherc; potential electrodea: c r u c i b l e and P t c y l i n d e r s u r r o u n d i n g mphcre

No bridge: VTW a n d ammeter

.5

N.S.

N.S.

P55

155

455

232

242

.

740

2.12'

880

2.R2*

565 675 815

1.18' 1.528

1000'

2.68

1040'

10BOo

rn

276

2.77

2.86

'?:0Oo

7Fb 88

1.80'

"#55

#55

NIP-ZrF -VF 33.5-4046.fim%) 50-46-4 ( d o )

565' m 8 0.79

730' m 8 1.08

885'

P

.r

n 3 1.60

* I n t e r p o l a t e d f r a a l i n e a r p l o t of

I

VS.

T


15

REFERENCES 1.

J a n z , G. J. and R. D. Reeves, "Molten-Salt T r a n s p o r t P r o p e r t i e s , " i n Adv.

Electrolytes

-

i n Electrochem.

and E l e c . Eng., V o l . 5 , C . W. T o b i a s , E d . , John Wiley and Sons, New York, 1967. 2.

Sundheim, B. R . ,

" T r a n s p o r t P r o p e r t i e s of L i q u i d E l e c t r o -

--

l y t e s " i n F u s e d S a l t s , B. R . Sundheim, E d . ,

McGraw-Hill,

New York, 1964. 3.

Klemm, A . ,

" T r a n s p o r t P r o p e r t i e s of M o l t e n S a l t s , " i n

Molten S a l t Chemistry, M. Blander, Ed.,

John Wiley and

Sons, New York, 1964. 4.

--

G r j o t h e i m , K. and K. Matiasovsky, T i d s s k r . K j e m i Bergv.

M e t a l l u r g i , 2 6 , 226 ( 1 9 6 6 ) . 5.

G r i m e s , W. R . ,

"Materials P r o b l e m s i n M o l t e n S a l t Reactors ,"

i n M a t e r i a l s a n d F u e l s for High T e m p e r a t u r e Nuclear E n e r g y A p p l i c a t i o n s by M . T. Simnad a n d L . R . Zumwalt, t h e M.I.T.

Press, Mass., 1 9 6 4 . 6.

Y a f f e , I . S . a n d E. R . Van A r t s d a l e n , J . P h y s . Chem., 60,

1125 (1956). 7.

J o n e s , G . and R . C . J o s e p h s , J . Am. Chem. S O C . , 5 0 , 1049 (1928).

-

8.

Grahame, D . C . ,

9.

D a n i e l s , F., e t a l . , Experimental P h y s i c a l Chemistry, 5 t h

J . Am. Chem. S O C . , 6 3 , 1 2 0 7 ( 1 9 4 1 ) .

ed., McGraw-Hill,

10.

New York, 1 9 5 6 , p. 3 9 6 .

G l a s s t o n e , S . a n d D. L e w i s , E l e m e n t s of P h y s i c a l C h e m i s t r y , Van N o s t r a n d , P r i n c e t o n , N e w J e r s e y , 1 9 6 0 , p. 4 3 0 .

11.

J o n e s , G . a n d G. M .

B o l l i n g e r , J . Am. Chem. S O C . , 53, 411

(1931). 12.

C u t h b e r t s o n , J. W. 3 2 . 745 ( 1 9 3 6 ) .

a n d J . Waddington, T r a n s F a r a d a y S O C . ,


13.

K . E. J o h n s o n , a n d H . A . L a i t i n e n , i n M o l t e n

Liu, C.H.,

S a l t C h e m i s t r y , M.

Blander, Ed.,

Interscience Publishers,

N e w York, 1 9 6 4 , p . 715. 14.

R o b b i n s , G . D. a n d J . B r a u n s t e i n , Reactor C h e m i s t r y D i v i s i o n A n n u a l Progress R e p o r t for Period E n d i n g

December 3 1 , 1 9 6 7 , ORNL-4229, 15.

p.

57.

J o n e s , G . a n d S . M . C h r i s t i a n , J . A m . Chem. S O C . , 5 7 , 272 (1935).

16.

Warburg, E . , Wied. Ann. P h y s i k , 6 7 , 493 ( 1 8 9 9 ) .

17.

Warburg, E . , D r u d e Ann. P h y s i k , 6 , 125 (1901).

18.

Neumann, E . , Wied. Ann. P h y s i k , 67, 500 (1899).

19.

Grahame, D . C . ,

J. Electrochem. SOC., 9 9 , 370C ( 1 9 5 2 ) .

20.

Grahame, D . C . ,

Ann. Rev. P h y s . Chem., 6 , ( 1 9 5 5 ) , pp. 345-6.

21.

Delahay , P.

,

N e w I n s t r u m e n t a l Methods i n E l e c t r o c h e m i s t r y ,

I n t e r s c i e n c e P u b l i s h e r s , N e w York, 1 9 5 4 , pp. 146-168. 22.

R o b i n s o n , R . A . a n d R . H. Stokes, E l e c t r o l y t e S o l u t i o n s , B u t t e r w o r t h s , London, 2nd e d . ( r e v i s e d ) ,

23.

Nichol, J. C . and R . M.

1 9 6 5 , pp. 88-95.

FUOSS, J . A m . Chem. S O C . , 77, 198

(1955). 24.

H i l l s , G.

-

J . a n d K . E. J o h n s o n , J . E l e c t r o c h e m . S O C . , 1 0 8 ,

1013 (1961). 25.

H i l l , D. L . , G . J . H i l l s , L. Young, a n d J . O'M.

Bockris,

J . E l e c t r o a n a l . Chem., 1, 79 ( 1 9 5 9 ) .

26.

B u c k l e , E . R . a n d P. E . T s a o u s s o g l o u , J . Chem. S O C . , London, 667 ( 1 9 6 4 ) .

27.

De N o o i j e r , B . , "The E l e c t r i c a l C o n d u c t i v i t y of M o l t e n N i t r a t e s a n d B i n a r y N i t r a t e s , ' I t h e s i s , U n i v e r s i t y of A m s t e r d a m , The N e t h e r l a n d s , 1 9 6 5 .

W


17 W

28.

W i n t e r h a g e r , H. a n d L . Werner, F o r s c h u n g s b e r . des W i t s c h a f t s - u . Verkehrsministeriums Nordrhein-Westfalen,

29.

Ibid., -

30.

Oberdorfer, G . ,

No.

438, 1957.

N o . 341, 1956.

-

L e h r b u c h der E l e k t r o t e c h n i k , B d . 1 1 , 1 9 4 4 ,

p. 2 1 2 .

31.

J a n z , G . J . , M o l t e n S a l t s Handbook, Academic P r e s s , N e w York, 1 9 6 7 .

2. E l e k t r o c h e m . ,

39,

531 (1933).

32.

Ryschkewitsch, E.,

33.

Yaffe, I . S . a n d E . R . Van A r t s d a l e n , C h e m i s t r y D i v i s i o n S e m i a n n u a l P r o g r e s s R e p o r t f o r Period E n d i n g J u n e 2 0 , 1 9 5 6 ,

34.

Fairstein, E.,

I n s t r u m e n t a t i o n and C o n t r o l s Semiannual

P r o g r e s s Report f o r P e r i o d E n d i n g J u l y 3 1 , 1 9 5 5 , ORNL-1997, P. 9 . 35.

Y i m , E. W .

a n d M.

F e i n l e i b , J. Electrochem. SOC., 1 0 4 , 622

(1957). 626 ( 1 9 5 7 ) .

36.

Ibid.,

37.

Brown, E. A . a n d B. P o r t e r , "U.S. D e p a r t m e n t of I n t e r i o r , B u r e a u of M i n e s , " 1 2 8 . 2 3 : 6500 ( 1 9 6 4 ) .

38.

Edwards, J. D . , C.

S. Taylor, L . A . C o s g r o v e , a n d A . S.

R u s s e l l , J. E l e c t r o c h e m . SOC., 1 0 0 , 508 ( 1 9 5 3 ) . 39.

Edwards, J. D . ,

C . S. T a y l o r , A . S . R u s s e l l , a n d L. F .

Maranville, i b i d ., 9 9 , 527 ( 1 9 5 2 ) . 40.

L a n d o n , G . J . a n d A . R . U b b e l o h d e , Proc. R o y a l S O ~ . , A240, 1 6 0 ( 1 9 5 7 ) .

41.

B r o n s t e i n , H. R . a n d M . A . B r e d i g , C h e m i s t r y D i v i s i o n A n n u a l Progress Report f o r Period E n d i n g J u n e 2 0 , 1 9 5 9 , ORNL-2782,

p . 59.


18 42.

Ibid.,

J . Am. Chem. S O C . ,

43.

B r o n s t e i n , H. R . ,

80, 2077

(1958).

A . S . Dworkin, a n d M .

A. Bredig, Chemistry

D i v i s i o n Annual P r o g r e s s R e p o r t for P e r i o d E n d i n g J u n e 2 0 , 1 9 6 0 , ORNL-2983,

p . 65.

27, -

45.

I b i d . , Rev. S c i . I n s t r . ,

46.

Bagk, T . , Acta Chem. S c a n d . ,

47.

B a j c s y , J . , M . M a l i n o v s k y , a n d K. M a t i a s o v s k y , E l e c t r o c h i m .

Acta, 48.

8,

1727 ( 1 9 5 4 ) .

7 , 543 ( 1 9 6 2 ) .

Thompson, M . deK. a n d A . L. Kaye, T r a n s . E l e c t r o c h e m . S O C . , 67, -

169 ( 1 9 3 5 ) .

49.

Greene, N. D . ,

50.

S e l i v a n o v , V . G. a n d V . V .

4, 51.

297 ( 1 9 5 6 ) .

ORNL-CF-54-8-64

(1954).

S t e n d e r , R u s s i a n J . I n o r g . Chem.,

934 ( 1 9 5 9 ) .

M e e r s o n , G . A . a n d M . P . S m i r n o v , Khimiva R e d k i k h E l e m e n t o v , Akad. Nauk SSSR, 2 , 133 (1955).

52.

B a t s l a v i k , E. and A .

3, 53.

No.

I . B e l y a y e v , R u s s i a n J . I n o r g . Chem.

4 , 324 ( 1 9 5 8 ) .

1, P e a r s o n , T . G . a n d J . Waddington, D i s c . F a r a d a y S O C . , -

307 ( 1 9 4 7 ) . 54.

M a l m s t a d t , H . V . a n d C . G. E n k e , E l e c t r o n i c s for S c i e n t i s t s , W.

55.

A . B e n j a m i n , N e w Y o r k , 1 9 6 2 , p . 273.

Dike, P. H.,Rev.

2, Sci. Instr., -

379 ( 1 9 3 1 ) .


19 DRNL-DWG 68-2215

F i g u r e 1:

Wheatstone b r i d g e :

parallel-component balancing

arm. ORNL-DWG 6 8 - 2216

Figure 2:

E q u i v a l e n t c i r c u i t of c e l l i n a b s e n c e of r e a c t i o n . ORNL-DWG

68-2217

RS GS

Figure 3 :

E q u i v a l e n t c i r c u i t of s o l u t i o n r e s i s t a n c e and electrode-solution i n t e r f a c i a l capacitance i n

Y

a b s e n c e of r e a c t i o n .


20

ORNL-DWG

F i g u r e 4:

68-2248

Equivalent c i r c u i t including reaction.

ORNL-DWG 68-2219

CONSTANT FREQUENCY

F i g u r e 5:

E q u i v a l e n t c i r c u i t f o r f a r a d a i c impedance s t u d i e s .


21

ORNL-DWG 68-2220

APPENDIX I IMPEDANCE BRIDGES

A.

WHEATSTONE BRIDGE, NO

@ DETECTOR

DETECTOR

DETECTOR

C. KELVIN BRIDGE(38)

1 ,+qT

D. THDMSON BRI!d4') ~

1

I

Z = IMPEDANCE OF CONNECTIOYS

CAREY-FOSTER BRI DGE(48)

F. (CELL AND S ARE INTER-

-

CHANGEABLE)

TYPE " BRIDGE( 28129) E. (EMPLOYED BY WINTERHAGER AND WERNER)

Z = IMPEDANCE OF .CONNECTIONS


22

APPENDIX I1 For t h e s a k e of c o m p l e t e n e s s , r e f e r e n c e s t o t h o s e c r y o l i t e s y s t e m s w,,ich c o u l d n o t be c o n s u l t e d

are l i s t e d i n t h i s a p p e n d i x .

n the or-ginal

An i n d i c a t i o n o f t h e i r c o n t e n t ,

t o g e t h e r w i t h t h e s e c o n d a r y s o u r c e , is g i v e n . Batashev, K. and A. Zhurin, M e t a l l u r g , 1 0 , 67 ( 1 9 3 5 ) ;

30, (K

G.,

70189 ( 1 9 3 6 ) . o f KF-AlF,

s y s t e m v s . T)

-

B a t a s h e v , K . P . , L e g k i e M e t a l l y , 1 0 , 48 ( 1 9 3 6 ) ; r e f . 4 . (K

of c r y o l i t e v s . T)

B a t a s h e v , c i t e d by M a s h o v e t s i n The E l e c t r o m e t a l l u r g y o f Aluminum ( R u s s i a n ) , 1 9 3 8 ; r e f . 5 3 .

+ NaF a n d c r y o l i t e + AlF6) Alluminio, 1 9 , 215 ( 1 9 5 0 ) ; C . A . , 44,

(Am o f c r y o l i t e Vayna, A . ,

10,54?d

(1950) and r e f . 4 . (K

o f c r y o l i t e v s . T;

NaF, CaF,, Abramov, G . A . ,

or AlF, M. M.

K

of c r y o l i t e w i t h a d d i t i o n s of

n e a r 1000째C)

V e t y u k o v , I . P. G u p a l o , A . A . K o s t y u k o v ,

and L. N . Lozhkin, " T e o r e t i c h e s k i e osnovy e l e c t r o m e t a l l u r g i i a l y m i n i a , " M e t a l l u r i z d a t , Moscow ( 1 9 5 3 ) ; r e f . 4 . (K

o f c r y o l i t e v s . T)

Ponomarev, V. G . ,

F. M . K o l o m i l s k i i , Yu. M . P u t i l i n , I z v e s t .

Vysshikh. Ucheb., Z a v e d e n i i , T s v e t n a y a M e t . , 78; C.A., (K

Of K2TiF6

Belyaev, A.

53, (K

53, -

1958, No.

6,

1 4 , 6 7 0 i (1959). VS.

T)

-

I . , Tsvetnye M e t a l l y , 3 1 , No. 1 0 , 6 1 ( 1 9 5 8 ) ; C . A . ,

6832i (1959).

of c r y o l i t e w i t h a d d i t i o n s of L i F , NaF, BeF,,

CaF,,

BaF,,

o r AlF,)

MgF,, Y


23

A n t i p i n , L. N . ,

S. F. Vazhenin, and V. K.

D o k l a d y Vysshe!

S h c h e r b a k o v , Nauch.

Met. 1 9 5 8 , 11; C.A., Shkoly, -

55, -

1241f

(1961). (K

r a t i o s of 1 . 6 t o 3 . 9 )

o f NaF/AlF,

A n t i p i n , L . N . a n d S. F. V a z h e n i n , T s v e t n y e M e t a l l y , 3 1 , No.

53,

1 2 , 56 ( 1 9 5 8 ) ; C . A . , (K

7824e ( 1 9 5 9 ) .

o f c r y o l i t e w i t h a d d i t i o n s o f CaF,

Chu, Y . A . a n d A .

o r MgF,)

I . Belyaev, I z v e s t . Vysshikh. Ucheb.,

--

Z a v e d e n i f , T s v e t n a y a Met., 2 , No. 2 , 69 ( 1 9 5 9 ) ; C.A.,>, 24,025i (1960). (K

o f c r y o l i t e a n d c r y o l i t e w i t h a d d i t i o n s o f L i F or BeF,)

Belyaev, A.

I . and E. A.

Zhemchuzhina, T s v e t n y e M e t a l l y , 33,

- 55,

No. 4 , 45 ( 1 9 6 0 ) ; C . A . , (K

of NaF/AlF,

1242a ( 1 9 6 1 ) .

r a t i o o f 2 . 2 t o 2 . 7 8 w i t h a d d i t i o n s of MgF2)

K u v a k i n , M . A . a n d P. S. K u s a k i n , T r u d y I n s t . M e t . , SSSR, Unal. (K

MOSCOW,

(K

2255i (1961).

I . , " E l e k t r o l i t alyuminievykh vann," M e t a l l u r g i z d a t , 1961; r e f . 4.

of cryolite with EkF,

Matiasovsky, K . , 17, -

55,

of c r y o l i t e )

Belyaev, A.

(K

Filial, 5 , 145 (1960); C.A.,

Akad. Nauk.

additions u p to 17 wt. 70 at 1000째C)

S. O r d z o v e n s k y , a n d M . M a l i n o v s k y , Chem. z v e s t i ,

839 ( 1 9 6 3 ) ; r e f . 4 . o f c r y o l i t e v s . T)

Vakhobov, A . V . a n d A .

I . Belyaev, " V i i a m i e r a z l i c h n y k h solevykh

komponentov (dobavok) n a e l e k t r o p r o v o d n o s t e l k t r o l i t a a l y u m i n i e v y k h vann , " i n " F i z i c h e s k a y a khima r a s p l a v l e m y k h

s o l e i , " e d . by The I n s t i t u t e o f G e n e r a l a n d I n o r g a n i c C h e m i s t r y of t h e S o v i e t Academy of S c i e n c e . , M e t a l l u r g i z d a t ,


24

Moscow, 1965, pp. 99-104; ref. 4. (K

of cryolite with additions of LiF, MgF,, CaF,, BaF,,

orAlF, up to 20 wt. 70 at 1000째C)


25

ORNL-TM-2180

Y

INTERNAL DISTRIBUTION 1. 2. 3. 4. 5. 6. 7. 8.

9. 10. 11. 12. 13. 14. 15. 16. '17.

18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31.

32. 33. 34.

R. G. R. L. A. C. S. C. C. H. S. U. C. E. P. F. R'. E. C. C. J. M. R. H. G. J. S. W. G. E. W. L. J. F.

K. A d a m s U. Adamson G. A f f e l G. A l e x a n d e r L. B a c a r e l l a F. B a e s J. B a l l E. Bamberger J. B a r t o n F . Bauman E. B e a l l Ber t o c c i E. B e t t i s S. B e t t i s B. B i e n F. B l a n k e n s h i p E. B l a n c o G. Bohlmann J. Borkowski E . Boyd Braunst e i n A. B r e d i g B. B r i g g s R. Bronstein D. B r u n t o n B r y n e stad Cant o r L. Carter I. Cathers L . Compere H. Cook T. C o r b i n L. Crowley L . C u l l e r , Jr.

35.

J. M.

36.

D. S. B. L. A. J. E. D. L. H. J. E.

37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47*

Dale

G. D a v i s J. D i t t o c. Duggins A . Dunn S . Dworkin R. Engle P. E p l e r E. Ferguson M. Ferris A. Friedman H. F r y e , Jr. L. F u l l e r

48. 49. 50.

51. 52. 53. 54. 55. 56. 57. 58. 59. 60.

61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71. 72. 73. 74. 75. 76. 77. 78. 79. 80. 81.

C. R. L. W. A. R. B.

c.

P. D. J. M. B. H. H. R. T. R. H. H. G. W. P. M. C. H.

s.

H. J.

c. J. R. A. M.

82.

R.

83.

H. R.

84. 85. 86. 87. 88. 89. 90. 91. 92. 93. 94.

G. D.

w.

C. H. H. C. C. L. R.

H. Gabbard B. Gammage 0. G i l p a tr i c k R. G r i m e s G. G r i n d e l l H . Guymon A. Hannaford S. H a r r i l l N. Haubenreich N. Hess R. Hightower R. H i l l F. H i t c h W . Hoffman F. H o l m e s W. Horton L. Hudson F. H y l a n d Inouye W. J e n k i n s H. J e n k s H. J o r d a n R. Kasten T. K e l l e y R . Kennedy T . Kerr S. K i r s l i s W . Kohn W. Krewson E . Lamb A. Lane B. L i n d a u e r P. L i t m a n I. Lundin N . Lyon G. MacPherson E. MacPherson Maman t o v L. Manning L. M a r s h a l l D. M a r t i n E . McCoy F. M c D u f f i e K. McGlothlan J . McHargue E . McNeese E. Mesmer


26

95. 96. 97. 98. 99. 100. 101. 102. 103. 104. 105-119. 120. 121. 122. 123-124. 125. 126. 127. 128. 129.

A . S . Meyer R . L . Moore D. M . M o u l t o n T. R . Mueller J . P. N i c h o l s E . L. N i c h o l s o n L. C . Oakes F. A . Posey J . L. R e d f o r d J . D . Redman G . D. R o b b i n s R. C . Robertson W. C . Robinson K . A . Romberger M. W. Rosen t h a l R . G . Ross H. C . S a v a g e Dunlap S c o t t J . H. S h a f f e r M. J. S k i n n e r

130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145 - 14 6.. 147. 148-150. 151. 152.

G. R. H. R. J. R. L. J. C. A. J. M. J.

P. S m i t h W. S t e l z n e r H. S t o n e A. Strehlow R. Tallackson E . Thoma M. T o t h S . Watson F . Weaver M. Weinberg R . Weir E. Whatley C . White F . L. W h i t i n g J . P. Young Central Research Library Document R e f e r e n c e S e c t i o n L a b o r a t o r y Records D e p t . L a b o r a t o r y R e c o r d s , ORNL ORNL P a t e n t O f f i c e

EXTERNAL DISTRIBUTION 153-154. 155. 156. 157-158. 159. 160-161. 162. 163. 164-178. 179-180. 181.

D. F. Cope, A E C , O R 0 A . Giambusso, AEC, W a s h i n g t o n , D. C . W. J. L a r k i n , AEC, OR0 T. W . M c I n t o s h , A E C , W a s h i n g t o n , D . C . H. M . R o t h , AEC, OR0 M . Shaw, A E C , W a s h i n g t o n , D . C . W . L. S m a l l e y , A E C , O R 0 R . F . Sweek, A E C , W a s h i n g t o n , D . C . D i v i s i o n of T e c h n i c a l I n f o r m a t i o n E x t e n s i o n Reactor D i v i s i o n , O R 0 R e s e a r c h and Development D i v i s i o n , OR0

W


ORNL-TM-2180