Page 42

40

renewablematter 15. 2017 The Abengoa Bioenergy case

©Manuel Estrada, cover for Alianza editorial

Succinity GmbH, www.succinity.com

The Abengoa Bioenergy case has certainly left a shadow line on the sector. At a stone’s throw from bankruptcy, it is decommissioning all its plants across the world and managing to avoid chapter 11 of the US bankruptcy law through serious debt restructuring. At the end of last year, its subsidiary Abengoa Bioenergy Biomass of Kansas was forced to sell its cellulosic plant in Hugoton to Synata Bio for 48.5 million dollars. The sale encompassed the cellulosic ethanol production establishment with a 25-million-gallon-a-year capacity, the co-generation plant and 400 acres of land. The intellectual property contained in the process was, however, excluded along with its license agreements with Abengoa Bioenergy New Technologies. Back in 2011, the U.S. Department of Energy had loaned the company 134 million dollars for the plant’s construction. In August 2016, Green Plains Inc. paid out 237 billion dollars in cash to get its hands on three U.S. Abengoa Bioenergy ethanol plants: in Madison, Illinois; in Mount Vernon, Indiana, and in York, Nebraska, totalling a productive capacity of 236 million gallons a year. That is not all. The same Green Plains also bought the Ravenna plant in Nebraska

Manuel Estrada, based in Madrid, was one of the first interpreters of the Spanish design ola, that after Francoism has become a unique phenomenon in Europe for its quality and range. Over time, this image revolution has involved institutions, companies, products and cultures in a strongly iconic, constant and highly recognizable process. We offer you some examples of Manuel Estrada’s work where the “nature” aspect is both communication and happy wisecrack.

and the Colwich plant in Kansas, while the Portales plant in New Mexico went to Natural Chem Group. In Europe, the Abengoa Bioenergía San Roque S.A. biodiesel production plant sited in Cádiz, southern Spain, was purchased for eight million Euros by Cepsa (Compañía Española de Petróleos S.A.U.), already recipient of 100% of the biodiesel produced using soya, rapeseed and palm oil. Last June, Belgium’s Alcogroup took over the Europoort plant in Rotterdam (The Netherlands). The La Coruña, Salamanca and Cartagena establishments are currently up for sale. In France, the negotiations for the transfer of the Laqc bioethanol plant in the PyrénéesAtlantiques (Nouvelle-Aquitaine) are near conclusion. The potential buyers of the biorefinery, which employs 70 workers and produces 250 million litres a year, are OCEOL, a group of the region’s main agrarian cooperatives and companies, and a European investment fund. Biochemistry, made in Spain In the green chemistry field, the main Spanish biorefinery belongs to Succinity GmbH, the joint-venture created in August 2013 by Dutch company Corbion Purac, world leader in lactic acid and derivative production, and German chemistry giant BASF. Its plant, located at the Corbion Purac site, in Montmeló, Catalonia, produces biobased succinic acid for the global market on a commercial scale and has an annual capacity of 10,000 tonnes. “We have analysed the life cycle – refers the company with headquarters in Düsseldorf, Germany – and proven how the carbon footprint of ‘Succinity’ biobased succinic acid is over 60% lower than that of fossil-based succinic acid.” In 2004, the U.S. Department of Energy included succinic acid in its list of the twelve best chemical intermediates obtainable from biomass. There is, thus, no lack of competition in terms of industrial players: from BioAmber in Canada (Sarnia), supported by Mitsui and Lanxess, to Reverdia, DSM and Roquette’s joint-venture, in Italy (Cassano Spinola). Its applications are numerous: as raw material for bioplastics, upholstery, adhesives, sealants and personal hygiene products. Furthermore, bio-succinic acid is also used for foodstuffs and flavourings as an acidifying agent and preservative with raw plant-based materials. The “Succinity” industrial process is based on raw renewable materials, which, thanks to proprietary microorganism Basfia succiniciproducens, are flexibly used in an efficient closed-cycle process which generates no particular waste streams.

Renewable Matter #15  

Renewable Matter is the International Magazine focused on the changing relationship between Economy, Society and the Environment. It focuses...

Renewable Matter #15  

Renewable Matter is the International Magazine focused on the changing relationship between Economy, Society and the Environment. It focuses...