Issuu on Google+

D端nser OPHELIAMUSIK III f端r Kammerorchester Full score

EP 12774


RICHARD DÜNSER

Opheliamusik III für Kammerorchester

EIGENTUM DES VERLEGERS · ALLE RECHTE VORBEHALTEN ALL RIGHTS RESERVED

HENRY LITOLFF’S VERLAG / C. F. PETERS FRANKFURT/M. · LEIPZIG · LONDON · NEW YORK


RICHARD DÜNSER Opheliamusik III FÜR KAMMERORCHESTER

BESETZUNG: 2 Flöten Oboe Englischhorn Klarinette in B Bassetthorn 2 Fagotte 1. Horn in F 2. Horn in F oder Posaune Harfe Percussion: (2 Spieler; Instrumente: Pauken, Gongs E, G, Gis, H, c, f, g, b, h; Vibrafon) 2 Violinen Bratsche Violoncello Kontrabass (Fünfsaiter)

Die Partitur ist in C notiert, der Kontrabass oktavtransponierend. Vorzeichen gelten im Prinzip für einen Takt.


Opheliamusik III Richard Dünser

Rubato e liberamente, quasi senza misura, q = ca 90

  

Oboe

 

Englischhorn

 

Clarinette in B

 

Flöte 1/2

   

Solo

Bassetthorn

Fagott 1

Fagott 2

1. Horn in F

Posaune (oder 2. Horn)

Harfe

Pauken

          

   

   

p espr.

 

 

 

 

 

 

 

 

 

 

 

 





Violine 2

Viola

Violoncello

Kontrabass

Litolff / Peters

 

 

 

 

 

 

 

 (Solo)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rubato e liberamente, quasi senza misura, q = ca 90

Violine 1

 

q = ca 100

  

 

 

 

 

 

  

  

  

 

 

 

 

 

  33226

   

p espr.

p espr.

p espr.

p espr.

    

p espr.

     

 

q = ca 100

© 2011 by Henry Litolff´s Verlag 6/11


2

 

Ob.

 

 

 

            

 

 

 

Eh.

 

 

Cl. (B)

 

 

12

Fl.1/2

 

Bhn.

 



 

q = ca 110

            

 

            

 

            

 

             

(Solo)



Fg. 1

 

 

 

            

Fg. 2

 

 

 

            

 

 

 

            

 

 

 

            

 

 

 

            

 

 

 

            

 

 

 

            

 

 

 

 

 

   

 

 

 

 

 

 

   

 

 

1.Hn.

Pos.

  

Hfe.

Pk.

Vl. 1

 

 

Vl. 2

Vla.

Vc.

Kb.

Litolff / Peters

 

   

  33226

  

 

  

 

  

 

 

  

  

  

    



  

 

 

        

       

q = ca 110


3

 

             

 

 

 

Ob.

             

 

 

 

Eh.

             

 

 

 

Cl. (B)

             

 

 

 

  

 

 

 

 

 

 

24

Fl.1/2

 

Bhn.











mf

  

  

  

p

Fg. 1

             

Fg. 2

             

 

 

 

             

 

 

 

             

 

 

 

             

 

 

 

             

 

 

 

             

 

               

 

 

   

 

 

 

 

 

 

1.Hn.

Pos.

  

Hfe.

Pk.

Vl. 1

 

  

                

               

Vc.

             

Kb.

             

Vl. 2

Vla.

Litolff / Peters

33226

   

 

 


A

4

   

 

  

 

  

 

 

 

Bhn.

 

 

Fg. 1

 

 

Fg. 2

 

 

 

 

 

Fl.1/2

Ob.

Eh.

Cl. (B)

1.Hn.

Pos.

    

Vl. 1

 

Vc.

Kb.

 

 

 

                   ff                       ff                      ff

        ff                 ff                 

   

 

 



 

 



 



 

  



 

  



Litolff / Peters

 

ff

ff

    ff          ff         ff         



Vla.

 

1.2.

 

 

Vl. 2

 

   

Hfe.

Pk.

                                 in tempo, q = 100

36

  

                     ff A q = 100 in tempo,         ff           

                                 

                                                                                 

  



                                   

                        

       

         

            

                                        ff                                    

    ff           

ff

      

ff

33226

                   

        




  43

Fl.1/2

Ob.

Eh.

Cl. (B)

Fg. 1

1.Hn.

Pos.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

       

       

 

 

           

 

      

 

             

 

  

  

   

            

                 

            

           

        

Litolff / Peters

ff

ff

      

      ff          ff

       ff

      

ff

 

 

ff

 fp 



fp

  fp  

 

fp

fp 33226

        ff         

                        pp

ff

  Solo

ff

   

5

q = 80

1.2.



Pk.

   

 

       

 Hfe.

      

      

Bhn.

Fg. 2

     

         f

 

   ff

    ff q        = 80 ff

          ff               ff

ff

       ff

5

      


6

Fl.1/2

46        3

Eh.

Cl. (B)

Bhn.

Fg. 2

1.Hn.

Pos.

Pk.

Vl. 1

                      3              5               

     

5

3

5

              3                3                  

3

3 3

3

                            3

Vla.

Vc.

Kb.

3

3 3             3                     3

   

  

3

                      

3

3



   

 

     3

Vl. 2

3

Hfe.

q = ca 110

     

      

3

Fg. 1

  

3

Ob.

  

B

3

           3          3      

          

Litolff / Peters

3

 

     

B 3 3                 3 3                3 3 3              

              3

3

 33226

q = ca 110

  

                             


   49

Fl.1/2

 

Ob.

 

Eh.

Cl. (B)

  

Bhn.

1.Hn.

Pos.

           

Hfe.

Pk.

Vl. 1

        

                        

   

 

 

         

 

 

 

   

 

 

   

 

 

    

                           

                           

 

 

 

 

 

 

 

 

 

                

                            

   

                

      



    

Litolff / Peters

                                                                                                           

        

  

  

       

  

  

 

  

    



  

 

 

Vc.

           

    

 

Vla.

 

7

                           

 

Vl. 2

Kb.

                                             

       

Fg. 1

Fg. 2

                             1.2.

    

                        

    

                           

33226


8

q = 105

  

 

                    

  

 

                    

1.2.

52

Fl.1/2

Ob.

Eh.

  

Cl. (B)

  

Bhn.

  

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

q = ca 110

 

3

3

                                                      5 3 5                           

5

5

5

5

             

                    

   

      

      

                  

            

 

           

                       

 

 

 

 

 

 

   

  

   

   

  

  

 

  

q = 105



 

q = ca 110

                          3

5

           5

                                  

Litolff / Peters

  

           3            3                 5

 33226

                         

  

    

      

                


   

Ob.

Eh.

     

           

    

    

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

         

  

  

  

  

  

9

1.2.

 

54

Fl.1/2

      

      

                       

                   

                                                                                           

         

 

   

         

 

    



               

 

                 

  

 

 

 

 

 

 

 

 

 

 

   

                    

                    

  

  

  

  

                                                                            

            

Litolff / Peters

33226

                                            

   



         


10

Fl.1/2

Ob.

Eh.

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

57       

   

                                                                         

q = ca 120

 

  

  

     

     

   

  

    



  

 

   

           

      

                                                    

      

f

 fp



fp

 

 

 

 

 

 

 

 





   

    

   

                                  

Litolff / Peters

   

 

     

q = ca 120

 

  





         f       

            

                            f                                  3 3 3 3 f

33226


1.2.

  60

Fl.1/2

Ob.

Eh.

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Vl. 1

       3  3         

f



f

         

3

3

3

      3

f

           3

3

3

3

       

3

 3 3           

 p

 p



3

p

 

 

           

         f             

Vla.

Vc.

f

3

3

3     

        

f

3

3

3



  

 

3

3

                

f

Vl. 2

Kb.

 

Hfe.

Pk.

            f      

Cl. (B)

11

C  3                  

 p

 p

C     3  3                              3 3 3   3 3 3 3 3 3 3 3                                    3   3 3 3 3 3      3                          3 3 3

3

3

3

3

3

3

3

3

3

                                    3

3

3

3

                                    

Litolff / Peters

3

3

3

3

3

3 33226

3

3

3

3

3

3


12

  63

Fl.1/2

    3

3

    

Ob.

3

Eh.

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

3



p

    3



Kb.

    3



f



3

f

f

    

f

f

 

    

 

   

 

 

                        

             

f

  

 

    

 

 

 

 

 

 

 

 

                   

3

3

3



3

Vc.

3

3

 

  

q = ca 110

  3

   

3

3

Vla.



3



3

Vl. 2



   

3

    3

3



3

 

3

3

            

q = ca 110

  

 

Litolff / Peters

3

3

3

33226





3 3 3 3             ���                                                3

                           

 



 

 


Ob.

Eh.

Cl. (B)

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

13

 

 

                          

ff

ff

                        fp                                        ff

Bhn.

      

   65

Fl.1/2

              1.2.

                     fp      

           fp

     

     

 

 

 

 

        f                 ff

      ff      

              ff                             ff                       

ff

Litolff / Peters

33226

f

 

 

   

  

 



f

 

 

   

fp

 



  

f

   

 

     

   

                             

   

  

fp

 

   

     f                

  



   

p

fp

 



 

   

f

f

     

          

                                   

     

                                            


14

  

 

1.2.

68

Fl.1/2

Ob.

Eh.

 

Bhn.

 

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

ff

                 

         ff

                 

                      f ff                                 f  ff                   

  

Cl. (B)

     

q = 100

                                               

    

   ff   ff



         

  ff

ff

 

 

   

   f

  

               f ff                             f ff                           f ff                                          ff f                                   ff f

Litolff / Peters

33226

    

     



ff

   

  

        

 

   

  

      

q = 100

                                                                                                      


15

D

  71

Fl.1/2

q = 80

 

Ob.

Eh.

 

Bhn.

1.Hn.

Pos.

Hfe.

Vl. 1

     

ff

  

ffp

  

Litolff / Peters

ffp

p espr

  

  

    

p espr

  

    



    

p espr 33226

   

mf espr.

          mf espr. q = 80

q = 75

3

3           



p espr

   

rall.



3



    

p espr

  

 

  



ffp

Kb.

mf

p espr

Vc.

   D  q = 80  

Vla.

p espr

    

Vl. 2

3          

 

           

            

 Pk.

 

q = 80

mf espr. e molto legato

Fg. 1

Fg. 2

Cl. (B)

rall.

q = 75

  

 



    3



mf espr.

 3

     

mf espr.

 

mf espr.


16

  76

Fl.1/2

Ob.

q = 75

q = 80

  mf espr.

q= 75

    

 

  

q = 80

p espr

Eh.

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

 

  

Hfe.

Pk.

Vl. 1

 

  





q = 75



Vl. 2

Vla.

 

     

Litolff / Peters





   

  

    

p espr

 

q= 75

3

p espr

  



p espr



q = 80

   

3

          mf

3

          mf                      3 mf            mf

 33226



mf

    





    p espr

 

p espr

q = 80

Kb.

   

Vc.



mf

3

3


17

 

Ob.

Eh.

80

Fl.1/2

q = 70

                                     3                        3

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Vl. 1

3

5

3





3

    

        

mf

mf

 

3 5                                

q = 70

3

Vla.

 

Vc.

Litolff / Peters

3

    



 

q = 80

                                     3                       

3

 

Vl. 2

Kb.

mf



Hfe.

Pk.

q = 80

5

   3

5

 

 33226



 



       3






18

  

1.2.

     

82

Fl.1/2

f

Eh.

f



 

 

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

f

 



Vc.

Kb.

      

f

  

  ff   ff

5

5

5

 

   

f

5

ff

 

3

5

3

5

             f

 

 

                f

   

 ff  



5

f

     

             

 

    

    

            

    

   

ff

E     

     

   

5

5

   

ff

 

5

ff

     

ff

33226

  

                f  5 5 ff 3                           f 5 ff                  

Litolff / Peters

      

ff

  

ff

 

5

Vla.

ff

5

                       5 f 5 ff 5                     

 

 

             

3

Bhn.

ff

5

f

 

Cl. (B)

5

5 5

5



  

          

 

Ob.

 

E 

               

5

        


19

84          3

1.2.

Fl.1/2

3

        

Ob.

Eh.

         3

3

5

  



  

 

    

f

5

                          

Cl. (B)

Bhn.

3

Fg. 1

Fg. 2

Pos.

Vl. 1

Vl. 2

Vla.

Vc.

             

3

5

  

f

    

 

3

5

            

            3

          3

        

Litolff / Peters

3 5              

5

   5

   f    f     f

          f    

mf

3



   

  

   

  

mf

     mf

 

mf



mf

       mf

f 33226

    

3



3

3

3

3

Kb.

mf



Pk.

f

mf

                          mf f              

 Hfe.

mf

      mf f      

3

3

1.Hn.

      

mf

 

 

 

 

      

 


1.

  



 



 



88

Ob.

Eh.

espr.

espr.



 

Cl. (B)

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Kb.

  





 



 

 

   

  

  

Litolff / Peters



  

 





 



  

 

espr.



espr.  

   

espr.



  

 

  

 

 

espr.



   

      

 

 

espr.





33226

 

              

q = 70

rall.

   



    



    

                



   

 

 

 

 



 

 

espr.

 

 

 

espr.



q = 70

 

espr.

3



rall.

weich    

 

Vc.

  

 

 

Vla.

 

      

Vl. 2



  

   

3

Fg. 1

espr.

    

Bhn.

 

   



espr.

 



Fl.1/2





20

  


21

 

Ob.

Eh.

 

Cl. (B)

Bhn.

1.Hn.

Pos.

  

mf

 

 

 Pk.

Vl. 1

 

     

Vla.

Kb.

Litolff / Peters

  

 

  

  

  

  

  

  

p espr.

p

 



p

 

  

 

  

  

 





p



 





q = ca 60



p

 



   

   

Vc.

     

      

Vl. 2



    

Hfe.

 

 

Fg. 1

Fg. 2





Fl.1/2

q = ca 60

   Flag. (suono reale)

 

 



93

 

 

p espr.

  

    Flag.(e3)             

             

     



 



33226

p espr.

   

p espr.

p espr.

p espr.

liberamente

  

 

    p espr.           


22

F

 

 

Ob.

Eh.

99

Fl.1/2

Cl. (B)

Bhn.

 

 

 

 

p espr.

1.Hn.

q = 60

   

 

p espr.

Pos.

    p espr.

   

Hfe.

Pk.

Vl. 1

 

 

Vl. 2

Vla.

Vc.

Kb.

ff

 



p espr.



p espr.

 

q = 60











mf

p espr.

 q = 70



5

 

p espr.

 





p espr.

   

p espr.

 

 

 

 

  

mf espr.

 

 

mf espr.

q = ca 65



p espr.











p espr.

p espr.

 p espr.

q = ca 75









 

molto legato

 

mf espr. molto legato

 

mf espr.

33226

 

F 

p

 

Litolff / Peters

q = ca 75



    liberamente                  

 

 1.

q = ca 65

p espr.

   

Fg. 1

Fg. 2

q = 70


23

  107

 

Ob.

Eh.

Cl. (B)

  

Bhn.

 

Fg. 2

1.Hn.

 

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Kb.





  

  



    



   mf espr.   

3



 



  

            3

3

    

f

    

  

 

3

 

     p



p

 p

       p

mf

mf

p

mf

   



p

       

 mf

 

 





q = ca 80

 

   

molto legato

  

   

Litolff / Peters

f

mf

mf

   

    

 p    

      

3

f

   

mf

3

 

mf

   

   

     f

    



3

f

3

3

    

mf espr.

   

f



p

3

 

     



 

molto legato





mf espr. molto legato









         

                            3

   

    

3

3

  

3

     3

     f

33226

   

f

f

mf

3

f

mf espr.

3

   

3

mf

 

q = ca 60









p

p





   



mf

mf

    mf

 

 

   

q = 65

3

f

   

   

    

q = ca 60

p

3

f

 

  

    



3

f

mf espr.



  

f

mf espr.



3

mf espr.

Vc.



          

mf espr.

 



    

1.2.

3

  

  

mf espr. Fg. 1



q = 65



Fl.1/2

q = ca 80

p

p

 p

         


24

  115

Fl.1/2

Eh.

  

Cl. (B)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ob.

 

G    

q = 60

q = 65

  

     

Fg. 1

 

 

 

 

 

Fg. 2

 

 

 

 

 

 

 

 

 

   

Bhn.

1.Hn.



Pos.

 

 

 

 

 

 

 

 

Hfe.

Vl. 1

 

  

Vl. 2

Vla.

Vc.

Kb.

Litolff / Peters

 

 

    

 

q = 60

 

 

 

 

 

 

 

 

 

 

3

 

 

q = 65

   

p espr.

    p espr.    

      ff

       ff      ff

ff

G  

   

p espr.

p espr.

   

p espr.

       

 

  

  

      ff q = ca 100

        

     

 

        

ff

     ff      

     ff       ff

  q = ca 100   

q = 80

 3       3  ff 3     3           3 

ff 33226

 

q = ca 100

q = 80

 3               3 33 ff     3              3  3 ff     3           3 ff 3             ff 3 3                  3 ff       



Pk.

          p espr.

     q = ca 100 1.2.

3

 

    

 

 


Fl.1/2

Ob.

            120                               3 3 3 3                                       3 3 3 3

Cl. (B)

Bhn.

1.Hn.

Pos.

Vl. 1

                   3 3 3                          3 3 3       

                            

    

 

  

Vl. 2

Vla.

Vc.

Kb.

          

Hfe.

Pk.

3                     

Fg. 1

Fg. 2

                          

Eh.

Litolff / Peters

     

                         

3

                  

         3 3 3                        3 3 3              3 3 3                       3 3 3          

3                     3

          3          

 

 

3

3

           

 

     

  3       3 

 

         3

3

  3        3

 

                                       3                    3                      3  3              

3 3 3 3                                    33226

3

3                  

                  

25

    

 

 

 

   


26

  

 

123

Fl.1/2

Ob.

Eh.

 

Cl. (B)

 

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

  

 

     

  

      

Hfe.

Pk.

Vl. 1

Vl. 2

 

   

  pizz.      pizz.      

Vla.

   

Vc.

     

pizz.

pizz.

     pizz.

Kb.

Litolff / Peters

 



q = ca 120

   

              

     

1.2.

    

       

                               

 3

  

1.2.



 ff



  ff

    3

3

            ff f 3                         ���      3

  

 

 

    

3

3

3

f



f

f

           

             3

3

f

  

ff

  

  ff  ff

   ff        



ff

 

      q = ca 120 arco         arco        arco              3 arco          arco       

  

ff

ff

                     

 

 

3

f

 f

 

f

33226

 



 

3



    ff  

  

ff

3

            

 

ff



ff





ff

   ff




27

  

127 q = 90

Fl.1/2

Eh.

 

Cl. (B)

 

Bhn.

 

1.Hn.

Pos.

   



 

      

Vla.

 

Vc.

 

Litolff / Peters

q = 120



      

      



 





 

 



 3

 p

 p p

5

3

              p

mf

 q = 90



p



p



p

         

33226

p

           

p

 

3

 

ff

q = 90

3

   

  

                    

Vl. 2

Kb.

 

  

     3    

p

Hfe.

Vl. 1

   

  

Pk.



 

 

  

          

 

q = 90

 

          

 

Fg. 1



             

 

Ob.

Fg. 2

1.2.

q = 120

p

p

   


28

H

   f 130

Fl.1/2

  

q = ca 120 1.2.

   

  

Ob.

f

Eh.

    

 f

  

Cl. (B)

f

 f   

Fg. 1

Fg. 2

1.Hn.

Pos.

f

 

  

 

f

    



    

Hfe.



 



 

 

        

 

Vl. 1

Vl. 2

Vla.

Vc.

 

Kb.

f

 

Litolff / Peters

        

   

  



  



 

  





3

  



3

3 3                          

3

   

3

3

3 3            3

 

        3

f

Pk.

3

     

       H q = ca 120           f         f        f 3              

   3

                

 f f



        3

Bhn.

1.2.

3  

3

 

 

 

 

       3

   

 

    

 

  



3

f 33226

3

  



 

3

  



 

            3

  



 

 

               3

3

3

3




Fl.1/2

134    

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

 

Vla.

Vc.

Kb.

mf

         

mf

 f

f

    

mf

 

            mf      

 

 

f

  f   f

 

  

 

                   f mf 3 5                                  mf f         3 3                            mf f 3  3    3                 mf f 3 3                     3



  

3

  

 

            

                   

       5          3 3            3 3 5     

Litolff / Peters

3

q = 110

q = 100

        

         

3

  

3

mf

mf

      mf 3

           

3

mf

 33226

 f

 f

  f

 3        

         

 

 

 

 

3

3

      

 

  

3       

3

Vl. 2

       

3

3

Vl. 1

1.2.

q = 100

3

  

Ob.

Eh.

29 q = 110

      

 

 

  

 

   

  

          f 3                 3


30

                  q = 105

q = 110

q = 115

  

137

Fl.1/2

                   

ff

mf

Ob.

mf

Eh.

 

Cl. (B)

 

Bhn.

 

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

mf

ff

3

3

5

ff

  ff

q = 115

   ff

q = ca 100 3

  

 

  

 

        

                               ff mf 3 5                                                          ff  mf                                                  ff mf 3           3        5                      3 3 3 ff 3 5 mf     3                                          3 3 3              

    

mf

Litolff / Peters

ff

33226

3

5

5

   

ff

 

   

                  

 

 

q = 110

ff

ff

q = 105

5

3

 

 

3

 

                   

  

5

 

                     ff mf                           3 5 ff mf                                   3 5 ff mf             

  

3

   

 

Fg. 1

            

q = ca 100

 

                     


31

I 140   

 

Eh.

 

Cl. (B)

 

 

 

  

  

 

 

Fl.1/2

Ob.

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.



3

f

        f

        f



  

f

 

 

 

 

 

mf

3

mf

   

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  

3

         f

 

  

  

 

 

               

f

     I           

Litolff / Peters

 

f

  

 

q = ca 90

      

3

 

      3

                 3      3

3



   

           3



     pizz.

3

33226

 

 

  

arco



 

mf

mfp



mf



mf

  

   

q = ca 90





mf

   

 

 

mf

     

       

 


32

   147

Fl.1/2

Ob.

Eh.

Cl. (B)

Bhn.

q = 110

 

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

ff



 

 

   

mf

ff

   

3

     

       

ff

 

             ff 5        ff   ff

    ff   

5

 



 

  

 

   

  

f

  

 



1.2.

   

ff



        



3

Fg. 1

 

1.2.









f



 

 f

          



   

f

 

f

  f 3

  f 3

    

3

    

3

ff

    

  

  

   



         



5

         5

 

 

 

 

 

 

 

   

  

q = 110

  

  

 ff

      ff  3               ff                    ff     

  

Litolff / Peters



mf

 

3

ff

5



 

 

f



    



 

    



 

   

          

3

f 3

            

 3

f 3 33226



 

   

     

 

   

        

               5

5


Fl.1/2

Ob.

Eh.

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

J 152    



  



   

3

   



3

ff

ff







 3

 ff

 ff

7

   

    

       

ff



ff



ff

3



  

 

    J    

Vla.

  



ff

 ff

 

Vl. 2

Kb.

3

           

  

Vc.





 3



3



 3

 ff



ff



             

Litolff / Peters

ff

1.2.

  f

 

   f

 

 f  

 

f

 

     



    

   

   f

 

   

  f

 

  f

 

 

 

f



p

q = 90

f

  f  

 

f

 

 f

 



ff

f

33226



f

 

 

 

          

q = ca 110

 

33

       3        

f

 

 

ff

7

 



q = ca 110

              

 

q = 90

 

  3

             3        3


34

q = 90

  155

Fl.1/2

 

Cl. (B)

 

Fg. 2

1.Hn.

Pos.

 

ff

 

 

ff

ff

ff

ff

3

 

     

 

     

       

3

p

    

Vl. 2

 

Vla.

 

Vc.

 

Litolff / Peters

3

3

  

  

 

  

    

   

     

            

  



  

 

  



  

     

ff

 

          ff 3          

    pizz.

3

       pizz.

          ff           ff            3

3

        

q = 110

33226

  

ff

ff



 

ff

   

 

               

 

3

3

q = 90

Kb.

3

ff



                    

 

Hfe.

Vl. 1



ff

 

Pk.

 

  

   

Fg. 1

   ff

ff

Eh.

Bhn.

1.2.

Ob.

q = 110

3

  

           arco  pizz.       

                       


    158

Fl.1/2

   

Ob.

      

Eh.

Cl. (B)

 

  

                    

35

                                                                                 3                

      

Fg. 1

 

Fg. 2

       

Bhn.

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

      

       

       

 

 

        

     

  



    

 

   

  

     

     

  

   

  

3

3

 

3

  

 

                arco

                                                                  

     

       

         

Litolff / Peters

            

     

  

arco

 33226

     

  

3



  

3


36

 

Fl.1/2

Ob.

Bhn.

Fg. 1

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

     

                   

f

f

    

                         f                                     f p                                   

Cl. (B)

1.Hn.

   

Eh.

Fg. 2

                 

1.2.

160

f

p

 p

  

3

    

f

   

f



  

3

     

f

  

  

 

    

f

 

 

                   

f

    

           5                      

f

                       3

 

                                        f                                f                                                     p f 3         3 6 6                                f 5 p                              

p 3

Litolff / Peters

3

3

3

f

3

6

33226

6

3


Fl.1/2

    163       

Ob.

ff

Cl. (B)

ff

Bhn.

Fg. 1

1.Hn.

Pos.

3

    ff   

Eh.

Fg. 2

3

     ff

3

3

ff

Vl. 1

 

    ff    

      3

3

Vla.

Vc.

 

  

 3         

   

         mf

3

    mf

3



            3

Litolff / Peters

p

3

3

f

    f

     

f



    f

 

 

 

   

      ff

 

 

 

     

 f  

 

3  3       

 



 

f

3

3

      f   

         

          ff                

p

    

  

3

3

3



3

3

mf

ff

   ff   3   

ff

Kb.



ff

 

ff

Vl. 2

     

 

Pk.

  

1.

p 3   3           3                      3 ff p        3

ff

Hfe.

   

37

K

 

 

                       3 3  f p 3 3 3 3                        p f 3      3                           3 p 3 f      3 3 3 3                        

K

f

3

3

p

f

               p 3

3

3

33226

3

f

         

         3

3


38

    1.2.

166

Fl.1/2

  3

p

            3

3

Eh.

Cl. (B)

Bhn.

Fg. 1

f

3

f

 

 f 3 3                 



p

3

3

p

f

Hfe.

Pk.

          f

   

Vl. 1

Vl. 2

p

 

 p



  3

 

3

   3

  3

3

    

    3

3

3

 f

    3 3

 f   f

3

 3

   3



   

3

  

  

3

3

   3

              3

 





 3

 3



 

 3

    

                                               p f                                      3 3 3 3 3

Kb.

    



 

        

p

Vc.



f

3

p

Vla.

f

 

  

  

   

   

 

f

    

 

3



  

 

 

 

p

Pos.



f

p

1.Hn.



p

Fg. 2

 

 3               p 3 3

Ob.

3



p

Litolff / Peters

3

3

3

f

33226


  168

Fl.1/2

Ob.

Eh.

Cl. (B)

Bhn.

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

    

  

Fg. 1

Fg. 2

 

 



   f

 

       

3

3

3

3

3

ff

3

3

3

3

3

3

3

3

3

3

3

   ff   

          3

3

ff

ff

3

                                  3

3

3

          3

  

3

 

           3

3

3

     

   

                                  3

 3 3 3 3 3                                ff              

 

3

   

ff

  

    

                       3          3           

Litolff / Peters

39

                     ff

                      3 3 ff 3             ff 3                    ff 3                  

 

 

 

             

   

                  

1.2.

          3

3

ff

         3 3 3 3                          

  

    

3

3

3

3

                            3

3

3

3

3

ff

                            3

ff

 

3

3

3

 

 

  

 

 

 

  

 

ff

ff

33226

3

                   


40

Fl.1/2

Ob.

Eh.

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

  172

                                                       mf f                     

    

 

 

 



     

   

 

f

mf

                          

 

       

  

                                                          f                                      f mf            

Litolff / Peters

33226


41

 

174 rall.

Fl.1/2

q = 110

q = 100

L q = 95   

Ob.

 

Eh.

 

Cl. (B)

Bhn.

1.Hn.

Pos.

Hfe.

Gong

Vibr.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb.

wiegend

 

       

 

 

 

 

 

 

 

 

 

    q = 95 L wiegend        p  wiegend       p wiegend        p

Fg. 1

Fg. 2

             mf mfp    

     

 

  

rall.

q = 110

p

q = 100

                    wiegend p         

wiegend

p

Litolff / Peters

33226

                    

p

     

 

 


42

  178

Ob.

Eh.

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.



Pos.

Fl.1/2

 Hfe.

Gong

Vibr.

Pk.

Vl. 1

         



 



mf

mf

 

 

 3

  

3   3         

   

p

p

         p    3

 

Vla.

Vc.

Litolff / Peters

   

 

   

         

 

 

Vl. 2

Kb.

 



      p



 

 

 



 

 

 

 

 

 

 

p

p

 p

 

p

 

 

33226

    




M

  184

Ob.

Eh.

Cl. (B)

Bhn.

Fg. 1

Fl.1/2

Fg. 2



Pos.

Hfe.

Gong

Vibr.

Pk.

Vl. 1

     

p

   

   

Vla.

Vc.

Litolff / Peters

p

f

     

 

 



mf

       

mf

f

 3           p    M q = 85 q = 80 q = 70 q = 95      mf      mf      mf      



mf

 



              

 

  3       3

Vl. 2

Kb.

 

q = 70 q = 95

 

mf

   

  

q = 80

1.Hn.

q = 85

43







 

  









     p





 33226



p



 

  p

mf

mf

  

mf

    p



mf




44

 

Fl.1/2

Ob.

 

Eh.



  

  

      





  

  





  

  





  

  

ff

  

ff



p

Cl. (B)



1.2.

192

ff

   

N

      

     

                   

Fg. 2

1.Hn.



p

  

 

Hfe.

Pk.

Vl. 1

   f

  f

 

Vla.

Vc.

Kb.

f

Litolff / Peters

f

pp

 



p espr.mf espr.

  

  

     

 





  

  

      

 

 

     

     

        

 

ff

 

ff

     

     

 

  

  

  







  

  





  

  

ff



  

   

      



ff

  



ff

                

     





 

 



 

 

 

ff

 f

  

                  

 

 

ff

  

ff

Vl. 2



p

ff

p

Pos.

      

 

  

ff 33226

mf



Fg. 1

ff

 

ff

Bhn.

 

                    

 

N

  pp

 pp  

pp

    

 

 

pp

pp


45

200

Fl.1/2

Ob.

Fg. 1

1.Hn.

Pos.

 

 Hfe.

Gong

Vibr.

Pk.

Vl. 1

 

  

  

Vl. 2

Vla.

Vc.

Kb.

 

          

Bhn.

Fg. 2

 

3

   

 

 

Litolff / Peters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p espr.

pp

 

   

solo

Flag. (h2)

      

solo pp Flag. (suono reale)

     

 

p espr.

 

  p espr.  

     pp            

 

 

 

 

 

 

 

 

 

 

 

 

pp

 

 

p

 

 

 

p espr.

 

 

 

 

 

 

 

 

 

Cl. (B)

 

 

Eh.

 

q = ca 85

pp

  p espr.   p espr.

   

    p espr.     

tutti

 

 

      p espr. f espr    

  p espr.  

p espr.

 

p espr.

 

O

p espr.

tutti

 p

 

 

33226

 



 

O

3

3

 p  

 

  

 

   

q = ca 85

 

 

 

 

 

 


46

 

 

 

 

 

 

 

 

 

 

 

 

 

 

208 q = ca 95

Fl.1/2

Ob.

  

Eh.

Cl. (B)

Bhn.

  

 

  

 

  

 

p espr.

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

 

 

 

 

 

 

 

Vla.

Vc.

 

 

 

 

Litolff / Peters

 

 

 

 

 

 





       





p espr.

  

 

3       

 

 

 

 

 

 

 

 

 

 

 

 

 

         

 

 

 

     

 

 

 

 

p espr.

 

p espr.

 

 

   

 

P

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

33226

 

 

  3

 

 

 

 

 

 

 

 

 

q = ca 95

 

             

 

 

 

 

 

 

 

 

 

 

 

 

q = 90

          

 

    

 

Vl. 2

Kb.

 

P

molto legato q = 90

 

 





 





molto legato

 

molto legato



 



 

3

  

molto legato

    3

   

molto legato

  

3


Fl.1/2

  218

Ob.

  

Eh.

 

Fg. 1

Pos.

Vl. 1

 3

    



 



f

ff





3

3

 f   

 



 



f

3

3

  f

3

f

3

3

3

3

Litolff / Peters





3

f

   

3

 ff

   

   

f 3

 ff

ff

f

3

3





 

f

3

f

 3

     3

f 33226

f

ff

3

3

3

f



ff

f

 



 



3

3

ff

 

             f ff f 3            



f

 

3



mf

3

f

ff

 



3

 

f

f





3

 



mf

3



3

           

   

ff



 

f

ff

    

3

f







          3

f

ff

f

    

p espr.

         3           



 

ff

  

Vc.



   

Vla.



p espr.



f

3

p espr.

 

Vl. 2

Kb.



3

f



 

3

3



 

Hfe.

Pk.

   

3

mf

         

Bhn.

1.Hn.



   

  

Cl. (B)

Fg. 2

47

              3

    3

   3


48

 

q = 95

225

Fl.1/2

 

Ob.

Cl. (B)

1.2.

q = 100





Bhn.

 

Fg. 1

   

     



f

     3

Fg. 2

1.Hn.

Pos.

 

Vl. 1

   

3

3

 

q = 95



q = 100

 



3

Vc.

Litolff / Peters







 



  





     3

 

              3

3

3

3

        3

    ff

 

  

 

3

ff

q =105

      3

ff

      3

ff

3





3

ff

           ff 3 3 3  3                

q = ca 110

      ff         

Q

ff

     3

 

Vla.

Kb.

 

Vl. 2

3

 

Hfe.

Pk.

ff

    ff  3       ff        3

3

q =105

3

ff

f

Eh.

 

Q

q = ca 110

 





   

  

 

ff

            

ff

        3

     3

33226

3

3

3

3

3

 3   


Fl.1/2

Ob.

Eh.

Cl. (B)

Bhn.

  

 

   

   

 

        

      

229     

   3

Fg. 1

Fg. 2

1.Hn.

Pos.

Hfe.

Pk.

Vl. 1

Vl. 2

Vla.

   

             



  

  

  

f

f

3   3             

3                                   

f

3

p

mf

 

p

 

p

mf

      

   f

 

  

  

  

f

    

mf

p

p

          

mf

f

    

p

3

mf

          

mf

  

     

  

f

3

p

mf

  

1.2.      

mf

f

             

1.2.

49 q = 90

p

 

 

 

 

 

            

  

 

  

f

   

         

 

   

     

     

 

q = ca 95

    f

     

Litolff / Peters

3

3

       3

q = 90

 

 

 

mf





 

 

 

        p 3 mf pizz.         3    mf

33226

 

  p

mf

f

p

3         

f

  p



mf

                   3

Kb.

  

f

     

  

3

Vc.

     



  

q = ca 95

3

p

 


50

  234

q = ca 80

 

R  

Ob.

 

Eh.

 

Cl. (B)

 

Fl.1/2

   

Bhn.

q = ca 90

 

 

   

mf espr.

p

q = ca 60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fg. 1

 

 

 

 

 

 

Fg. 2

 

 

 

 

 

 

 

 

 

 

 

 

1.Hn.

Pos.

 

Hfe.

 

 

 

  

p espr.



    

Pk.

Vl. 1

 

 

q = ca 80

   

Vl. 2

 

  

Vla.

p espr.

  

Vc.

Kb.

p espr. arco

  

Litolff / Peters

p espr.

   

       p espr.

   

 

liberamente                 p

 

R    

 

q = ca 90

p espr.

    p espr.



   

 

         

 

       pp p espr.        p espr.

p espr.

 

 

 

 

 

 

  

q = ca 60       

 

 

     

 

  

     

 

 

  

 

  33226

     

 

 

 

 

pp

 

  

 

p espr.

 

 

               

pp

 

p espr.

   

  pp        

  

 

   

           

         


 

240 q = ca 70

Fl.1/2

   

Ob.

Bhn.

 

Fg. 1

 

Fg. 2

 

1.Hn.

Pos.

 

Vibr.

Pk.

Vl. 1

  

  

   3

     

  

Vl. 2

Vla.

Vc.

Kb.

  f

Hfe.

Gong

 

q = ca 70

      mf

mf

  

   

 

 

 

Litolff / Peters

 

 

 

 

 

 

          mf

p

       3

3 3

   

   3

 

 

 

 

 

 

 

 

 

 

 

  33226

 

   

 

 

   

 

 

 

 

 

 

     p

      

 

 

      

 

  p  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p espr.

 

p espr.

   

 

   

 

   

 

p

 

 

   

 

 

   

   

     

p

 

 

p espr.

 

 

   

   

 

 

           mf   5

 

 

 

 

 

 

Cl. (B)

 

 

 

Eh.

 

 

51

   

 

   

 

   

p espr.

    p espr.     p espr.     p espr.    

   

 

 

  p espr.

 

mf espr.

 

mf espr.

 

mf espr.

 

mf espr.

 

p

 p

  p

 

   


52

  246

Ob.

Eh.

Fl.1/2

Cl. (B)

Bhn.

Fg. 1

Fg. 2

1.Hn.

Pos.

 

Pk.

Vl. 1

 

 

   

p espr.

Vl. 2



p espr.

  

Vla.

p espr.

  

Vc.

p espr.

Kb.

Litolff / Peters

S

     

p espr.

 

      

 

p espr.

 

     

  

  

 

 

   

 

          p                             

q = 90

 

 

 

    

 

p espr.

 

 

 

 

 

 

 

 

 

               5

p

 

  

 

 

 

    

 

 

p espr.

 Hfe.

 

S        pp      pp        pp       pp     

 

 

 

 

 

  

      

Flag. (suono reale)

 

solo

        

 

solo

      

Flag. (suono ord. reale)

p Flag. (suono reale)

       p Flag.( f 2)    solo        

solo

 

p Flag.( f 1)

    p

pp

33226

 

      

ord.     

q = 90

 

     ord.

     ord.

   

  

      tutti          tutti         

tutti

            tutti ord.

p


  253

Fl.1/2

53 q = ca 100

 

 

 

 

Ob.

Eh.

 

 

   p espr.   

Bhn.

Fg. 1

    p espr.       

 

 

 

Fg. 2

1.Hn.



Pos.

Pk.



Hfe.

   

q = ca 100

Vl. 1

p espr.

Vl. 2

Vla.

Vc.

Kb.

Litolff / Peters

 

 

p espr.

p espr.

p espr.

  

 

p espr.

  

p espr.

 

 

p espr.

      

 

 

 

 

p espr.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33226

p espr.

  

  

  

 



Cl. (B)

 

 


54

 

Eh.

Cl. (B)

Bhn.

Fg. 1

Fg. 2

260

Fl.1/2

Ob.

1.Hn.



Pos.

Hfe.

Pk.

 

 

p espr.

 

 

 



 

p espr.



 

 

   







 







1.2.



non arpeggio

  

 

 

 p espr.



 



   

non arpeggio

  

 

 

 

   



















Vc.







 

Kb.







 

Vl. 1

Vl. 2

Vla.

p espr.

  

25.3.2011 Litolff / Peters

33226


Edition Peters For more than 200 years, Edition Peters has been synonymous with excellence in classical music publishing. Established in 1800 with the keyboard works of J. S. Bach, Edition Peters had by 1802 acquired Beethoven’s First Symphony as well as several solo piano and chamber works. In the second half of the nineteenth century, an active publishing policy enabled the company to develop the catalogue through the promotion of contemporary composers such as Brahms, Grieg and Liszt. This policy continues today: as the publishers of composers such as John Cage, James Dillon, Jonathan Dove, Brian Ferneyhough, Bernd Franke, Anders Hillborg, Mauricio Kagel, Rebecca Saunders, Richard Strauss and Erkki-Sven Tüür, Peters continues its historical role as a champion of new music. This is accomplished in conjunction with the continuing development of the traditional catalogue.

The offices of Edition Peters in Talstraße, Leipzig Geschäftssitz der Edition Peters in der Leipziger Talstraße

Seit über 200 Jahren steht die Edition Peters für höchste Qualität im Bereich klassischer Notenausgaben. Gegründet im Jahr 1800, begann der Verlag seine Tätigkeit mit der Herausgabe von Bachs Klavierwerken. Schon zwei Jahre später waren die Rechte an Beethovens erster Sinfonie sowie an diversen Klavier- und Kammermusikwerken hinzugekommen. Durch enge Zusammenarbeit mit zeitgenössischen Komponisten wie Brahms, Grieg und Liszt gelang es in der zweiten Hälfte des 19. Jahrhunderts, den Katalog beständig zu erweitern. Dieser Tradition ist das Unternehmen bis heute verpflichtet: Als Verleger von Komponisten wie John Cage, James Dillon, Jonathan Dove, Brian Ferneyhough, Bernd Franke, Anders Hillborg, Mauricio Kagel, Rebecca Saunders, Richard Strauss und Erkki-Sven Tüür ist die Edition Peters weiterhin Anwalt neuer Musik, während zugleich das angestammte Verlagsprogramm kontinuierlich ausgebaut wird.

THIS IS RENTAL MATERIAL AND MUST BE RETURNED AFTER USE PETERS EDITION LIMITED Rental Library Tel: +44 (0)20 7553 4020 · Fax: 020 7490 4921 e-mail: rentals.uk@editionpeters.com · newmusic@editionpeters.com · www.editionpeters.com

w w w.e d i t i o n p e t e r s .c o m


EP 12774 Richard Dünser, Opheliamusik III