Issuu on Google+

Contemporary

D端nser Radek-Sinfonie f端r Orchester Full score/ Partitur

EP 12750


RICHARD DÜNSER

RADEK – SINFONIE für Orchester

EIGENTUM DES VERLEGERS · ALLE RECHTE VORBEHALTEN ALL RIGHTS RESERVED

HENRY LITOLFF’S VERLAG / C. F. PETERS Ein Unternehmen der EDITION PETERS GROUP FRANKFURT/M. · LEIPZIG · LONDON · NEW YORK


Inhaltsverzeichnis: Prolog: der neunte Kreis der Hölle S.1 I. Wiegenlied S. 27 II. Der Rabbi S. 48 III. Die Revolutionäre S. 74 IV. Rose S. 101 V. Larissa S. 127 VI. Ein Engel S. 163 Epilog: Erinnerung und Tod S. 184

Instrumentation : Piccoloflöte, 2 große Flöten; 2 Oboen, Englischhorn; Kleine Klarinette in Es, Klarinette 1 in B, Klarinette 2 in A, Bassetthorn; 3 Fagotte; 4 Hörner in F; 1. und 2. Trompete in C, 3. Trompete in B; 2 Tenorposaunen, 1 Bassposaune; Harfe; Klavier (auch Celesta); Schlagzeug (3 Spieler): 3 Tam –Tams (groß, mittel, klein), 3 Hängebecken (groß, mittel, klein, auch mit Bogen gestrichen), 1 Paar Gegenschlagbecken, 2 Röhrenglocken (in d1 und d2), 1 Crotale in f3 (klingend), Kleine Trommel, Militärtrommel, Große Trommel, Vibrafon, Tamburin; Pauken; Streicher. Dauer: ca. 38 Minuten Die Partitur ist in C geschrieben.


Radek - Sinfonie Richard Dünser

Dr. Ernest Hoetzl herzlichst gewidmet

Prolog: der neunte Kreis der Hölle

Piccolo

 

Flöte 1/2

Oboe 1/2

Kleine Klarinette

Klarinette 2

Fagott 1/2

1./3. Horn

Becken Tam-tam

Vibrafon

Harfe

Klavier

q = ca 80

1.

 p espr.

   

 

 



 

 

  

p espr.

 

3

 

3

 

p espr.

  

3

p espr.

3



    

 

 

                        3

3

pp espr.

Violine 1

3

3

3

3

3

  

pp espr. 3

3

3

3

3

3

pp espr.



pp espr.

    

 

Viola

 

Violoncello

Litolff / Peters

3

                        

Violine 2

Kontrabass

3

 

p espr.

  

  



   

pp espr. pizz. p espr.

32986

  



   



  



3

  

3

  

   



3

3

    

3

 

      

       3



3

    

  

  

  

        3

q = ca 90

  

    

3

   

3

 

   

3

 

3

1.

 

q = ca 80

3

             



3

  

3

p espr.

q = ca 90

  

3

p espr.

    3

senza vib. sempre

3

p espr.



3

p espr.

 

  

q = ca 90

  

2.

   

p espr.

    

p espr. 1. cup

 

3

 

p espr.

 

1.

3

 

p espr.

p espr.



 

3

p espr.

1.

p espr.

 



  

1.

  

2./4.Horn

Trompete 1/2

q = ca 90

3

 

 3

  

3

    3

3

    

   

 © Copyright 2007 by Henry Litolff´s Verlag 3/11


2

  

1.

4

Fl.1/2

1.



      5



Bhn.

1./3. Hn.

3

     

3

   3



  

3





p

3

3

  3

p

p

 

Vla.



mf

Vc.

Kb. Litolff / Peters

 3

3

3

   

 

 5

  

f

  p 3

 1.

 p

 

 

cup



mfp

3

      3

3

 

        3

3

 3

          

 3

 

3

  3

  

3

3

   3

 3

      

  3

  



 

3

     

  

p

3

  3

  

         

3

           

Vl. 2

  

  

                

p

3

  

Trp. 1/2

p 3

  

3

mf 1.

Vl. 1

3

 

  

Hfe.

 

  

2./4. Hn.

Bpos.

  

3

 

mf

Fg. 3

3



Kl. 2

Fg.1/2

3

     

 

Kl. 1

5

mf

Eh.

     

mf

 

Ob.1/2



 32986

 

   

      p 3 5

mf arco



mfp


  

 

 



 



 



7

Fl.1/2

1.2.

p

1.2.

Ob.1/2

3

p

Eh.

p

Kl. 1

p

Kl. 2

p

 

Bhn.

    

Fg.1/2

Fg. 3

       

 



2./4. Hn.

Trp. 1/2

Bpos.





Vl. 1

 

 3

  

 3

 3

 

Vl. 2

        

Vc.

Kb. Litolff / Peters

 

 3

 

       

 

  

3

3



 

 3



 

3



 32986

  

 

 

 3



  

3

3

  

 

 

3

3

  



 

 

3

3

 

Vla.







 

  



Hfe.



3

  

1./3. Hn.

   mf    

3

  

3

 



        





    


4

  9

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

 

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

Pk.



A



 



  

 

 

  mf

 mf

2. mf mf 1.

 

Vla.

 pp

3

 



p

pp

pp

pp

 

 pp



pp

 

pp

pp

           mf

  q = ca 80 accelerando- - - - - - - - - - - - - - - - - - - - - - - - - - - - A                  q = ca 90 6 6 6 6                        5 3 3  sfp 6 6 6 6                                     3  sfp 3 5 6   6                           sfp   6         sfp 3 5 5 5 5                                6 3          6             

Vc.

Kb.

 

p

 

pp



pp

mf

Vl. 2

pp

 

pp

mf

Vl. 1

 pp

1.





 

pp

sfp 2.

3

Litolff / Peters

 

Hfe.



pp

 mf



1.



1.



T.-t.

q = ca 90

accelerando- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

  

Trp. 1/2

Be.

2./4. Hn.

Bpos.

q = ca 80

6

6

sfp

  32986

sfp

p


5

  11

Picc.

6

p

                        1.2.

Fl.1/2

6            

p

6

6

6

6

     1.2.

Ob.1/2

1.











6

p

kl. Kl.

Kl. 1

Kl. 2











    











p

    p

6





    3

p

6









f 5

  

 



 

 

6

5               p

cup ab

    

1.

Trp. 1/2

 



5 5                                                 5

p

6

Vl. 1

  

2./4. Hn.

Bpos.



  

Fg.1/2

1./3. Hn.

Bhn.

Fg. 3

Eh.

6

6

6

5

Vl. 2

p

 

Vla.



5

Kb. Litolff / Peters

  





                     

Vc.

  

3

 3

5

5

5



f



  

32986

6

               

3

5

5

                 


6

 

ff

ff



13

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

1./3. Hn.



ff

Trp. 1/2

Trp.3 (B)

Bpos.

 

 



ff

     

Vla.

  

Vc.

Kb. Litolff / Peters

ff

pp



3

p

pp

pp pp pp

ff

3     p   

pp

 ff  sordino senza ff

pp

2.4.



sfpp

   

 





 

  



mf

   

 

 

 

ff

    

Vl. 2

pp



pp

 f         

Vl. 1

pp



ff

2./4. Hn.

Klav.

ff

 ff      ff    1.3.  

Fg. 3

Hfe.

pp

 1.2.

Fg.1/2

Pk.



ff

Bhn.

pp

 

Kl. 2



                                                                                           sfpp ff

6

6

6

6

6

6

6

6

                                                                                     6 6 sfpp 6 6 6 6 6 6                                                                                      sfpp 6 6 6 6 6 6 6 6                                                                       5 5 5 5 5 5 sfpp 5 5                                                        5 5 5 5 sfpp 5 5 5 5                                                             sfpp 6 6 6                                             sfpp 6 6 6 6 6 6 6  6                                                                   sfpp 6 6 6 6  6      6

6

6

6

sfpp

32986

6

6

6

6


7

 

Ob.1/2

Eh.

Kl. 1

Kl. 2

15

Fl.1/2

Bhn.

 

Fg.1/2

  

Fg. 3

 

1./3. Hn.

2./4. Hn.

Trp. 1/2

Bpos.

Hfe.

3

3

 

 

 

 

 



p

 



 

    3

 1.

3

 p  

2.

 

pp







    6      6       6      6     6       6      6      6                                                                                                6

6

6

6

6

6

6

6

                                                                    6

6

6

6

6

6

6

                                                                                                  5 5 5 5 5 5 5 5                                                                                

Vl. 2

6

6

6

6

                                                                           

Vla.

5

5

5

5

                            6    6

Vc.

Litolff / Peters

3



6

Kb.

3

     

3

 

Vl. 1

     

3

6 6

6 6

6 6

32986

6

6

6

6

                                                                                      5

5

5

5

                                                6 6

6 6

6 6

6 6


8

 

Ob.1/2

Eh.

Kl. 1

Kl. 2

17

Fl.1/2

Bhn.

Fg.1/2

Fg. 3

 



 

 

Trp. 1/2

3

 

Vla.

Vc.

Kb. Litolff / Peters

 

 



1.

 

3

 

3









3

 

  

3



3



 

3

    

    

3

3



 



 

 



   6                                                                                    66 66 66 6 6 6 6 6                                                                                    6

6

6

q = ca 70

6

                                                                               6 6 6 6 6 6 6 6                                                                     5   5  5 5 5 5 5 5                                         6

Vl. 2

3

Vl. 1

 

 

2./4. Hn.

Hfe.



 

1./3. Hn.

Bpos.

q = ca 70

6

6

6

6

                                                                          5

5

5

5

6 6

6

6

6

                                                                5

5

5

5

6

6

6

6

                                                                    6 6 6 6         6 6

6 6

6 6

32986


B

  19

Fl.1/2

Ob.1/2

Eh.

9 q = ca 100

p espr.

Kl. 2



Bhn.



Fg. 3

p espr.

1./3. Hn.

 

 

 

1.





p espr.

 

 3

 



 



p espr.



 

    

   

  

q = ca 90

Vc.

q = ca 80

    

 Vla.

q = ca 90

 Vl. 2

    B q = ca 100       

Vl. 1

Litolff / Peters

 

3



Kb.

1.

q = ca 90

p espr.

Trp. 1/2

pp

q = ca 80

 

p espr.

Hfe.

   

 2.  

2./4. Hn.

Bpos.

 

p espr.

 

p espr.

Fg.1/2



Kl. 1

q = ca 90

         

     p espr.

   

pp

 

solo



  

molto legato

p espr.

    3

  

 



    3

3                  

p espr.

3

p espr.

3

3                  

32986




10

  23

Fl.1/2

1.



 

3

1.

 

3

p espr.

 

Ob.1/2

p espr.

Eh.

Kl. 1

 

  

 

p espr.

Kl. 2

Bhn.

 

p espr.

p espr.

Fg. 3

1./3. Hn.

  

2./4. Hn.

3



 



fp







Bpos.

Vl. 1

 

3

 

Vla.



3

3

 

    





   





  

3

 

  3 

p espr.

3

Kb. Litolff / Peters

 

p espr.

3









fp



fp

 

 

fp 3

fp

      3 

 

  

    



  







  

 

 

 



 

3

 3

cup ab



 

q = ca 85





  

   



  

  



3



 



 



  



  

fp

fp



fp

3



fp



3

fp



3

3

 

   

3

 

fp

 

     

Vc.



3

 3

p espr.

1.

fp

  

tutti



3

  

 

p espr.



p espr.

1.

Vl. 2

fp

  

p espr.

 

   

   



3

  

          

fp



p espr.

fp



   

  



       

3

                

               3

 

3

mf

p espr.

Trp. 1/2

3

  



 

  

3

 

     



   

3

p espr.



3

   

fp

  

 2.

fp

mf

mf

   

   1.2        

2.

mf

    

3

3

1.



1.2

mf

   

Fg.1/2

 

p espr.

p espr.



 



kl. Kl.

      

        

q = ca 85

 fp 32986

3



 

 3  

 

 3  





fp

 

3

3

 

  

3

3


  25

Picc.

            

   

Fl.1/2

mf

 

Ob.1/2

mf

Eh.

kl. Kl.

f

            

 

f

f

f

1./3. Hn.

2./4. Hn.

 

 

  

f

5

        

3

     

    

f

3 3             

f

3

3

3

mf

Vl. 2

 

 3

Vla.

    

            mf

Kb.

mf

Litolff / Peters

3

3

              3

3

    

3

Vc.

3

3

  

f

    f

5

f

5

   

  32986

  



ff 3

     

    

    

  

  

ff

     ff

3

    ff

2.4.

ff

3

3

3

3

3

    ff

1.2. senza sord.       ff

       ff  ff      ff

 

 3  

 

  

  

  

3

3

 3  

 

     3

3

  3

    

     

  

     

ff

          ff

 

  

molto espressivo e patetico

   

ff

3

     ff





    

ff molto espressivo e patetico





    

senza sord.

C q = ca 90  

f

ff

   

1.3.

  



  

 

f

  





3



  

Bpos.



  



 



    

Pos.1/2

  

  

  









  

   

   

Vl. 1

3

   

ff 1.2.

 



  

5

  



Pk.

ff





Be.

3

5

f



ff 3

5

    

ff

   



Trp.3 (B)

3



       f mf                      

  

ff 3

      

3

mf

Trp. 1/2





3

ff

5

            

mf

3



   

  

mf

Fg. 3

ff 3

f

    

Fg.1/2

   



3

              

   

Bhn.

   



   

Kl. 2

11

q = ca 90

                     mf     f                    3

3

mf

Kl. 1

C

  

   

molto espressivo e patetico

  

  

  

  

3

3

 

 

3

3


12

  28

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

  

1./3. Hn.

2./4. Hn.

Trp. 1/2

 

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Hfe.

Klav.

Vl. 1

  

 

 

 

 

 

 

���



 

 

  

 

    3



3

   

 

3



    3

3

 

   

 

3

   

 

3

3

 

3

3

     

      3   

  





     



  32986

3

3

     

  

ff

3

3

 

      

3

3

3

3

3

 

  

3

 

 

3

   

3

3

3







     

3

3

 

  3

3

  3   3  

 

 

   

 

   

3

3

  3 

3

 

3  3  

  

   



5





5







  

3   3  

                       

3    3   3   3   



 



 

 

 

5 

 3 

           

 

     

   

3

3

  3 

 

3

      

 

     



3

    

 

3

3 

   

3

3 

  

3

3 

 

3



3

   

ff





 

3

      

 

     



 

   

 

Kb.





Vla.

3

  

   

Vc.

3

 

        

 

3

 

   



Vl. 2

Litolff / Peters

 

   

        

 

   


30              

Picc.

Fl.1/2

Ob.1/2

        

Eh.

kl. Kl.

Kl. 1

   

Kl. 2

 

    

Bhn.

Fg.1/2

   

Fg. 3

           

1./3. Hn.

2./4. Hn.

Trp. 1/2

  

Trp.3 (B)

   

Pos.1/2

Bpos.

Pk.

Hfe.

Klav.

Vl. 1

        

 

Vl. 2

                  

    

 

Kb. Litolff / Peters

   

3







3





3



5

5

 

 5

 5   5 

 

   5 

5

5

5

5



5



5

 

5

  5

 

   

5

   



   

cresc.

 



5

5

5

 5

ff

   

cresc.

Vc.



5

cresc.

Vla.

 

           

   

     



      

 

 

 

 

3

   

 





3

 



 

  









3

 

  

3

3

3

3

 

 

3

3

  

   

  

f cresc.

   

   

3

3





3





3

3

   

 

 

3

 

 

3





fff



5

fff

3

3

3

5







 

 

 

5

5

5

5



 

 

55

5

 

 

 

    

 

 

5

 

 

 

3



3

  

3



3

  

3



        

5

55



3         



5

 

 

 

5

5 5

3

5



5



5

3

  3

fff

32986

        





3

 



 3

 



3



13

5

5

 

  

 

 


14

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

 



Kl. 2

 

Bhn.

Fg. 3

1./3. Hn.

 

    

 





Kl. 1

Fg.1/2



31           

       



 





        

 

 





 



 

2./4. Hn.



    

       

Trp. 1/2

 

 

 

Trp.3 (B)

 



 

 





 





 

Pos.1/2

Bpos.

Pk.

Hfe.

Klav.

    ff          





3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                                                 

Vl. 2

ff

Vc.

3

3

3

3

3

3

3

3

3 3 3 3 3 3                                                    3 3 3 3 3 3 3 3 ff                                                 

Vla.

Litolff / Peters

 

3 3 3 3 3 3 3 3                                                   

ff

Kb.

 

 

       

3

Vl. 1

 



3

3

3

3

3

3

3

3

3

3

3

 32986

3

3

3

3



3

3

3

 

 


  

15

33

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

         

      f

f

 

f

 

f

f



 

f



 

 

3

   3

  

 

3

 

  

3

 

  

 

3

3

3

5

 

3

f

 f      f

 

3

3

  3

3

f

 

 

 

      



       3      

3

  f

3

     

 

  

     

f

 

 

3

f

 

  

 

3

3 3

     

  

 

3

3

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

 



 



pp

   

 

 



 

 pp



pp

   

 2.





1.cup auf



pp

  



pp

pp

   

 

       

 

       

 

       

5

5

      5

     

1.cup auf



        3

  

3

3

  

     

 f

      32986

2.

 

 

 

pp

     

1.

   

 

 

 



     

     

   

 

 

 

  

1.

 

 

1.

 

  

 

f

Vl. 1

                              

f

      

                 

      

3

5

  

 

      

f

 

 

f

   

 





 

 


16

D

 

 

Ob.1/2



Eh.



37

Fl.1/2

Kl. 1

 

Bhn.

1./3. Hn.

Trp. 1/2

Bpos.

Be.

Vl. 1



p espr.

   

 



1.

 

     

 

 

1.

 

p espr.



 



 

        pp D 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                               

pp

3

pp

  

3

pp

 

 

pp

pp

pp

 

pp

3

3

3

3

3

3 3        

              3

3

3

3

                  3

3

3

3

3

3

 3   3   3   3   3   3   3   3           

  

3

 3   3   3   3   3   3   3   3  3   3   3   3                   

  Vc.

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                 

pp

Vla.

3



pp

Vl. 2

Litolff / Peters

 

3



3

  

Kb.

 

2./4. Hn.

3

p espr. 1. 3

 

Fg.1/2

Fg. 3



p espr.

Kl. 2

 

 32986

 


17

  

  



 

  





 

 

 

  



   

p espr.







 1.

39

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

Be.

T.-t.

Klav.

 

1.

p espr.

1.

 

 

 

 p espr. 

 



 

  

     

 

  

  

 



 



 

 

 

  

 

  pp

 

 

              3

3

         

3

 

      

                         pp  pp

Vl. 2

Litolff / Peters

 

3 3 3 3 3   3                       

Kb.

p espr.

pp



 

Vl. 1

Vc.



  

 

  

  

  



 p espr.

3 3 3 3 3   3          

Vla.

p espr.

 

3

3

3

3

3    3      3   3   3   3     ���     

 

           3

3

3

3

3

3

3 3 3 3 3   3                                       3 3 3 3 3 3                     

        3

3

3

3

3

3

3      3   3   3   3   3          

  

32986

3


18

   42

Fl.1/2

 

Ob.1/2

  

  

 

Eh.



  





kl. Kl.

 

 

  



Kl. 1

 

 





Kl. 2

     





 

 

1.

Bhn.

Fg.1/2

Fg. 3

  

T.-t.

Crot.

Hfe.



Be.







1.

  

  

 

  



 

 

          loco

3

3

   

    3

3

3

3

3

  

  

Vc.

Kb.

Vl. 1

legato

p espr. legato p espr.

Vla.

Litolff / Peters

32986

 

 

 





 

 

 

 

 

 

 

 





 

 





 

 





 

 

      div.       

               

 

 

 

p flag. (suono reale) p

 p

  



  



  p flag. (suono reale)   flag. (f3)

Vl. 2

 



p

      

 

 

p

3

 

 loco                             

Klav.

 

 flag. (suono reale)

 

p flag. (es2)

 p flag. (suono reale)  p flag. (suono reale)

 p

  

div.

 



  



          

    

 

   

   


19

E 47   



 



 

kl. Kl.

 

Kl. 1

 



 



 

 

  

Fl.1/2

Ob.1/2

Eh.

Kl. 2

Bhn.

Fg.1/2

Fg. 3

  

1./3. Hn.



1. cup



Vl. 1

Vl. 2

2.

ord. ma senza vib.

  

  

ord. ma senza vib.

   

ord. ma senza vib.

Vc.

   

senza vib.

    

senza vib.

Kb.

p

Litolff / Peters

 

 

pp













   

 



pp

klangvoll           pp

3

3

3

  

loco   3

    

  

3

3

   

3

 

  3

     3

      

3 3 3 3                                    

pp

3

3

3







ord. ma senza vib.

Vla.

 

         

  

  klingen    lassen                                   

pp



 



pp



 



pp

  



p



 

p

   

 



  

    E senza vib.      



    p





 

p

 



pp

  

Klav.

 



1.

Pos.1/2

 

p



Hfe.

 



 

Vibr.

p 1.

pp

   

 

1.

2./4. Hn.

T.-t.

1.2.



pp



pp pp

pp

pp

32986


20

   51

Fl.1/2



 

  

 

3

 

Ob.1/2

  



 

Kl. 2

 

3







1./3. Hn.

Pos.1/2



 

 





 







Vibr.

 





3



 

3

Vl. 1

 

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

    3

                         

          

3

3



3

    3

   

3

3





 

3





 

        3                3

3

3

     

3

3

3

 

        3

3

3

3

   

                   3   3

32986



3

           

3

                  

   



3

                





3







         3

Klav.



 



 

 





3

Hfe.

3

  



   

 



  





3

Fg. 3



3

3

Fg.1/2







Kl. 1

Bhn.



3

Eh.




21

   

  

  

  

54

Fl.1/2

Ob.1/2

Kl. 1

 

   

Kl. 2

  

  

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

Pos.1/2

T.-t.

Vibr.

 





 

 

  

  

      

3

3

 

3  3      

3  3                  

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

3

 

 





 

  

1.





 3     

 



 

ord.

 



  

3

          3



pp

3



 



  





 

 

1.

                     

Klav.



 



1.2.

 





3

Hfe.



  

 



  

  

2./4. Hn.

 

  



Eh.

 

1.

 







2.

p

3    

3

  

      

     3      

 

     

3     

     

3

  

3

 



p



 

 



 





 

 

 

p

ord.

ord.

p ord.

  32986

p

 

ord.

p


22

 

Ob.1/2

Eh.

Kl. 1

Kl. 2

Fl.1/2

Bhn.

Fg. 3

 

       

3

Litolff / Peters

  

       

3

  



  

    

   

   

  



3

  





 





 





 







  

 

3



 

 

p

Kb.

p

 

1. cup

 

Vc.



F



1.

Vla.

 

Vl. 2



 

Vl. 1



 

Klav.



Trp. 1/2

Hfe.

Vibr.

 



2./4. Hn.

Pos.1/2

1.

1.

  

1./3. Hn.

 

 

Fg.1/2

 1.

58

3 3 3                         mf 3

F 

3

3

                         

pp

pp

3

3

3

3

3

3

3

3

                                     3

3

3

3

3

3

3

3

                                    

pp

3

3

3

3

3

3

3

3

pp

 

 

 

  32986

                                     3

3

3

3

3

pp

 

 

3

p

3

p

3

 

3

3

       

3

3

 


  



 

 

62

Fl.1/2

Ob.1/2

1.2. 3

1.

3

Eh.

kl. Kl.

 

 

Kl. 2

 

 

3

pp

3

    

pp

p 3

3 3

p

   3

Fg.1/2

   3

3

  

1./3. Hn.

Klav.

3

 



  

      

Vl. 2

 

  

flag.(f2)

pp flag.(f2)

  

Vla.

pp flag.(fis1)

   

Vc.

Litolff / Peters

pp flag.(suono reale)

 

pp

3

   3

  

       3

3

3

 ord.      

pp flag.(suono reale)

  

ord.

3

 

6

3

3

       3 3 ord.        3 ord.

3

    3

6                  6    fp mf cresc.    6               66    fp mf cresc.           fp mf cresc.             

cresc.

23

     

fp

        

   

mf cresc.

6

mf cresc.

6 6

     mf cresc. 6     6  cresc.  mf           6 mf cresc.



1. f

fp

     fp

          fp            fp 

f

 

pp

Kb.

p

 

flag.(suono reale)

Vl. 1

cresc.

6

   6        

cresc.

       p cresc. 

2./4. Hn.

Trp. 1/2

 

3

Fg. 3

cresc.

     p



2. p

   6          p

           p 1. 3

           

Kl. 1

Bhn.

3

pp

pp

 

  

6

 

              

 

3. mfp 2.4.

  

 

3

f

mf cresc.

6

mf cresc.

cresc.

6

      p cresc.       

  

                ffp             

fp

6 6

cresc.

mf cresc.

6

f

6

ord.



32986

f

 

 

 

 

 

 

fp

fp

fp

fp

6

              fp 6 mf cresc.               

        

6

6

       ���       fp    mf cresc.    6                        p cresc.

p

                mf cresc. 6 fp p cresc. 6                           p cresc. fp

p

 

mfp



6

fp

 

6

ffp

mfp 1.

6

p

6

3



 

fp

fp

fp

      6



fp

 ffp

6


24

  64

Fl.1/2

 1.

pp

  1.

Ob.1/2

pp

Eh.

Kl. 2



 

 

 

1./3. Hn.

   2.

pp

Bpos.

Klav.

Vl. 1

Litolff / Peters



1.

pp

 

pp 2.



pp

3

 3

   

   

pp

pp

3

   

 

3

3       pp    espr. 3          

pp



3

pp

3

p espr.

 

3

3

3

3

3

3

3 3

3

3

                                                            



3

                                                            

3

3

3

3

3

3

3

3

3

3

                                                           3

espr.

3        3    3 3                             3 mf 3

3

 3    pp   

pp

Kb.

pp

3

Vc.



 

Vla.

pp

Vl. 2

 

1.

1.

 

Trp. 1/2

pp

2./4. Hn.

pp



pp

1.

Fg. 3

Fg.1/2



pp 1.

pp

Bhn.

pp

Kl. 1

1.

3

3

3

3

3

3

3

3

3

                                                           3                        3 3

3

3

3

3

 32986

3

3

3

3

mf

3

3

p espr.


25

  

 

67

Fl.1/2

Ob.1/2

q = ca 85

Eh.

kl. Kl.

Kl. 1

Kl. 2

     p espr.

f

p

f

pp





 



     

pp

pp

pp

1.

 p



1.3.

f

p



2.4.

f

p

 

1.

2.





p

 

1.2.

 cup auf

 f

pp



 



 

Litolff / Peters

2.

 

Vl. 2

Kb.

Vc.

  

Vla.

f

 

Trp. 1/2

Vl. 1

 

 

2./4. Hn.

Bpos.

 

Fg.1/2

1./3. Hn.

Bhn.

Fg. 3

 

 32986

p

q = ca 85

molto legato

p espr

    p espr.

  

molto legato



p espr




26

  73

Fl.1/2

q = ca 80



1.2.





q = ca 75



f

2. Ob.1/2

Eh.

kl. Kl.

Kl. 1

1.

 





 

p espr







p espr

f





p espr

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.













 f

Vl. 1





 p espr



f

  

1.





f

p espr 2.

 

 



 



q = ca 80



q = ca 75



f

p espr



f





molto legato

p espr

 

 



    



f

  

f

p espr

Litolff / Peters

 

  

molto legato

Kb.



 

Vc.

f

Vla.

  

Vl. 2

Trp. 1/2



2./4. Hn.

Bpos.

f

p espr Kl. 2

    

f







f

 32986


G I. Wiegenlied

 q = ca80  80

Fl.1/2

Ob.1/2

27

 

 

Eh.

 

Kl. 1

 

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

 

 

 

 

 

1.



p molto espr.

1.









     

mf molto espr.



 



 

p molto espr.

p molto espr.

 

 

1.



p molto espr.

p molto espr.



 



 

 2.  

 

 



 

 



 

G = ca 80  q   mf molto espr.

Vl. 1

 

1.

1. cup p molto espr.

 

 

 

 



 

 

 



 

 

 



 



 

 



 



 

 



 



 

p molto espr.

p molto espr.

p molto espr.

p molto espr.

p molto espr.

1. cup ab, straight mute auf

p molto espr.

 

p molto espr.

1.



Vl. 2

Vc.

p molto espr.



Vla.

 





Trp. 1/2

Litolff / Peters

 

2./4. Hn.

Kb.

 

p molto espr.

Pos.1/2

  







p molto espr.









































 

 

 





 





 32986



     


28

   91

Fl.1/2

1.







q = ca 90







Eh.

Kl. 1



 



1. p molto espr.

 

H

q = ca 80

p molto espr.

Ob.1/2

 

q= 110

1.



  f

 

 f

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.







  

2./4. Hn.



 f

 f 1.

2.

  f

  f

Trp. 1/2

Bpos.

Vl. 1

       





 

q = ca 90

q = ca 80

3  3                  



 

 

 



  p espr.

Vc.

 f



 

 



 



p espr.

Vla.

 f

Vl. 2

  f



q= 110

H

 

f

f

 

p espr. f

Kb. Litolff / Peters

 32986



  f


  99

Fl.1/2

  

Ob.1/2

3 1.    

p

pp

Kl. 1

  

  

pp

Kl. 2

pp

p

f

 

     1.2.

1./3. Hn.

2./4. Hn.

  

 

Vl. 2

Vla.



p

3

3

3

3

        p    3            3 p 3 3

             3 3

3

         3 3

q = ca 80

Litolff / Peters

   3   p





mf

 

 

 f

1.    mf

 

p



p

  

1. straight mute

f q = ca 110 pizz.

    arco   

  

       

  

p





     

pizz.

arco

f pizz.

    f pizz.

 

arco

      

arco

  

   f

 32986

 

fp

   

q = 78

    

f

 

 

f

 



 f

 

f

 



 



 

p espr.

 

 

f

f

 

f

f

 

f pizz.



 

p

f

  

 

rallentando- - - - - - - - - - - - - - - - q = ca 90  arco          

  

p

mf

 

 



  

p

p

Kb.

 

  

 

   

  

p

 

f

            3 3 p 3          

3

 

p

mf

3

p

Vc.

3

Vl. 1

 

      

     

p

  

 

2.

f



pp

pp

Trp. 1/2

p

3

 

 

   

f

    

f



pp

     

 

mf

f

f

Fg. 3

3

f

1. f

3

    

5

p

q = 78 29

           1.2.

f



  

f

Fg.1/2

f

 1.2.        

 3                    

    

Bhn.

   

kl. Kl.

Eh.

1.2.

     

q = ca 110 rallentando- - - - - - - - - - - - - - - - q = ca 90

q = ca 80

p

    p espr.

    p espr.

 

 





 

p

p

p


30

Fl.1/2

Ob.1/2

Eh.

I 103   

 

 

  

Kl. 1

Kl. 2

Bhn.

 

 

 

  

Fg. 3

p espr.

T.-t.

Cel.

Vl. 1

Vl. 2

Vla.

Vc.

 





p espr.

 

  

1.

 

  pp

gestrichen



pp



 



 

         3           

              

         







  



  

  

    

3

3

 I   

  



       

 

  

p espr.

pp



 

3

3



p espr.





  

3



 

  

       

3







 32986

gestrichen

   



 

p espr.

Litolff / Peters



 

klingen lassen

p espr. pizz.

Kb.

 

   

 



pp

 



  

      

Be.

1.

p espr.

  

Bpos.





  

1./3. Hn.

Hfe.

p espr.

  

Fg.1/2

Vibr.

         

  

3

     

3





 

 

  











 

 

                3

3

     

   

  

3




31

  107

Fl.1/2

 

Ob.1/2





Eh.

  



  

Kl. 1

 

Kl. 2

Bhn.

  

Fg.1/2

Fg. 3

1./3. Hn.

Bpos.

Be. T.-t.

Vibr.



 



  

 

Vla.

Kb. Litolff / Peters

  

   

 





   

 



  

 



















3

     

32986

3

  

 

  

 



  

 

gestrichen



     





  



3

  



3





 

 

 



gestrichen





3



                                           3

3

 

 

3

 





 

 

     

Vc.

   

  

Vl. 2

                   3

Cel.

Vl. 1





     

 

Hfe.

 

gestrichen



   





   

      

 



                 3

3





   



   

  

3




32

  111

Fl.1/2

 

Ob.1/2

 

Eh.



 

    

 

 

 

   

Bhn.

Fg. 3

  

1./3. Hn.

2./4. Hn.

 

Hfe.

Vl. 1

 

   







          

         3

 

 

     

3

3

        

Vla.

Vc.

Litolff / Peters

3

 

 

gestrichen

3

  

3



 

  



  

  

    

 

3

3

3

    

3

 

 

 

 

 

   

 

 

J  

q= ca 70



pp

       

32986



pp





pp



pp div.

   



q = ca 78



 



 

                           

p espr.

       

 

    

       

3

   

p espr. 1.

 

                  

Vl. 2

Kb.

gestrichen

              

        

      

Vibr.

Cel.

 

 

T.-t.

        

 

 

Be.

 



q = ca 78

Kl. 2

 

 

 

Fg.1/2

q= ca 70

Kl. 1

J

  

uniti


33

  117

Ob.1/2

Eh.

Fl.1/2

  3

 

Fg.1/2

3

1./3. Hn.

2./4. Hn.

Bpos.

Vibr.

Hfe.

Cel.

Vl. 1

 

 

 

mfpp

Vl. 2

Vla.

Vc.

mfpp

mfpp cup



 

 



 



   

 

   

                

 p

    



 

p

 

 

 

 

 

 

 

 

 

pp





 





 

 

pp

p

         pp

         

  3         

  

     

pp

 

    

  p espr.

   



   





3

p

 

    

 32986

pp

3

   

 

3        

 

        p 

 

 

     

       



  p

p

   

    

a tempo (q = ca 78)



  

    

klingen lassen

pp

pp

Litolff / Peters

   

rallentando

arco

Kb.

 

klingen lassen

 

  

a tempo (q = ca 78)

 

 

mfpp

    2.

      mfpp  1.     

Fg. 3

   

Bhn.

 

mfpp

Kl. 2

  

Kl. 1

rallentando

 

p espr.

 p

    p

 p

 p


34

 

 



 



 

124

Fl.1/2

Ob.1/2

Eh.

 

 

Kl. 1

Kl. 2

 

Bhn.

Fg.1/2

Fg. 3

 

Bpos.

Vibr.

 

 

 

 

 

 

 

Litolff / Peters

 

1.

p

 

 

 

     

 

     



klingen lassen

pp 3

    

      

  

 

 

pp

            3        

 

 

      

 

p espr.

mf

 

  

 



 

 

 p

p

p

      

 32986

    p











 

 

3          3

   



pp

 



3

    

klingen lassen

pp

 





     

klingen lassen

3

    

 

Kb.



  

 

3

Vc.



 

Cel.

Vla.

 

                              

Vl. 2

p

 

 

Hfe.



 

Vl. 1

p

1.

 

p

2./4. Hn.

    

  



1.

1./3. Hn.



1.

  

 

 

     


35

K

Fl.1/2

  130

Ob.1/2

 

Eh.

ffp

Kl. 1

 

Kl. 2

ffp

 

Bhn.

ffp 1.

              

Fg.1/2

1./3. Hn.

Bpos.

Hfe.

Cel.

ffp

ffp



 











ffp

ffp

ffp

 

               ffp

Litolff / Peters

3

Vl. 2

3

p espr.

3

3

3              

p espr.

Kb.

1.

Vc.

        3        

K    

Vla.

 

Vl. 1

3

   

p espr.3

 

ffp

2./4. Hn.

3

p espr.

 ffp   

Fg. 3

3

  

    

 

ffp

p espr.

3



3







  



3

       p espr.



















  

p



p



32986

    

3 3                     






36

  136

Fl.1/2

1.

 

Ob.1/2



p



Eh.

Kl. 1

Kl. 2

      

Bhn.

p espr.

Fg.1/2

Fg. 3

1./3. Hn.

Be.

T.-t.

Vibr.

     3

3

  







mf



 





 

  

  



             

 

mf





 

1.





 

mfp 2.

 



mf







mfp







  



Vl. 1

 

Vl. 2

 



 

 

3

3



   

Vc.

       

 

    

 

pp



mf





mf

 

mf

     

mf espr.

     

mf espr.

            

Vla.

Litolff / Peters



mfp

mfp



 mfp 

 



1.

Hfe.

Kb.

 mfp



mf 1.

mf



2./4. Hn.

Bpos.

1.

 32986



 



 

      

 

  


L q =78 142 1.                 p espr. mf 1.         q = ca 70

Fl.1/2

Ob.1/2

 

p espr.

Kl. 2

Fg.1/2

 



p espr.

 

 

  

Be.

T.-t.

Vibr.

 

 

 

Litolff / Peters

 

 

     

 

   

    

 

  



 

 

 

gestrichen





pp

 

 

 



pp

klingen lassen

  



 

   1.



p espr.

  

gestrichen

 





       

      

  

pp

p espr.

                 3

pp

3

3



             3

3

                  3

3

3

  

           3

3

3

  

3

                             q = 78 L                  



p espr.

 



p espr.

 





1.

p espr.

  

                 p espr.                 p p espr.

  

  

q = ca 70

Kb.



    

    

Vc.

 

  

Vla.



 



Vl. 2

 



Cel.

Vl. 1

  

Hfe.

      



p

Bpos.

 

p espr.

            p

Bhn.

1./3. Hn.



     

   

Kl. 1

Fg. 3

Eh.

  

37

 

p

  

p espr. pizz.

  

   

p espr. 32986

   

   

  

 

  











  

   


38

  148

Fl.1/2

 

Ob.1/2

Eh.

 

   



 



Kl. 2

 

Fg. 3

Bpos.



T.-t.



 

Cel.

Vl. 1







   



  



 

 

  

 

  

   

   

3

3

3

3

 

3

  



                                    

3

3

 

3

 

     



3



 

gestrichen



     

3





 



gestrichen

     

 



 

     

    

 

 

gestrichen

       

      

                    3

3

3

3

3

                                 

    

Vla.

  

   

 

 



  

 





  





  

Vc.

Litolff / Peters

   

                                           

Vl. 2

Kb.



 

gestrichen

 

Hfe.



  

Be.



p espr.





  

 

1./3. Hn.

 





  

Fg.1/2



   

Bhn.



   

Kl. 1

Vibr.



  

 



   

 

   

 

 32986

    

      

  

   


39

153      

Fl.1/2

   





 

Ob.1/2



q = ca 95





 



 

  

q = ca 80

q = ca 60

 

Eh.

 

Kl. 1

                mf

Kl. 2

     

Bhn.

Fg.1/2

Fg. 3

2./4. Hn.

Bpos.

Cel.

Vl. 1



 

 

 

 

 

 

3



                3

 

    

    

  



                        

                 



 

 



 

 

   mfp    



     



 

 



          

3

gestrichen

 

3



3

3

gestrichen

3

3

3

                                

Vc.

                

Vla.

 

 

  



Vl. 2

Litolff / Peters



 

Kb.

 

  

T.-t.





    

 



Be.

Hfe.



 

1./3. Hn.

Vibr.

 

 

  





  

 

  



  

 



 







  

 32986

q = ca 95

mfp

   

 

mf

q = ca 80

q = ca 60

 





mfp



 


40

M

 

 

 

Eh.

 

kl. Kl.

 

159

Fl.1/2

Ob.1/2

q = ca 80

       pp   

Kl. 1

Kl. 2

 

Fg.1/2

Fg. 3

1./3. Hn.

 

 

2./4. Hn.

Trp. 1/2

Bpos.

T.-t.

Vl. 1

Kb. Litolff / Peters

  

   

   

 

 

  

 



 



 

pp



2.

pp

pp 1.

 

pp 2.

   pp



pp

 

 

 

 





 

 

 

 

   

mf

mf

3

mf

 

mf

3

   

mf 1.

       

 1.             p    

1.





 

 

 q = ca 80  



pp

 

 

 

 

 

    

 

 



pp

p

  



pp

 

 

  

           p 3 



pp



pp

 

pp

3

  

  32986

 

mf

1.



mf 2. mf



1.

 

pp



Vl. 2

Vc.

1.

pp

 

   M  

Vla.

 



   

pp

1.2.

  

      3     

pp

2.

p

pp

1.

pp

pp

 

 

pp

1.

      

Bhn.

   

    





    

 



    

   

 

pp

mf

mf

mf



     mf



     mf

3  3                  

 

p

 

mf



     

mf


  164

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

q = ca 95



q = ca 80 rallentando q = ca 60 q = ca 90

p

 p

 



mf

Kl. 2

 

p

Bhn.

 

Fg.1/2

p

Fg. 3

1./3. Hn.

  p

Pk.

Vl. 1

q = ca 95



ff

 

p

  

      

  

3

      

 

   

3

3 3

3         ff    

ff

 







 32986

ff

ff

        3

ff

3   3     

ff

3   3      

ff



41

      

  3 1.3.    3       3

ff

2.4.

3    3      3

      

ff

   

    ff 1.       



 

3

   



3

     

       



 3    

3

          

3

  

ff senza sordino

  

3

3 3

3        

senza sordino

   

1.2.               

ff

      

       



q = ca 80 rallentando q = ca 60 q = ca 90

p

  

    

      

ff

  

ff

ff

ff

 

    



 

ff

senza sordino

 

Vc.

p

Litolff / Peters

mf

           



      

p

Vla.

ff

  

Vl. 2

Kb.



      

3

 

Pos.1/2

Trp.3 (B)

Bpos.

Trp. 1/2

1.2.

          

p

2./4. Hn.



ff

  

p

    

Kl. 1

1.2.

      

     3

    

            

 

 



 

3

    3


42

    

q = ca 85

168

Fl.1/2

p

  

Ob.1/2

p

 

kl. Kl.

p

mf

  

 

p

mf

Bhn.

Fg.1/2

1./3. Hn.

 

3

3

 

   

 

   

  

 

  

p  mf

mf

Trp.3 (B)

 

 



2./4. Hn.





p espr.

p

Fg. 3



 

p

Kl. 2



 

Kl. 1

 

mf

p

 

 

Eh.

p

Pos.1/2

p

Bpos.

Pk.

Vl. 1

 

p

       

q = ca 85

p

Vc.

Kb. Litolff / Peters

p

p

   



p

 





  

  p

mf

mf

  3  

molto legato

  mf

p



  





molto legato



mf

3

3

mf

 

Vla.

3

 

 

Vl. 2

f

  















p molto legato



p molto legato

 p

 32986



 

 

   3



  


43

  171

Fl.1/2

  

Ob.1/2

 

 1.



 

p espr.

  

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

            p espr.

 

3

 3

    

 

3

 

 

 

  

 

p espr.

Fg.1/2

 

1.

p

 

 3

  

2.

Fg. 3

1./3. Hn.

 

2./4. Hn.

Bpos.

Vl. 1

   

 







 

 2.     3

 

 



p espr.

p

 

3

p



 

   

 

 

p

4.

 

Vc.

 1.

3.

 

Vla.

Litolff / Peters

  

Vl. 2

Kb.







 32986



   





 


44

 



    5            

174

Picc.

1.2.

 

Fl.1/2

1.2.

     3

Ob.1/2

3

           

mf cresc.

5

cresc.

 

Eh.

   

3

3

 

    

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

5

3

 

cresc.



cresc.

        cresc.

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Vl. 1

Litolff / Peters

cresc.





 



3



3





   

 

 



3

 



 



3



 3

 





 







3



 



ff decrescendo

ff decrescendo

3





ff decrescendo



ff decrescendo

3

 

 3 3

ff decrescendo

 

 







 







3

ff decrescendo

 

  ff decrescendo 

 3

ff decrescendo 6

   

 





   

3

3

ff decrescendo

3

3

ff decrescendo



cresc.

3

ff decrescendo

3

3

 



    



3



ff decrescendo





3

3

decrescendo

 



decrescendo

  

cresc.

Kb.



       

Vc.

   

3

cresc.

Vla.

  

3

 

3 3

3 3      

3

ff decrescendo

3





3

 

Vl. 2

     

mf cresc.

 

cresc.

Trp. 1/2



ff

5

3



    

2./4. Hn.

ff decrescendo

            

mf cresc.

cresc.

Kl. 2

 

3

ff decrescendo

ff   cresc.              

    

Kl. 1

3



mf

 

kl. Kl.

ff decrescendo

 



  

  3





 





 

decrescendo

ff

 



6

 

6

3

6

 



 

6

 



6

 

6

6

                      decrescendo   

ff



 

 



decrescendo

ff

 ff

decrescendo 32986


























45

   176

Picc.

f

mf

decrescendo

 

Fl.1/2

f

mf

decrescendo

 

Ob.1/2

f

Eh.

mf

decrescendo



  f

Kl. 1

 

f decrescendo

kl. Kl.

mf

decrescendo

3

 



     

3



3



 

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

  

1.

decrescendo

  f

2./4. Hn.

 

 f

decrescendo

Trp. 1/2

3

3

  f

  

Pos.1/2

Bpos.

Pk.

3

        3

Vl. 1

decrescendo

  



 

Vc.

Kb. Litolff / Peters

6

  decrescendo

f

Vla.

 

   

6

     

3

3

6

 

   

6

mf

f

f decrescendo



 



 

6

  mf



 





 

    

    

p

     





 

   mf 

mf 32986

rallentando q = ca 75

3

p

p

6

   

 p



f

mf

decrescendo

mf

6

f



p

                         decrescendo   

p

f decrescendo

Vl. 2



  

decrescendo

6



mf

mf

f

p

mf

  

  

mf

f decrescendo

f



mf

   

mf



decrescendo

f decrescendo

Trp.3 (B)

mf

      

3

 

mf

3

 

f decrescendo

mf

    

3

f decrescendo

3

p

3

 

f decrescendo

mf

          

3



     

3

f decrescendo

Kl. 2

mf

rallentando q = ca 75

p

p

p









    

  

      3

 



3



  


46

N

 

kl. Kl.

Kl. 1

181

Fl.1/2

Ob.1/2

Eh.

 1.



p espr.

3



Kl. 2



ffp

   

Bhn.

Fg.1/2

Fg. 3

3         

1.

1./3. Hn.

2./4. Hn.

Trp. 1/2

Trp.3 (B)

    

 

Pos.1/2

Bpos.

Cel.

  

 N  

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

  

 

 

 

     

ff

 ff

  ff

 

f

3

 1.3  

2.

ffp f 2.4.



ffp



1.

ffp



p flag.(cis3)

  p    

p flag.(b2) p flag.(b2)

 

5

1.3.

   2.4. ff

1. ff

  ff

   

ff

  ff

 ff

    

ff ord. non div.

 

    

ord.

  

ff



ord. ff



ord. ff

 



ord. ff

   

ff

ff 32986

3

 

ord. non div.

 

 





 

ff

ffp



flag.(fis3)

ff

 

ffp

p flag.(suono reale)

pp

 



q = ca 95

 

p

p

pp

ff

  5                    3 f ff 5 5     3  1.2.                3 ffp

mf flag.(c4)

 



ffp



1.2.



Pk.

p espr.

ff

p espr.

   

       3

  

 

q = ca 95

5                  5   5         

ff

5


   186

Fl.1/2

47

1.2.

fp

p

 

  

Ob.1/2

fp

 

  

Eh.

 3 3           p

 



fp

kl. Kl.

 

 

fp

Kl. 1

fp

Kl. 2

Bhn.



fp

2./4. Hn.

   

 

 

 

 

 

 

fp

fp

1.

Pos.1/2

fp Bpos.

Pk.

p

       

fp

Trp.3 (B)

  

  

fp

 

 



  

 

  



  



molto legato

Vl. 1

fp

molto legato

Vl. 2

fp

molto legato

Vla.

fp

Vc.

Kb. Litolff / Peters

3            

f       fp   

Trp. 1/2



1.

1./3. Hn.

    f

Fg. 3

p

  

f

Fg.1/2

 

 





molto legato

 







 32986

 

p



3

 



 p





  

   





3

 


48

II. Der Rabbi

 

193 q = ca 85

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 2

Bhn.

1./3. Hn.

Pos.1/2

Pk.

 



Kb. Litolff / Peters

3

1.2.

           p

3

           f p

3

           3

 p

f

p

f

p

 



 1.



p 2.4.



  

p



     

 









              



 

 

 

  

p

 

 

 

 

1.

p

f

1.





2.4.

2.

 

        

f

1.



               p

2.



pp

f

p

        f      

  

  

O q =3 ca 100               p

  3

3

1.

f

f

f

     p

p

 

p

 

 

f

  

  

           p

1.



 

p

 

Vc.

 

q = ca 100

f

1.

    

Vla.

p

p

 

Vl. 2





q = ca 85

Vl. 1

p

Trp. 1/2

Bpos.

 

2./4. Hn.

1.

O  

3

Fg.1/2

f

 

Kl. 1

Fg. 3





 







 

 

   32986



 

  

  

  

  

    

  

f

f

f

   f

p

p

p

   p


  201

Fl.1/2

1.

 

Ob.1/2

      

q = ca 85

mf

1.

  

kl. Kl.

Pos.1/2

Bpos.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

mf

mf

mf

p

p

mf

  

   



mf

 

 mf

     3



 

 

   

3

 



mf

1.

1.

 

  



mf p

mf

   

2.

 

mf

p

mf

 







2.



3       

 

q = ca 85

 

  

 

pizz.

3

p

mf

 

     mf

p

3

q = ca 90

  

mf







arco  mf

   

mf

 32986

 

 

  

mf

q = ca 85

mf

 

f

3

p

mf

 

mf

    cup

3

3

 

                 arco         

f



      

 

 

  

cup auf

mf

p

pizz.

 

3



   

1.

  

   

q = ca 85

  



        

       

mf

 

49

3

   

p

  

 3 

p

mf

    mf   

        



2.

mf

p

        

f

    p

    

mf

3

3



3

        



 

Fg.1/2

Trp. 1/2

 

Bhn.

2./4. Hn.

 

Kl. 2

1./3. Hn.

Kl. 1

Fg. 3

 

3

p

Eh.

p

  

q = ca 90

   

 

 

    

   3

f









mf


50

q = ca 90

  206

Fl.1/2

 



Eh.

kl. Kl.

Ob.1/2

Kl. 1

Kl. 2

Bhn.

Fg. 3

1./3. Hn.

   

p



 

3

3        3

3

   p



   



  

  

p



 

mf







 





  

p

      

p