Page 1

Contemporary

D端nser Radek-Sinfonie f端r Orchester Full score/ Partitur

EP 12750


RICHARD DÜNSER

RADEK – SINFONIE für Orchester

EIGENTUM DES VERLEGERS · ALLE RECHTE VORBEHALTEN ALL RIGHTS RESERVED

HENRY LITOLFF’S VERLAG / C. F. PETERS Ein Unternehmen der EDITION PETERS GROUP FRANKFURT/M. · LEIPZIG · LONDON · NEW YORK


Inhaltsverzeichnis: Prolog: der neunte Kreis der Hölle S.1 I. Wiegenlied S. 27 II. Der Rabbi S. 48 III. Die Revolutionäre S. 74 IV. Rose S. 101 V. Larissa S. 127 VI. Ein Engel S. 163 Epilog: Erinnerung und Tod S. 184

Instrumentation : Piccoloflöte, 2 große Flöten; 2 Oboen, Englischhorn; Kleine Klarinette in Es, Klarinette 1 in B, Klarinette 2 in A, Bassetthorn; 3 Fagotte; 4 Hörner in F; 1. und 2. Trompete in C, 3. Trompete in B; 2 Tenorposaunen, 1 Bassposaune; Harfe; Klavier (auch Celesta); Schlagzeug (3 Spieler): 3 Tam –Tams (groß, mittel, klein), 3 Hängebecken (groß, mittel, klein, auch mit Bogen gestrichen), 1 Paar Gegenschlagbecken, 2 Röhrenglocken (in d1 und d2), 1 Crotale in f3 (klingend), Kleine Trommel, Militärtrommel, Große Trommel, Vibrafon, Tamburin; Pauken; Streicher. Dauer: ca. 38 Minuten Die Partitur ist in C geschrieben.


Radek - Sinfonie Richard Dünser

Dr. Ernest Hoetzl herzlichst gewidmet

Prolog: der neunte Kreis der Hölle

Piccolo

 

Flöte 1/2

Oboe 1/2

Kleine Klarinette

Klarinette 2

Fagott 1/2

1./3. Horn

Becken Tam-tam

Vibrafon

Harfe

Klavier

q = ca 80

1.

 p espr.

   

 

 



 

 

  

p espr.

 

3

 

3

 

p espr.

  

3

p espr.

3



    

 

 

                        3

3

pp espr.

Violine 1

3

3

3

3

3

  

pp espr. 3

3

3

3

3

3

pp espr.



pp espr.

    

 

Viola

 

Violoncello

Litolff / Peters

3

                        

Violine 2

Kontrabass

3

 

p espr.

  

  



   

pp espr. pizz. p espr.

32986

  



   



  



3

  

3

  

   



3

3

    

3

 

      

       3



3

    

  

  

  

        3

q = ca 90

  

    

3

   

3

 

   

3

 

3

1.

 

q = ca 80

3

             



3

  

3

p espr.

q = ca 90

  

3

p espr.

    3

senza vib. sempre

3

p espr.



3

p espr.

 

  

q = ca 90

  

2.

   

p espr.

    

p espr. 1. cup

 

3

 

p espr.

 

1.

3

 

p espr.

p espr.



 

3

p espr.

1.

p espr.

 



  

1.

  

2./4.Horn

Trompete 1/2

q = ca 90

3

 

 3

  

3

    3

3

    

   

 © Copyright 2007 by Henry Litolff´s Verlag 3/11


2

  

1.

4

Fl.1/2

1.



      5



Bhn.

1./3. Hn.

3

     

3

   3



  

3





p

3

3

  3

p

p

 

Vla.



mf

Vc.

Kb. Litolff / Peters

 3

3

3

   

 

 5

  

f

  p 3

 1.

 p

 

 

cup



mfp

3

      3

3

 

        3

3

 3

          

 3

 

3

  3

  

3

3

   3

 3

      

  3

  



 

3

     

  

p

3

  3

  

         

3

           

Vl. 2

  

  

                

p

3

  

Trp. 1/2

p 3

  

3

mf 1.

Vl. 1

3

 

  

Hfe.

 

  

2./4. Hn.

Bpos.

  

3

 

mf

Fg. 3

3



Kl. 2

Fg.1/2

3

     

 

Kl. 1

5

mf

Eh.

     

mf

 

Ob.1/2



 32986

 

   

      p 3 5

mf arco



mfp


  

 

 



 



 



7

Fl.1/2

1.2.

p

1.2.

Ob.1/2

3

p

Eh.

p

Kl. 1

p

Kl. 2

p

 

Bhn.

    

Fg.1/2

Fg. 3

       

 



2./4. Hn.

Trp. 1/2

Bpos.





Vl. 1

 

 3

  

 3

 3

 

Vl. 2

        

Vc.

Kb. Litolff / Peters

 

 3

 

       

 

  

3

3



 

 3



 

3



 32986

  

 

 

 3



  

3

3

  

 

 

3

3

  



 

 

3

3

 

Vla.







 

  



Hfe.



3

  

1./3. Hn.

   mf    

3

  

3

 



        





    


4

  9

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

 

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

Pk.



A



 



  

 

 

  mf

 mf

2. mf mf 1.

 

Vla.

 pp

3

 



p

pp

pp

pp

 

 pp



pp

 

pp

pp

           mf

  q = ca 80 accelerando- - - - - - - - - - - - - - - - - - - - - - - - - - - - A                  q = ca 90 6 6 6 6                        5 3 3  sfp 6 6 6 6                                     3  sfp 3 5 6   6                           sfp   6         sfp 3 5 5 5 5                                6 3          6             

Vc.

Kb.

 

p

 

pp



pp

mf

Vl. 2

pp

 

pp

mf

Vl. 1

 pp

1.





 

pp

sfp 2.

3

Litolff / Peters

 

Hfe.



pp

 mf



1.



1.



T.-t.

q = ca 90

accelerando- - - - - - - - - - - - - - - - - - - - - - - - - - - - -

  

Trp. 1/2

Be.

2./4. Hn.

Bpos.

q = ca 80

6

6

sfp

  32986

sfp

p


5

  11

Picc.

6

p

                        1.2.

Fl.1/2

6            

p

6

6

6

6

     1.2.

Ob.1/2

1.











6

p

kl. Kl.

Kl. 1

Kl. 2











    











p

    p

6





    3

p

6









f 5

  

 



 

 

6

5               p

cup ab

    

1.

Trp. 1/2

 



5 5                                                 5

p

6

Vl. 1

  

2./4. Hn.

Bpos.



  

Fg.1/2

1./3. Hn.

Bhn.

Fg. 3

Eh.

6

6

6

5

Vl. 2

p

 

Vla.



5

Kb. Litolff / Peters

  





                     

Vc.

  

3

 3

5

5

5



f



  

32986

6

               

3

5

5

                 


6

 

ff

ff



13

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

1./3. Hn.



ff

Trp. 1/2

Trp.3 (B)

Bpos.

 

 



ff

     

Vla.

  

Vc.

Kb. Litolff / Peters

ff

pp



3

p

pp

pp pp pp

ff

3     p   

pp

 ff  sordino senza ff

pp

2.4.



sfpp

   

 





 

  



mf

   

 

 

 

ff

    

Vl. 2

pp



pp

 f         

Vl. 1

pp



ff

2./4. Hn.

Klav.

ff

 ff      ff    1.3.  

Fg. 3

Hfe.

pp

 1.2.

Fg.1/2

Pk.



ff

Bhn.

pp

 

Kl. 2



                                                                                           sfpp ff

6

6

6

6

6

6

6

6

                                                                                     6 6 sfpp 6 6 6 6 6 6                                                                                      sfpp 6 6 6 6 6 6 6 6                                                                       5 5 5 5 5 5 sfpp 5 5                                                        5 5 5 5 sfpp 5 5 5 5                                                             sfpp 6 6 6                                             sfpp 6 6 6 6 6 6 6  6                                                                   sfpp 6 6 6 6  6      6

6

6

6

sfpp

32986

6

6

6

6


7

 

Ob.1/2

Eh.

Kl. 1

Kl. 2

15

Fl.1/2

Bhn.

 

Fg.1/2

  

Fg. 3

 

1./3. Hn.

2./4. Hn.

Trp. 1/2

Bpos.

Hfe.

3

3

 

 

 

 

 



p

 



 

    3

 1.

3

 p  

2.

 

pp







    6      6       6      6     6       6      6      6                                                                                                6

6

6

6

6

6

6

6

                                                                    6

6

6

6

6

6

6

                                                                                                  5 5 5 5 5 5 5 5                                                                                

Vl. 2

6

6

6

6

                                                                           

Vla.

5

5

5

5

                            6    6

Vc.

Litolff / Peters

3



6

Kb.

3

     

3

 

Vl. 1

     

3

6 6

6 6

6 6

32986

6

6

6

6

                                                                                      5

5

5

5

                                                6 6

6 6

6 6

6 6


8

 

Ob.1/2

Eh.

Kl. 1

Kl. 2

17

Fl.1/2

Bhn.

Fg.1/2

Fg. 3

 



 

 

Trp. 1/2

3

 

Vla.

Vc.

Kb. Litolff / Peters

 

 



1.

 

3

 

3









3

 

  

3



3



 

3

    

    

3

3



 



 

 



   6                                                                                    66 66 66 6 6 6 6 6                                                                                    6

6

6

q = ca 70

6

                                                                               6 6 6 6 6 6 6 6                                                                     5   5  5 5 5 5 5 5                                         6

Vl. 2

3

Vl. 1

 

 

2./4. Hn.

Hfe.



 

1./3. Hn.

Bpos.

q = ca 70

6

6

6

6

                                                                          5

5

5

5

6 6

6

6

6

                                                                5

5

5

5

6

6

6

6

                                                                    6 6 6 6         6 6

6 6

6 6

32986


B

  19

Fl.1/2

Ob.1/2

Eh.

9 q = ca 100

p espr.

Kl. 2



Bhn.



Fg. 3

p espr.

1./3. Hn.

 

 

 

1.





p espr.

 

 3

 



 



p espr.



 

    

   

  

q = ca 90

Vc.

q = ca 80

    

 Vla.

q = ca 90

 Vl. 2

    B q = ca 100       

Vl. 1

Litolff / Peters

 

3



Kb.

1.

q = ca 90

p espr.

Trp. 1/2

pp

q = ca 80

 

p espr.

Hfe.

   

 2.  

2./4. Hn.

Bpos.

 

p espr.

 

p espr.

Fg.1/2



Kl. 1

q = ca 90

         

     p espr.

   

pp

 

solo



  

molto legato

p espr.

    3

  

 



    3

3                  

p espr.

3

p espr.

3

3                  

32986




10

  23

Fl.1/2

1.



 

3

1.

 

3

p espr.

 

Ob.1/2

p espr.

Eh.

Kl. 1

 

  

 

p espr.

Kl. 2

Bhn.

 

p espr.

p espr.

Fg. 3

1./3. Hn.

  

2./4. Hn.

3



 



fp







Bpos.

Vl. 1

 

3

 

Vla.



3

3

 

    





   





  

3

 

  3 

p espr.

3

Kb. Litolff / Peters

 

p espr.

3









fp



fp

 

 

fp 3

fp

      3 

 

  

    



  







  

 

 

 



 

3

 3

cup ab



 

q = ca 85





  

   



  

  



3



 



 



  



  

fp

fp



fp

3



fp



3

fp



3

3

 

   

3

 

fp

 

     

Vc.



3

 3

p espr.

1.

fp

  

tutti



3

  

 

p espr.



p espr.

1.

Vl. 2

fp

  

p espr.

 

   

   



3

  

          

fp



p espr.

fp



   

  



       

3

                

               3

 

3

mf

p espr.

Trp. 1/2

3

  



 

  

3

 

     



   

3

p espr.



3

   

fp

  

 2.

fp

mf

mf

   

   1.2        

2.

mf

    

3

3

1.



1.2

mf

   

Fg.1/2

 

p espr.

p espr.



 



kl. Kl.

      

        

q = ca 85

 fp 32986

3



 

 3  

 

 3  





fp

 

3

3

 

  

3

3


  25

Picc.

            

   

Fl.1/2

mf

 

Ob.1/2

mf

Eh.

kl. Kl.

f

            

 

f

f

f

1./3. Hn.

2./4. Hn.

 

 

  

f

5

        

3

     

    

f

3 3             

f

3

3

3

mf

Vl. 2

 

 3

Vla.

    

            mf

Kb.

mf

Litolff / Peters

3

3

              3

3

    

3

Vc.

3

3

  

f

    f

5

f

5

   

  32986

  



ff 3

     

    

    

  

  

ff

     ff

3

    ff

2.4.

ff

3

3

3

3

3

    ff

1.2. senza sord.       ff

       ff  ff      ff

 

 3  

 

  

  

  

3

3

 3  

 

     3

3

  3

    

     

  

     

ff

          ff

 

  

molto espressivo e patetico

   

ff

3

     ff





    

ff molto espressivo e patetico





    

senza sord.

C q = ca 90  

f

ff

   

1.3.

  



  

 

f

  





3



  

Bpos.



  



 



    

Pos.1/2

  

  

  









  

   

   

Vl. 1

3

   

ff 1.2.

 



  

5

  



Pk.

ff





Be.

3

5

f



ff 3

5

    

ff

   



Trp.3 (B)

3



       f mf                      

  

ff 3

      

3

mf

Trp. 1/2





3

ff

5

            

mf

3



   

  

mf

Fg. 3

ff 3

f

    

Fg.1/2

   



3

              

   

Bhn.

   



   

Kl. 2

11

q = ca 90

                     mf     f                    3

3

mf

Kl. 1

C

  

   

molto espressivo e patetico

  

  

  

  

3

3

 

 

3

3


12

  28

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

  

1./3. Hn.

2./4. Hn.

Trp. 1/2

 

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Hfe.

Klav.

Vl. 1

  

 

 

 

 

 

 





 

 

  

 

    3



3

   

 

3



    3

3

 

   

 

3

   

 

3

3

 

3

3

     

      3   

  





     



  32986

3

3

     

  

ff

3

3

 

      

3

3

3

3

3

 

  

3

 

 

3

   

3

3

3







     

3

3

 

  3

3

  3   3  

 

 

   

 

   

3

3

  3 

3

 

3  3  

  

   



5





5







  

3   3  

                       

3    3   3   3   



 



 

 

 

5 

 3 

           

 

     

   

3

3

  3 

 

3

      

 

     



3

    

 

3

3 

   

3

3 

  

3

3 

 

3



3

   

ff





 

3

      

 

     



 

   

 

Kb.





Vla.

3

  

   

Vc.

3

 

        

 

3

 

   



Vl. 2

Litolff / Peters

 

   

        

 

   


30              

Picc.

Fl.1/2

Ob.1/2

        

Eh.

kl. Kl.

Kl. 1

   

Kl. 2

 

    

Bhn.

Fg.1/2

   

Fg. 3

           

1./3. Hn.

2./4. Hn.

Trp. 1/2

  

Trp.3 (B)

   

Pos.1/2

Bpos.

Pk.

Hfe.

Klav.

Vl. 1

        

 

Vl. 2

                  

    

 

Kb. Litolff / Peters

   

3







3





3



5

5

 

 5

 5   5 

 

   5 

5

5

5

5



5



5

 

5

  5

 

   

5

   



   

cresc.

 



5

5

5

 5

ff

   

cresc.

Vc.



5

cresc.

Vla.

 

           

   

     



      

 

 

 

 

3

   

 





3

 



 

  









3

 

  

3

3

3

3

 

 

3

3

  

   

  

f cresc.

   

   

3

3





3





3

3

   

 

 

3

 

 

3





fff



5

fff

3

3

3

5







 

 

 

5

5

5

5



 

 

55

5

 

 

 

    

 

 

5

 

 

 

3



3

  

3



3

  

3



        

5

55



3         



5

 

 

 

5

5 5

3

5



5



5

3

  3

fff

32986

        





3

 



 3

 



3



13

5

5

 

  

 

 


14

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

 



Kl. 2

 

Bhn.

Fg. 3

1./3. Hn.

 

    

 





Kl. 1

Fg.1/2



31           

       



 





        

 

 





 



 

2./4. Hn.



    

       

Trp. 1/2

 

 

 

Trp.3 (B)

 



 

 





 





 

Pos.1/2

Bpos.

Pk.

Hfe.

Klav.

    ff          





3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                                                 

Vl. 2

ff

Vc.

3

3

3

3

3

3

3

3

3 3 3 3 3 3                                                    3 3 3 3 3 3 3 3 ff                                                 

Vla.

Litolff / Peters

 

3 3 3 3 3 3 3 3                                                   

ff

Kb.

 

 

       

3

Vl. 1

 



3

3

3

3

3

3

3

3

3

3

3

 32986

3

3

3

3



3

3

3

 

 


  

15

33

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

         

      f

f

 

f

 

f

f



 

f



 

 

3

   3

  

 

3

 

  

3

 

  

 

3

3

3

5

 

3

f

 f      f

 

3

3

  3

3

f

 

 

 

      



       3      

3

  f

3

     

 

  

     

f

 

 

3

f

 

  

 

3

3 3

     

  

 

3

3

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

 



 



pp

   

 

 



 

 pp



pp

   

 2.





1.cup auf



pp

  



pp

pp

   

 

       

 

       

 

       

5

5

      5

     

1.cup auf



        3

  

3

3

  

     

 f

      32986

2.

 

 

 

pp

     

1.

   

 

 

 



     

     

   

 

 

 

  

1.

 

 

1.

 

  

 

f

Vl. 1

                              

f

      

                 

      

3

5

  

 

      

f

 

 

f

   

 





 

 


16

D

 

 

Ob.1/2



Eh.



37

Fl.1/2

Kl. 1

 

Bhn.

1./3. Hn.

Trp. 1/2

Bpos.

Be.

Vl. 1



p espr.

   

 



1.

 

     

 

 

1.

 

p espr.



 



 

        pp D 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                               

pp

3

pp

  

3

pp

 

 

pp

pp

pp

 

pp

3

3

3

3

3

3 3        

              3

3

3

3

                  3

3

3

3

3

3

 3   3   3   3   3   3   3   3           

  

3

 3   3   3   3   3   3   3   3  3   3   3   3                   

  Vc.

3

3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                 

pp

Vla.

3



pp

Vl. 2

Litolff / Peters

 

3



3

  

Kb.

 

2./4. Hn.

3

p espr. 1. 3

 

Fg.1/2

Fg. 3



p espr.

Kl. 2

 

 32986

 


17

  

  



 

  





 

 

 

  



   

p espr.







 1.

39

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

Be.

T.-t.

Klav.

 

1.

p espr.

1.

 

 

 

 p espr. 

 



 

  

     

 

  

  

 



 



 

 

 

  

 

  pp

 

 

              3

3

         

3

 

      

                         pp  pp

Vl. 2

Litolff / Peters

 

3 3 3 3 3   3                       

Kb.

p espr.

pp



 

Vl. 1

Vc.



  

 

  

  

  



 p espr.

3 3 3 3 3   3          

Vla.

p espr.

 

3

3

3

3

3    3      3   3   3   3          

 

           3

3

3

3

3

3

3 3 3 3 3   3                                       3 3 3 3 3 3                     

        3

3

3

3

3

3

3      3   3   3   3   3          

  

32986

3


18

   42

Fl.1/2

 

Ob.1/2

  

  

 

Eh.



  





kl. Kl.

 

 

  



Kl. 1

 

 





Kl. 2

     





 

 

1.

Bhn.

Fg.1/2

Fg. 3

  

T.-t.

Crot.

Hfe.



Be.







1.

  

  

 

  



 

 

          loco

3

3

   

    3

3

3

3

3

  

  

Vc.

Kb.

Vl. 1

legato

p espr. legato p espr.

Vla.

Litolff / Peters

32986

 

 

 





 

 

 

 

 

 

 

 





 

 





 

 





 

 

      div.       

               

 

 

 

p flag. (suono reale) p

 p

  



  



  p flag. (suono reale)   flag. (f3)

Vl. 2

 



p

      

 

 

p

3

 

 loco                             

Klav.

 

 flag. (suono reale)

 

p flag. (es2)

 p flag. (suono reale)  p flag. (suono reale)

 p

  

div.

 



  



          

    

 

   

   


19

E 47   



 



 

kl. Kl.

 

Kl. 1

 



 



 

 

  

Fl.1/2

Ob.1/2

Eh.

Kl. 2

Bhn.

Fg.1/2

Fg. 3

  

1./3. Hn.



1. cup



Vl. 1

Vl. 2

2.

ord. ma senza vib.

  

  

ord. ma senza vib.

   

ord. ma senza vib.

Vc.

   

senza vib.

    

senza vib.

Kb.

p

Litolff / Peters

 

 

pp













   

 



pp

klangvoll           pp

3

3

3

  

loco   3

    

  

3

3

   

3

 

  3

     3

      

3 3 3 3                                    

pp

3

3

3







ord. ma senza vib.

Vla.

 

         

  

  klingen    lassen                                   

pp



 



pp



 



pp

  



p



 

p

   

 



  

    E senza vib.      



    p





 

p

 



pp

  

Klav.

 



1.

Pos.1/2

 

p



Hfe.

 



 

Vibr.

p 1.

pp

   

 

1.

2./4. Hn.

T.-t.

1.2.



pp



pp pp

pp

pp

32986


20

   51

Fl.1/2



 

  

 

3

 

Ob.1/2

  



 

Kl. 2

 

3







1./3. Hn.

Pos.1/2



 

 





 







Vibr.

 





3



 

3

Vl. 1

 

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

    3

                         

          

3

3



3

    3

   

3

3





 

3





 

        3                3

3

3

     

3

3

3

 

        3

3

3

3

   

                   3   3

32986



3

           

3

                  

   



3

                





3







         3

Klav.



 



 

 





3

Hfe.

3

  



   

 



  





3

Fg. 3



3

3

Fg.1/2







Kl. 1

Bhn.



3

Eh.




21

   

  

  

  

54

Fl.1/2

Ob.1/2

Kl. 1

 

   

Kl. 2

  

  

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

Pos.1/2

T.-t.

Vibr.

 





 

 

  

  

      

3

3

 

3  3      

3  3                  

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

3

 

 





 

  

1.





 3     

 



 

ord.

 



  

3

          3



pp

3



 



  





 

 

1.

                     

Klav.



 



1.2.

 





3

Hfe.



  

 



  

  

2./4. Hn.

 

  



Eh.

 

1.

 







2.

p

3    

3

  

      

     3      

 

     

3     

     

3

  

3

 



p



 

 



 





 

 

 

p

ord.

ord.

p ord.

  32986

p

 

ord.

p


22

 

Ob.1/2

Eh.

Kl. 1

Kl. 2

Fl.1/2

Bhn.

Fg. 3

 

       

3

Litolff / Peters

  

       

3

  



  

    

   

   

  



3

  





 





 





 







  

 

3



 

 

p

Kb.

p

 

1. cup

 

Vc.



F



1.

Vla.

 

Vl. 2



 

Vl. 1



 

Klav.



Trp. 1/2

Hfe.

Vibr.

 



2./4. Hn.

Pos.1/2

1.

1.

  

1./3. Hn.

 

 

Fg.1/2

 1.

58

3 3 3                         mf 3

F 

3

3

                         

pp

pp

3

3

3

3

3

3

3

3

                                     3

3

3

3

3

3

3

3

                                    

pp

3

3

3

3

3

3

3

3

pp

 

 

 

  32986

                                     3

3

3

3

3

pp

 

 

3

p

3

p

3

 

3

3

       

3

3

 


  



 

 

62

Fl.1/2

Ob.1/2

1.2. 3

1.

3

Eh.

kl. Kl.

 

 

Kl. 2

 

 

3

pp

3

    

pp

p 3

3 3

p

   3

Fg.1/2

   3

3

  

1./3. Hn.

Klav.

3

 



  

      

Vl. 2

 

  

flag.(f2)

pp flag.(f2)

  

Vla.

pp flag.(fis1)

   

Vc.

Litolff / Peters

pp flag.(suono reale)

 

pp

3

   3

  

       3

3

3

 ord.      

pp flag.(suono reale)

  

ord.

3

 

6

3

3

       3 3 ord.        3 ord.

3

    3

6                  6    fp mf cresc.    6               66    fp mf cresc.           fp mf cresc.             

cresc.

23

     

fp

        

   

mf cresc.

6

mf cresc.

6 6

     mf cresc. 6     6  cresc.  mf           6 mf cresc.



1. f

fp

     fp

          fp            fp 

f

 

pp

Kb.

p

 

flag.(suono reale)

Vl. 1

cresc.

6

   6        

cresc.

       p cresc. 

2./4. Hn.

Trp. 1/2

 

3

Fg. 3

cresc.

     p



2. p

   6          p

           p 1. 3

           

Kl. 1

Bhn.

3

pp

pp

 

  

6

 

              

 

3. mfp 2.4.

  

 

3

f

mf cresc.

6

mf cresc.

cresc.

6

      p cresc.       

  

                ffp             

fp

6 6

cresc.

mf cresc.

6

f

6

ord.



32986

f

 

 

 

 

 

 

fp

fp

fp

fp

6

              fp 6 mf cresc.               

        

6

6

              fp    mf cresc.    6                        p cresc.

p

                mf cresc. 6 fp p cresc. 6                           p cresc. fp

p

 

mfp



6

fp

 

6

ffp

mfp 1.

6

p

6

3



 

fp

fp

fp

      6



fp

 ffp

6


24

  64

Fl.1/2

 1.

pp

  1.

Ob.1/2

pp

Eh.

Kl. 2



 

 

 

1./3. Hn.

   2.

pp

Bpos.

Klav.

Vl. 1

Litolff / Peters



1.

pp

 

pp 2.



pp

3

 3

   

   

pp

pp

3

   

 

3

3       pp    espr. 3          

pp



3

pp

3

p espr.

 

3

3

3

3

3

3

3 3

3

3

                                                            



3

                                                            

3

3

3

3

3

3

3

3

3

3

                                                           3

espr.

3        3    3 3                             3 mf 3

3

 3    pp   

pp

Kb.

pp

3

Vc.



 

Vla.

pp

Vl. 2

 

1.

1.

 

Trp. 1/2

pp

2./4. Hn.

pp



pp

1.

Fg. 3

Fg.1/2



pp 1.

pp

Bhn.

pp

Kl. 1

1.

3

3

3

3

3

3

3

3

3

                                                           3                        3 3

3

3

3

3

 32986

3

3

3

3

mf

3

3

p espr.


25

  

 

67

Fl.1/2

Ob.1/2

q = ca 85

Eh.

kl. Kl.

Kl. 1

Kl. 2

     p espr.

f

p

f

pp





 



     

pp

pp

pp

1.

 p



1.3.

f

p



2.4.

f

p

 

1.

2.





p

 

1.2.

 cup auf

 f

pp



 



 

Litolff / Peters

2.

 

Vl. 2

Kb.

Vc.

  

Vla.

f

 

Trp. 1/2

Vl. 1

 

 

2./4. Hn.

Bpos.

 

Fg.1/2

1./3. Hn.

Bhn.

Fg. 3

 

 32986

p

q = ca 85

molto legato

p espr

    p espr.

  

molto legato



p espr




26

  73

Fl.1/2

q = ca 80



1.2.





q = ca 75



f

2. Ob.1/2

Eh.

kl. Kl.

Kl. 1

1.

 





 

p espr







p espr

f





p espr

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.













 f

Vl. 1





 p espr



f

  

1.





f

p espr 2.

 

 



 



q = ca 80



q = ca 75



f

p espr



f





molto legato

p espr

 

 



    



f

  

f

p espr

Litolff / Peters

 

  

molto legato

Kb.



 

Vc.

f

Vla.

  

Vl. 2

Trp. 1/2



2./4. Hn.

Bpos.

f

p espr Kl. 2

    

f







f

 32986


G I. Wiegenlied

 q = ca80  80

Fl.1/2

Ob.1/2

27

 

 

Eh.

 

Kl. 1

 

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

 

 

 

 

 

1.



p molto espr.

1.









     

mf molto espr.



 



 

p molto espr.

p molto espr.

 

 

1.



p molto espr.

p molto espr.



 



 

 2.  

 

 



 

 



 

G = ca 80  q   mf molto espr.

Vl. 1

 

1.

1. cup p molto espr.

 

 

 

 



 

 

 



 

 

 



 



 

 



 



 

 



 



 

p molto espr.

p molto espr.

p molto espr.

p molto espr.

p molto espr.

1. cup ab, straight mute auf

p molto espr.

 

p molto espr.

1.



Vl. 2

Vc.

p molto espr.



Vla.

 





Trp. 1/2

Litolff / Peters

 

2./4. Hn.

Kb.

 

p molto espr.

Pos.1/2

  







p molto espr.









































 

 

 





 





 32986



     


28

   91

Fl.1/2

1.







q = ca 90







Eh.

Kl. 1



 



1. p molto espr.

 

H

q = ca 80

p molto espr.

Ob.1/2

 

q= 110

1.



  f

 

 f

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.







  

2./4. Hn.



 f

 f 1.

2.

  f

  f

Trp. 1/2

Bpos.

Vl. 1

       





 

q = ca 90

q = ca 80

3  3                  



 

 

 



  p espr.

Vc.

 f



 

 



 



p espr.

Vla.

 f

Vl. 2

  f



q= 110

H

 

f

f

 

p espr. f

Kb. Litolff / Peters

 32986



  f


  99

Fl.1/2

  

Ob.1/2

3 1.    

p

pp

Kl. 1

  

  

pp

Kl. 2

pp

p

f

 

     1.2.

1./3. Hn.

2./4. Hn.

  

 

Vl. 2

Vla.



p

3

3

3

3

        p    3            3 p 3 3

             3 3

3

         3 3

q = ca 80

Litolff / Peters

   3   p





mf

 

 

 f

1.    mf

 

p



p

  

1. straight mute

f q = ca 110 pizz.

    arco   

  

       

  

p





     

pizz.

arco

f pizz.

    f pizz.

 

arco

      

arco

  

   f

 32986

 

fp

   

q = 78

    

f

 

 

f

 



 f

 

f

 



 



 

p espr.

 

 

f

f

 

f

f

 

f pizz.



 

p

f

  

 

rallentando- - - - - - - - - - - - - - - - q = ca 90  arco          

  

p

mf

 

 



  

p

p

Kb.

 

  

 

   

  

p

 

f

            3 3 p 3          

3

 

p

mf

3

p

Vc.

3

Vl. 1

 

      

     

p

  

 

2.

f



pp

pp

Trp. 1/2

p

3

 

 

   

f

    

f



pp

     

 

mf

f

f

Fg. 3

3

f

1. f

3

    

5

p

q = 78 29

           1.2.

f



  

f

Fg.1/2

f

 1.2.        

 3                    

    

Bhn.

   

kl. Kl.

Eh.

1.2.

     

q = ca 110 rallentando- - - - - - - - - - - - - - - - q = ca 90

q = ca 80

p

    p espr.

    p espr.

 

 





 

p

p

p


30

Fl.1/2

Ob.1/2

Eh.

I 103   

 

 

  

Kl. 1

Kl. 2

Bhn.

 

 

 

  

Fg. 3

p espr.

T.-t.

Cel.

Vl. 1

Vl. 2

Vla.

Vc.

 





p espr.

 

  

1.

 

  pp

gestrichen



pp



 



 

         3           

              

         







  



  

  

    

3

3

 I   

  



       

 

  

p espr.

pp



 

3

3



p espr.





  

3



 

  

       

3







 32986

gestrichen

   



 

p espr.

Litolff / Peters



 

klingen lassen

p espr. pizz.

Kb.

 

   

 



pp

 



  

      

Be.

1.

p espr.

  

Bpos.





  

1./3. Hn.

Hfe.

p espr.

  

Fg.1/2

Vibr.

         

  

3

     

3





 

 

  











 

 

                3

3

     

   

  

3




31

  107

Fl.1/2

 

Ob.1/2





Eh.

  



  

Kl. 1

 

Kl. 2

Bhn.

  

Fg.1/2

Fg. 3

1./3. Hn.

Bpos.

Be. T.-t.

Vibr.



 



  

 

Vla.

Kb. Litolff / Peters

  

   

 





   

 



  

 



















3

     

32986

3

  

 

  

 



  

 

gestrichen



     





  



3

  



3





 

 

 



gestrichen





3



                                           3

3

 

 

3

 





 

 

     

Vc.

   

  

Vl. 2

                   3

Cel.

Vl. 1





     

 

Hfe.

 

gestrichen



   





   

      

 



                 3

3





   



   

  

3




32

  111

Fl.1/2

 

Ob.1/2

 

Eh.



 

    

 

 

 

   

Bhn.

Fg. 3

  

1./3. Hn.

2./4. Hn.

 

Hfe.

Vl. 1

 

   







          

         3

 

 

     

3

3

        

Vla.

Vc.

Litolff / Peters

3

 

 

gestrichen

3

  

3



 

  



  

  

    

 

3

3

3

    

3

 

 

 

 

 

   

 

 

J  

q= ca 70



pp

       

32986



pp





pp



pp div.

   



q = ca 78



 



 

                           

p espr.

       

 

    

       

3

   

p espr. 1.

 

                  

Vl. 2

Kb.

gestrichen

              

        

      

Vibr.

Cel.

 

 

T.-t.

        

 

 

Be.

 



q = ca 78

Kl. 2

 

 

 

Fg.1/2

q= ca 70

Kl. 1

J

  

uniti


33

  117

Ob.1/2

Eh.

Fl.1/2

  3

 

Fg.1/2

3

1./3. Hn.

2./4. Hn.

Bpos.

Vibr.

Hfe.

Cel.

Vl. 1

 

 

 

mfpp

Vl. 2

Vla.

Vc.

mfpp

mfpp cup



 

 



 



   

 

   

                

 p

    



 

p

 

 

 

 

 

 

 

 

 

pp





 





 

 

pp

p

         pp

         

  3         

  

     

pp

 

    

  p espr.

   



   





3

p

 

    

 32986

pp

3

   

 

3        

 

        p 

 

 

     

       



  p

p

   

    

a tempo (q = ca 78)



  

    

klingen lassen

pp

pp

Litolff / Peters

   

rallentando

arco

Kb.

 

klingen lassen

 

  

a tempo (q = ca 78)

 

 

mfpp

    2.

      mfpp  1.     

Fg. 3

   

Bhn.

 

mfpp

Kl. 2

  

Kl. 1

rallentando

 

p espr.

 p

    p

 p

 p


34

 

 



 



 

124

Fl.1/2

Ob.1/2

Eh.

 

 

Kl. 1

Kl. 2

 

Bhn.

Fg.1/2

Fg. 3

 

Bpos.

Vibr.

 

 

 

 

 

 

 

Litolff / Peters

 

1.

p

 

 

 

     

 

     



klingen lassen

pp 3

    

      

  

 

 

pp

            3        

 

 

      

 

p espr.

mf

 

  

 



 

 

 p

p

p

      

 32986

    p











 

 

3          3

   



pp

 



3

    

klingen lassen

pp

 





     

klingen lassen

3

    

 

Kb.



  

 

3

Vc.



 

Cel.

Vla.

 

                              

Vl. 2

p

 

 

Hfe.



 

Vl. 1

p

1.

 

p

2./4. Hn.

    

  



1.

1./3. Hn.



1.

  

 

 

     


35

K

Fl.1/2

  130

Ob.1/2

 

Eh.

ffp

Kl. 1

 

Kl. 2

ffp

 

Bhn.

ffp 1.

              

Fg.1/2

1./3. Hn.

Bpos.

Hfe.

Cel.

ffp

ffp



 











ffp

ffp

ffp

 

               ffp

Litolff / Peters

3

Vl. 2

3

p espr.

3

3

3              

p espr.

Kb.

1.

Vc.

        3        

K    

Vla.

 

Vl. 1

3

   

p espr.3

 

ffp

2./4. Hn.

3

p espr.

 ffp   

Fg. 3

3

  

    

 

ffp

p espr.

3



3







  



3

       p espr.



















  

p



p



32986

    

3 3                     






36

  136

Fl.1/2

1.

 

Ob.1/2



p



Eh.

Kl. 1

Kl. 2

      

Bhn.

p espr.

Fg.1/2

Fg. 3

1./3. Hn.

Be.

T.-t.

Vibr.

     3

3

  







mf



 





 

  

  



             

 

mf





 

1.





 

mfp 2.

 



mf







mfp







  



Vl. 1

 

Vl. 2

 



 

 

3

3



   

Vc.

       

 

    

 

pp



mf





mf

 

mf

     

mf espr.

     

mf espr.

            

Vla.

Litolff / Peters



mfp

mfp



 mfp 

 



1.

Hfe.

Kb.

 mfp



mf 1.

mf



2./4. Hn.

Bpos.

1.

 32986



 



 

      

 

  


L q =78 142 1.                 p espr. mf 1.         q = ca 70

Fl.1/2

Ob.1/2

 

p espr.

Kl. 2

Fg.1/2

 



p espr.

 

 

  

Be.

T.-t.

Vibr.

 

 

 

Litolff / Peters

 

 

     

 

   

    

 

  



 

 

 

gestrichen





pp

 

 

 



pp

klingen lassen

  



 

   1.



p espr.

  

gestrichen

 





       

      

  

pp

p espr.

                 3

pp

3

3



             3

3

                  3

3

3

  

           3

3

3

  

3

                             q = 78 L                  



p espr.

 



p espr.

 





1.

p espr.

  

                 p espr.                 p p espr.

  

  

q = ca 70

Kb.



    

    

Vc.

 

  

Vla.



 



Vl. 2

 



Cel.

Vl. 1

  

Hfe.

      



p

Bpos.

 

p espr.

            p

Bhn.

1./3. Hn.



     

   

Kl. 1

Fg. 3

Eh.

  

37

 

p

  

p espr. pizz.

  

   

p espr. 32986

   

   

  

 

  











  

   


38

  148

Fl.1/2

 

Ob.1/2

Eh.

 

   



 



Kl. 2

 

Fg. 3

Bpos.



T.-t.



 

Cel.

Vl. 1







   



  



 

 

  

 

  

   

   

3

3

3

3

 

3

  



                                    

3

3

 

3

 

     



3



 

gestrichen



     

3





 



gestrichen

     

 



 

     

    

 

 

gestrichen

       

      

                    3

3

3

3

3

                                 

    

Vla.

  

   

 

 



  

 





  





  

Vc.

Litolff / Peters

   

                                           

Vl. 2

Kb.



 

gestrichen

 

Hfe.



  

Be.



p espr.





  

 

1./3. Hn.

 





  

Fg.1/2



   

Bhn.



   

Kl. 1

Vibr.



  

 



   

 

   

 

 32986

    

      

  

   


39

153      

Fl.1/2

   





 

Ob.1/2



q = ca 95





 



 

  

q = ca 80

q = ca 60

 

Eh.

 

Kl. 1

                mf

Kl. 2

     

Bhn.

Fg.1/2

Fg. 3

2./4. Hn.

Bpos.

Cel.

Vl. 1



 

 

 

 

 

 

3



                3

 

    

    

  



                        

                 



 

 



 

 

   mfp    



     



 

 



          

3

gestrichen

 

3



3

3

gestrichen

3

3

3

                                

Vc.

                

Vla.

 

 

  



Vl. 2

Litolff / Peters



 

Kb.

 

  

T.-t.





    

 



Be.

Hfe.



 

1./3. Hn.

Vibr.

 

 

  





  

 

  



  

 



 







  

 32986

q = ca 95

mfp

   

 

mf

q = ca 80

q = ca 60

 





mfp



 


40

M

 

 

 

Eh.

 

kl. Kl.

 

159

Fl.1/2

Ob.1/2

q = ca 80

       pp   

Kl. 1

Kl. 2

 

Fg.1/2

Fg. 3

1./3. Hn.

 

 

2./4. Hn.

Trp. 1/2

Bpos.

T.-t.

Vl. 1

Kb. Litolff / Peters

  

   

   

 

 

  

 



 



 

pp



2.

pp

pp 1.

 

pp 2.

   pp



pp

 

 

 

 





 

 

 

 

   

mf

mf

3

mf

 

mf

3

   

mf 1.

       

 1.             p    

1.





 

 

 q = ca 80  



pp

 

 

 

 

 

    

 

 



pp

p

  



pp

 

 

  

           p 3 



pp



pp

 

pp

3

  

  32986

 

mf

1.



mf 2. mf



1.

 

pp



Vl. 2

Vc.

1.

pp

 

   M  

Vla.

 



   

pp

1.2.

  

      3     

pp

2.

p

pp

1.

pp

pp

 

 

pp

1.

      

Bhn.

   

    





    

 



    

   

 

pp

mf

mf

mf



     mf



     mf

3  3                  

 

p

 

mf



     

mf


  164

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

q = ca 95



q = ca 80 rallentando q = ca 60 q = ca 90

p

 p

 



mf

Kl. 2

 

p

Bhn.

 

Fg.1/2

p

Fg. 3

1./3. Hn.

  p

Pk.

Vl. 1

q = ca 95



ff

 

p

  

      

  

3

      

 

   

3

3 3

3         ff    

ff

 







 32986

ff

ff

        3

ff

3   3     

ff

3   3      

ff



41

      

  3 1.3.    3       3

ff

2.4.

3    3      3

      

ff

   

    ff 1.       



 

3

   



3

     

       



 3    

3

          

3

  

ff senza sordino

  

3

3 3

3        

senza sordino

   

1.2.               

ff

      

       



q = ca 80 rallentando q = ca 60 q = ca 90

p

  

    

      

ff

  

ff

ff

ff

 

    



 

ff

senza sordino

 

Vc.

p

Litolff / Peters

mf

           



      

p

Vla.

ff

  

Vl. 2

Kb.



      

3

 

Pos.1/2

Trp.3 (B)

Bpos.

Trp. 1/2

1.2.

          

p

2./4. Hn.



ff

  

p

    

Kl. 1

1.2.

      

     3

    

            

 

 



 

3

    3


42

    

q = ca 85

168

Fl.1/2

p

  

Ob.1/2

p

 

kl. Kl.

p

mf

  

 

p

mf

Bhn.

Fg.1/2

1./3. Hn.

 

3

3

 

   

 

   

  

 

  

p  mf

mf

Trp.3 (B)

 

 



2./4. Hn.





p espr.

p

Fg. 3



 

p

Kl. 2



 

Kl. 1

 

mf

p

 

 

Eh.

p

Pos.1/2

p

Bpos.

Pk.

Vl. 1

 

p

       

q = ca 85

p

Vc.

Kb. Litolff / Peters

p

p

   



p

 





  

  p

mf

mf

  3  

molto legato

  mf

p



  





molto legato



mf

3

3

mf

 

Vla.

3

 

 

Vl. 2

f

  















p molto legato



p molto legato

 p

 32986



 

 

   3



  


43

  171

Fl.1/2

  

Ob.1/2

 

 1.



 

p espr.

  

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

            p espr.

 

3

 3

    

 

3

 

 

 

  

 

p espr.

Fg.1/2

 

1.

p

 

 3

  

2.

Fg. 3

1./3. Hn.

 

2./4. Hn.

Bpos.

Vl. 1

   

 







 

 2.     3

 

 



p espr.

p

 

3

p



 

   

 

 

p

4.

 

Vc.

 1.

3.

 

Vla.

Litolff / Peters

  

Vl. 2

Kb.







 32986



   





 


44

 



    5            

174

Picc.

1.2.

 

Fl.1/2

1.2.

     3

Ob.1/2

3

           

mf cresc.

5

cresc.

 

Eh.

   

3

3

 

    

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

5

3

 

cresc.



cresc.

        cresc.

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Vl. 1

Litolff / Peters

cresc.





 



3



3





   

 

 



3

 



 



3



 3

 





 







3



 



ff decrescendo

ff decrescendo

3





ff decrescendo



ff decrescendo

3

 

 3 3

ff decrescendo

 

 







 







3

ff decrescendo

 

  ff decrescendo 

 3

ff decrescendo 6

   

 





   

3

3

ff decrescendo

3

3

ff decrescendo



cresc.

3

ff decrescendo

3

3

 



    



3



ff decrescendo





3

3

decrescendo

 



decrescendo

  

cresc.

Kb.



       

Vc.

   

3

cresc.

Vla.

  

3

 

3 3

3 3      

3

ff decrescendo

3





3

 

Vl. 2

     

mf cresc.

 

cresc.

Trp. 1/2



ff

5

3



    

2./4. Hn.

ff decrescendo

            

mf cresc.

cresc.

Kl. 2

 

3

ff decrescendo

ff   cresc.              

    

Kl. 1

3



mf

 

kl. Kl.

ff decrescendo

 



  

  3





 





 

decrescendo

ff

 



6

 

6

3

6

 



 

6

 



6

 

6

6

                      decrescendo   

ff



 

 



decrescendo

ff

 ff

decrescendo 32986


























45

   176

Picc.

f

mf

decrescendo

 

Fl.1/2

f

mf

decrescendo

 

Ob.1/2

f

Eh.

mf

decrescendo



  f

Kl. 1

 

f decrescendo

kl. Kl.

mf

decrescendo

3

 



     

3



3



 

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

  

1.

decrescendo

  f

2./4. Hn.

 

 f

decrescendo

Trp. 1/2

3

3

  f

  

Pos.1/2

Bpos.

Pk.

3

        3

Vl. 1

decrescendo

  



 

Vc.

Kb. Litolff / Peters

6

  decrescendo

f

Vla.

 

   

6

     

3

3

6

 

   

6

mf

f

f decrescendo



 



 

6

  mf



 





 

    

    

p

     





 

   mf 

mf 32986

rallentando q = ca 75

3

p

p

6

   

 p



f

mf

decrescendo

mf

6

f



p

                         decrescendo   

p

f decrescendo

Vl. 2



  

decrescendo

6



mf

mf

f

p

mf

  

  

mf

f decrescendo

f



mf

   

mf



decrescendo

f decrescendo

Trp.3 (B)

mf

      

3

 

mf

3

 

f decrescendo

mf

    

3

f decrescendo

3

p

3

 

f decrescendo

mf

          

3



     

3

f decrescendo

Kl. 2

mf

rallentando q = ca 75

p

p

p









    

  

      3

 



3



  


46

N

 

kl. Kl.

Kl. 1

181

Fl.1/2

Ob.1/2

Eh.

 1.



p espr.

3



Kl. 2



ffp

   

Bhn.

Fg.1/2

Fg. 3

3         

1.

1./3. Hn.

2./4. Hn.

Trp. 1/2

Trp.3 (B)

    

 

Pos.1/2

Bpos.

Cel.

  

 N  

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

  

 

 

 

     

ff

 ff

  ff

 

f

3

 1.3  

2.

ffp f 2.4.



ffp



1.

ffp



p flag.(cis3)

  p    

p flag.(b2) p flag.(b2)

 

5

1.3.

   2.4. ff

1. ff

  ff

   

ff

  ff

 ff

    

ff ord. non div.

 

    

ord.

  

ff



ord. ff



ord. ff

 



ord. ff

   

ff

ff 32986

3

 

ord. non div.

 

 





 

ff

ffp



flag.(fis3)

ff

 

ffp

p flag.(suono reale)

pp

 



q = ca 95

 

p

p

pp

ff

  5                    3 f ff 5 5     3  1.2.                3 ffp

mf flag.(c4)

 



ffp



1.2.



Pk.

p espr.

ff

p espr.

   

       3

  

 

q = ca 95

5                  5   5         

ff

5


   186

Fl.1/2

47

1.2.

fp

p

 

  

Ob.1/2

fp

 

  

Eh.

 3 3           p

 



fp

kl. Kl.

 

 

fp

Kl. 1

fp

Kl. 2

Bhn.



fp

2./4. Hn.

   

 

 

 

 

 

 

fp

fp

1.

Pos.1/2

fp Bpos.

Pk.

p

       

fp

Trp.3 (B)

  

  

fp

 

 



  

 

  



  



molto legato

Vl. 1

fp

molto legato

Vl. 2

fp

molto legato

Vla.

fp

Vc.

Kb. Litolff / Peters

3            

f       fp   

Trp. 1/2



1.

1./3. Hn.

    f

Fg. 3

p

  

f

Fg.1/2

 

 





molto legato

 







 32986

 

p



3

 



 p





  

   





3

 


48

II. Der Rabbi

 

193 q = ca 85

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 2

Bhn.

1./3. Hn.

Pos.1/2

Pk.

 



Kb. Litolff / Peters

3

1.2.

           p

3

           f p

3

           3

 p

f

p

f

p

 



 1.



p 2.4.



  

p



     

 









              



 

 

 

  

p

 

 

 

 

1.

p

f

1.





2.4.

2.

 

        

f

1.



               p

2.



pp

f

p

        f      

  

  

O q =3 ca 100               p

  3

3

1.

f

f

f

     p

p

 

p

 

 

f

  

  

           p

1.



 

p

 

Vc.

 

q = ca 100

f

1.

    

Vla.

p

p

 

Vl. 2





q = ca 85

Vl. 1

p

Trp. 1/2

Bpos.

 

2./4. Hn.

1.

O  

3

Fg.1/2

f

 

Kl. 1

Fg. 3





 







 

 

   32986



 

  

  

  

  

    

  

f

f

f

   f

p

p

p

   p


  201

Fl.1/2

1.

 

Ob.1/2

      

q = ca 85

mf

1.

  

kl. Kl.

Pos.1/2

Bpos.

Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

mf

mf

mf

p

p

mf

  

   



mf

 

 mf

     3



 

 

   

3

 



mf

1.

1.

 

  



mf p

mf

   

2.

 

mf

p

mf

 







2.



3       

 

q = ca 85

 

  

 

pizz.

3

p

mf

 

     mf

p

3

q = ca 90

  

mf







arco  mf

   

mf

 32986

 

 

  

mf

q = ca 85

mf

 

f

3

p

mf

 

mf

    cup

3

3

 

                 arco         

f



      

 

 

  

cup auf

mf

p

pizz.

 

3



   

1.

  

   

q = ca 85

  



        

       

mf

 

49

3

   

p

  

 3 

p

mf

    mf   

        



2.

mf

p

        

f

    p

    

mf

3

3



3

        



 

Fg.1/2

Trp. 1/2

 

Bhn.

2./4. Hn.

 

Kl. 2

1./3. Hn.

Kl. 1

Fg. 3

 

3

p

Eh.

p

  

q = ca 90

   

 

 

    

   3

f









mf


50

q = ca 90

  206

Fl.1/2

 



Eh.

kl. Kl.

Ob.1/2

Kl. 1

Kl. 2

Bhn.

Fg. 3

1./3. Hn.

   

p



 

3

3        3

3

   p



   



  

  

p



 

mf







 





  

p

      

p

cup ab

p

   

          

 

 3

3





 

(f)

Vc.



     3



   





  



  





  



  





  



  

p

p



   



32986

         3      q = ca 90

p

3

accelerando poco a poco

f

3

 3 3

 

p

  

p

  f



1.3.



 

  f



3

Vla.





Vl. 2

Litolff / Peters

3

  

Trp. 1/2

Kb.

f

3

p

Vl. 1

3

  

2./4. Hn.

Bpos.

p

 

Fg.1/2

p

accelerando poco a poco

              1.



 

 



 

f

fp

 

f







f

 



 



f

f


    211

Fl.1/2

3

3    

f

                1.

Ob.1/2

3

Eh.

Kl. 1

Fg.1/2

3

3

3                 

3

 1.



3

3

51

q = ca 110

     

3

  3  

3

f

  

Bhn.

3

3

f

Kl. 2

   

q = ca 115

1.

3

 

f

     3

f

Fg. 3

1./3. Hn.





  



f

Trp. 1/2

 

Vla.

 Vc.

Litolff / Peters

 3

 

3

           

3

f

     

      

  

           

       

  

        3

  

3



3

 

3

3

     

3       





3

   

 

Vl. 2

Kb.

  

2./4. Hn.

Vl. 1

 

2.4.

Bpos.

          

3

3

3

3

    

3

3

3

 

3

 

3

 

3

3

3

       3

  

 

 3

3

          32986

3

    3

          3

3

3

  

3 3 3       



3

q = ca 115

3

 

3

3                  

  

3



3

3

   

3

3      



3

3

q = ca 110

 3    3  

 

3 3              

p

3                    3

3

p

3                    3

3


52

  215

Fl.1/2

q = 100 accelerando

Eh.

kl. Kl.

Kl. 1

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

p Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Vl. 1



p

1. mf

p

     2.

    mf

   



 

     mf





mf

p

mf

   

 

Vla.

 

p



mf

   

 

f

f

f 

 

 f

 

f

p



    

     

 

      

  

3         3

f

mf

f senza sordino

 

f senza sordino

 f



  

 

f

 

f



f

mf

f

mf

f

3

32986

3

     1.

3    3                         3

3      3       

f 1.2.

      

       p   3 f mf 3 3                      3 mf f 3 3      3                                 



  q = ca 115



 



p

Litolff / Peters

mf

q = 100 accelerando

 

  

   

p

mf

Kb.



p

Vc.

   

 

mp

Vl. 2

p

Hfe.



  

     2.

                 3 mf p  f  3                             3 p 3 3 f mf    3 3 1.                                   p mf mf 3 f 3 3 3                    mf f 1.3.              f p mf 2.  2.4.        

Kl. 2

Pk.

Ob.1/2

q = ca 115

1.

3

3

    

3     


q = ca 110

  219

Fl.1/2

Eh.

Kl. 1

  

Fg. 3

1./3. Hn.

 

Bpos.

3

p







1.

p 2.



p

 1.

     p

 

 1. p 

 

     p





1.

pp

Besen  



q = ca 110

3    3          

           

3

     

3

        

 

 

Vla.

Vc.



3

pp

q = ca 85

rallentando

3

p



p



p

  

  





 

p

p

 32986

non div.

 p

3

pp flag.(suono reale)

3

3

pp flag.(b3)

3

3

q = ca 95 P flag.(g3)  



              

3

p

3

     

p

p

p

 

       

 3 

p

3

3

 

 3 

3      

flag.(suono reale)

               3

 

flag.(suono reale)

 



mf

pp

Litolff / Peters



p

3

Vl. 2

Kb.

 

Vl. 1

p

pp



1.

53

q = ca 95

P

 Besen   



T.-t.

p



Be.

Hfe.



    

2./4. Hn.

Vibr.



3

3

3

p

      3

Fg.1/2

    

         

Bhn.

quasi flag.

quasi flag.

3

Kl. 2

1.

Ob.1/2

q = ca 85

rallentando

pp flag.(suono reale)

pp

 

flag.(d3) pp

 

flag.(g2) pp

  


54

  224

Fl.1/2

Bhn.

Fg.1/2

Kl. 1

Kl. 2

Fg. 3

          

5

3

Eh.

 (mit c) 3             



 

Ob.1/2

3

3

q = ca 105

 





      3

3

1./3. Hn.



2./4. Hn.

Trp. 1/2

Bpos.

Vibr.

   

3

3

 

Hfe.

  

   3

 

3   

   

Kb. Litolff / Peters

3

  3



  3

3   



 3

      3

3

3 3     

 

3     

3

3

3   

 3

q = ca 105



p espr.

          

   

  

32986



3 3 3 3            

 



3



      

 

3

  

  

3



 

Vc.

3



 

Vla.



 Vl. 2

 

 

  

Vl. 1

3

3

  

 



         3 

 

 


      1.2.

229

Fl.1/2

ff

    

    

       

    

   

ff

kl. Kl.

ff

Kl. 1

ff

    

Kl. 2

ff

Bhn.

Fg.1/2

Fg. 3

     ff 1.2.      

ff

  

 1.3.     

1./3. Hn.

ff

ff

    2.4.

2./4. Hn.

ff

    

Trp. 1/2

ff

    

Trp.3 (B)

 

   

ff 1. straight mute

Bpos.

ff

Vibr.

Hfe.

Vl. 1

  

  

  

 

    

  ff        fp      ff       

Vl. 2

Vla.

Vc.

Kb.

  pizz.         ff pizz.     ff pizz.       ff   pizz.    ff

Litolff / Peters

pizz.

    f   1.      f 2.       f

f

   f senza sord.       

 

fp

 

    

pizz.

      

pizz.

3

f

1.

 

2.   

 



fp

2.

fp

3

    

        f

     f

 

 

fp

3

  

fp

 



f

32986

arco

         



f



     f



 



f

          mf f 

q = ca 95



f

 

fp

mf

 

3

 



     f   3   

  

    

    f

3      

     f 3    f    

1.

        f

           

mf

f

  

       arco      

1.2.

   

55

f

mf 1.

f

q = ca 100

arco

1.2.

         mf

    

3

f

         mf f           mf f              mf f           

f

f

      

f



ff

ff

   

   

  

          f mf     

f

f

 

f

f

  

 

   

   

       



    straight mute ab            ff        

Pos.1/2

Pk.

   

1.2.

q = ca 95

ff

Eh.

     1.2.

Ob.1/2

q = ca 100



    p

    p

   p

3

 arco

  fp

       fp p arco     p

arco

fp

     f



arco

   f

  


56

q = 100

   233

Fl.1/2

p

Ob.1/2

 

 

p

kl. Kl.

Kl. 1



p



p

 

Kl. 2

p

  3 

Bhn.

Fg.1/2

  

Fg. 3

1./3. Hn.

mf

 

 

2./4. Hn.

 

 

Trp. 1/2

p

Trp.3 (B)

    

   

1.2.

3

 mf

    





 

 



f

2.





 





    

mf



 

   









Bpos.

  

Vl. 1

 



   p

Vl. 2

     mf f   



Vc.

Kb. Litolff / Peters

mf

3

mf

 

3

3







mf

  

mf

3



mf

    

   



p

Vla.





3

   



         

     

3



 





32986

3

3

 

3

f

  f

f

  

f

f

f

p

  f



      f   3            f  3   f  q = 100 rall.       f

 3 

3





f      f 3  3      3     f 3       



 









f

 

 

    

3

f

3

Klav.



     1.     

Hfe.

f

mf

mf

3

Pk.

3



Pos.1/2

T.-t.

   

f



3



3

2.

3         3 f   

  3





      



p

pp

rall.

f

3

3  

 

3



  







3

mf

p

mf

mf







3

3

p

Eh.

    

    1.

 

f

  f

3


Q q = ca 90

Fl.1/2

Ob.1/2

 239             ff 3                      1.2.

 

ffp 3

kl. Kl.

       

       

ffp

Kl. 1

3

ffp

 

Kl. 2

 

ff           ff

  

ffp

Fg. 3

1./3. Hn.

ffp

 

ffp

2./4. Hn.

   

ffp

Trp. 1/2

  

ffp

Trp.3 (B)

Pos.1/2

Hfe.

Klav.

Vl. 1

  

  

Vc.

Kb. Litolff / Peters

     

       

3   

 2.

1.

ff

 3

  3    

 ff

  

      

2.4.

 



ffp

  

ffp

3

   

   

3

   

   



3

  



3

  

  

            

 

  1.

     

 

ff

 3

3

      mf



ff

      ff  ff

3

  ff



                                   

     

  



  

   

  32986

ff    

2.4.

ff 1.

ff

   

1. straight mute



straight mute auf

  1.3.      

 

  

   

 

        

  

        

   



3



57

          

        

ff

mf 2. straight mute auf

3

  



ff

1.3.

1.2.          

 

ff

       ff      ff     Q  q= ca 90  

ffp

Vla.

ffp

Vl. 2

ff

ff

ffp

Pk.

1.2.

 1.3.ffp     2.4.

          ff 3       



 

Fg.1/2

      

q = ca 95

 

ffp Bhn.

  

ff

ffp

Eh.

 

3

ff

q = ca 95

                      

  

 


58

Fl.1/2

1.2. 242                

    



    



              

    



   

         



    

           

     

                             

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

 

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

    

 

   

    

Vc.

Kb. Litolff / Peters

     

     

  

3

3



3



3

1.2. straight mute ff

 

straight mute

 

     

     

    

    

  

arco

     

     



ff

    

straight mute ab

      

  





ff

1.2. straight mute

 

3

 



pizz.

Vla.

 1. straight mute auf       

    

pizz.

Vl. 2

pizz.

Vl. 1



                       

Ob.1/2

q = ca 100

   

arco

   arco

q = ca 100

      

 

       

 

 

   

   

    

       

   

   

  

  

32986

     



    


59

  244

Fl.1/2

Ob.1/2

 

   

Eh.

 

   

kl. Kl.

 

Kl. 1

 

       

Kl. 2

 

  

Bhn.

 

      

    1.2.

Fg.1/2

             

Fg. 3

1./3. Hn.

2./4. Hn.

 

 

       

    

                                      

              

 

1.2.          

Trp.3 (B)

 

Bpos.

Vibr.

Pk.

         

         harte Holzschlägel

Klav.

Vl. 1

   

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

 

        

 

 

   

 

  

straight mute ab

straight mute ab

  



pizz.   

     

            pizz.

      



   

    

   

ff

        

              

                

 

ff

        

       

 

Hfe.

    



1.2.

 

Pos.1/2

            

Trp. 1/2

 



32986

             pizz.

    pizz.

             

ff

        

    arco

arco

       


60

  246

Picc.

 

1.2.

Ob.1/2

 

1.2.

Eh.

 

Fl.1/2

    

 

Kl. 2

 

 

Bhn.

Fg.1/2

  3     3         

3

 3

 

  

  3      3     3       

3

 3

 3

      

3     

3

 

      3

3

                

                    

Fg. 3

1./3. Hn.

2./4. Hn.

Trp. 1/2

Pos.1/2

Bpos.

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

 

         3

3

3       3       3

  



3 3

 

     



  

3

3

3

 3     

3

     

 

     



   

    

    

          

                           

3 3 3                    arco 3 3  3                 3 3 3                  3 3 3                               

arco

    3

    

   

  

3

        

3  

     

  

     

32986

         

    3    3    3

3

3

3

3

   3    



3

 

   

 

3  

 3       3         3     

3   

3        3      

3  

 

3   

3    

         

   

     

 

3     3  

         

senza sord. 1.

 

 3     

3      

     

  

    

3

   

Pk.

Klav.

   

 

Kl. 1

Hfe.

  

 

kl. Kl.

 

3

5

    

           

                       3  3            3 3             3 3            3 3           

         


Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

248 3               ff 3                          3                 

        

Trp.3 (B)

Pk.

Hfe.

Klav.

Vl. 1

Vl. 2

Vla.

   

            

Bpos.

 

   3    3     3     

Kb. Litolff / Peters

   

                   

 

                        

3

3

  3   3

3





         

                         3

   

3

3

   

3

senza sord.

   

     

senza sord.

   

   

                                                                                                     3 3                     3    3                3     3                                                            3

32986

       

  

3

3

3

3

Vc.

   



                                                               

Trp. 1/2

Pos.1/2

3

3

    

                                

1.2.

 

  



                  

3

   

          

              

3

3

        

61

 

3

              

 

           

3

                      3

   

 

3

     

3

3

    

 

                          

   

    

   

               

  

3

        

3

       

3

3 3

                   

3

3

3

    

3

  

     

3

3

      

3



   

   

   

3

3

3

                         

   

3

       

 

 

                                                                     

3

33

                        

          

3

3

33

         

   

   


62

           3               3                      

q = ca 95

250

Picc.

Fl.1/2

Ob.1/2

  

harmon auf

        

 

3

         

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

 

3

        

3           3

     33

                      3                       

         

     

           3

Trp. 1/2

3

          

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Hfe.

Klav.

Vl. 1

Vl. 2

   

3

  

harmon auf

                 3                   3      3

Vc.

Kb. Litolff / Peters

               

3

Vla.

        

 

 

 

 

p

  

p

3

mf

 

 

p

   p

1.

  p

 1.

  

p 2.

  p

mf

     mf

mf





p

mf

         p                       3

1.

       

q = ca 95

   

q = ca 65

p p

 



 

 mf 

 mf

 32986



mf

                   

mf

q = ca 65


63

 

q = ca 75

254

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

mf

  

mf

Fg. 3

1./3. Hn.

Trp. 1/2

Trp.3 (B)

Kb.

q = ca 75

Litolff / Peters

 

fp

f



1. offen

fp

f



f

fp

f

fp

f gestopft

 f harmon 1.  f



1.



p

p

Stopfdämpfer auf

harmon ab

 

senza sordino

p

 harmon ab

p

senza sordino

  f

  p

 

f

  p   

 

f

f

 

f

 

p

f





 

          

 





f

       

 

 

 

 

q = ca 120

accel. q = ca 140

 32986

 f  f

 q = ca 120



f

harmon

f

f

1.2.

 gestopft



f

f

fp

     

       fp   

 

klesmerisch

mf

      f

f

fp

3

1.2.

f



  



   

p

Vc.

3

p

Vla.

f

fp

3

q = ca 120



     

      3       

p

Vl. 2

    Vl. 1

3

     

Pos.1/2

Bpos.

 

2./4. Hn.

1.

accel. q = ca 140

fp 1.2.

mf

1.

Fg.1/2



mf

  

Bhn.

q = ca 120

     

     3

    

      3          3

    

     3

 

 



  f


64

Picc.

  258

Fl.1/2

 

Eh.

ff

kl. Kl.

ff

 

 

Kl. 2

ff

 

Bhn.

Fg.1/2

Fg. 3

  ff

1.2.

1./3. Hn.

 

  

2./4. Hn.

 

Trp. 1/2

  

Trp.3 (B)

Pos.1/2

  

Bpos.

 

Pk.

  

 

Hfe.

Klav.

  

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters



  

 

Kl. 1

3











ff

3



ff

 

3 



3





 

ff



ff    3   3         3  3 ff               ff    ff 3      ff 3        ff

 

            1.2.    

   

 1.3. gestopft

      ff

  

 

         ff     ff      

2.4. mit Stopfdämpfer

 

   

   



 

   

 

   

 

 



 

 







 

Stopfdämpfer ab

 

 

  

 

 

3



  

 

     



 

  3     

 

  

ff

ff



ff

 

  

ff



 

 

  

       ff         

1.2.

     ff 

ff

1.2.

Ob.1/2

 

       

 



    

pizz.     pizz.    pizz.    pizz.   

 

pizz.

 32986

          

arco    arco

    arco   arco   

  

 

               3     3

 

33          3

 

3

 

   


65

R

  

 

261

q = ca 110

 

 

 

 

 

 

 

 

 

 

 

 

Fg.1/2

 



Fg. 3

  

 

Picc.

Fl.1/2

Ob.1/2

Eh.

Kl. 1

Kl. 2

Bhn.

   

1./3. Hn.

  

2./4. Hn.

Trp. 1/2

Bpos.

Pk.

Hfe.

Klav.

 

Vla.

Vc.

Kb. Litolff / Peters

      

3

3          

  

 

 

             3

3

   

ff





 

   

  



   

      

  

         

                 

     loco



  

                       loco

                   

q = ca 110

3

3

   

3

  

3 3                      3 3 3                 3 3   3  3               

   

   

 

 



1.2. 2.                                              

3

  

 

3

Vl. 2

 

  

   

 

     

Vl. 1

1.

1.2.

     1.  offen          senza sord. 2.4.

3

R  

 

                   arco         3 32986

   

                                              


66

 

264

Picc.

Fl.1/2

 

Ob.1/2

 

Eh.

      

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

                    

1./3. Hn.



2./4. Hn.

Trp. 1/2

Trp.3 (B)

                        

            

   

           

    

Pos.1/2

Bpos.

Pk.

Hfe.

Klav.

Vl. 1

     

        

Vla.

Vc.

Litolff / Peters

  

      

fff

    

   

 

         

       

fff

    

   



    

   



    

   

fff



    

   



    

   

fff

    

   



    

   



    

   

    

   

    

   



    

   

fff

          

       

fff

  

  

fff



fff

fff

fff

 1.2.

fff



fff

 

 

f

                               

                                                                

Vl. 2

Kb.

   

fff

2.4.

    

   

    

fff

1.3.

fff



 

fff

   

   

fff

              

    

 

      

   



32986

fff



     

   fff

    

  

  

  

  

   

  

  

  



    

   



    

   



    

   

    

   

fff

fff

fff



    

   

fff



fff


Picc.

266                                      

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

67















                

 















                               

 

 

 

 

 

 

 

 



Kl. 1

               

Kl. 2

                



Bhn.

               

                

















                                  



               

                















Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Be.

Pk.

Hfe.

Klav.

               



                



  

 

                

                                           

f

  

  

  

  

  

                                                                                                

 

               

 

 

 

 

 

 

 

Vl. 2

               

 

 

 

 

 

 

 

Vla.

                



 

 

 

 

 

 

 



Vl. 1

                

Vc.

Kb. Litolff / Peters

                32986



 

 

 

 

 

 

 


68

  268

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.







 



 



 

 



 



  

 

 

 

 

 







Kl. 1

Kl. 2



Bhn.



1./3. Hn.

  



2./4. Hn.





















  fff 

   

     

 

Fg.1/2

Fg. 3

Trp. 1/2

Trp.3 (B)

 

Pos.1/2

Bpos.

Be. T.-t.

Pk.

Hfe.

Klav.

Vl. 1

      

               

 

fff

 

 

   

 

 

 

 

 

 

  

 

 

   

  

 



            

Vl. 2



Vla.



Vc.

Kb. Litolff / Peters













32986













 

 


69

271    f 

Picc.

Fl.1/2

f

Ob.1/2

ppp

ppp

 

ppp

f

   f  f  

Eh.

kl. Kl.

Kl. 1

ppp

ppp

ppp

f

 

Kl. 2

ppp

f

 

Bhn.

f

Fg.1/2

 

Fg. 3

 

ppp

f

ppp

 

1./3. Hn.

ppp

f

f

2./4. Hn.

f

Trp. 1/2

Klav.

f

ppp

 f

ppp

 

Pos.1/2

Hfe.

ppp



Trp.3 (B)

Bpos.

ppp

 

Vl. 1

f

ppp

       f

Kb.

Litolff / Peters



2.

 

  f

ppp

1.

mfp

mfp



mfp

 

  p

   





 

q = ca 85

rallentando

ppp

f

 



1.

p

 

2.





ppp



 mfp 

 

Vc.

q = ca 80 q = ca 90

f

 

Vla.

 

 

f

f

  

Vl. 2

ppp

q = ca 85

rallentando

 sul C

 

   

mf espr.

 32986

  p

 p

    p













q = ca 80 q = ca 90

 



  


70

  280

Fl.1/2

Eh.

kl. Kl.

Ob.1/2

Kl. 1

Kl. 2



   

Fg.1/2

Fg. 3

1./3. Hn.

Litolff / Peters

unhörbar einsetzen 1.



pp

  p

 p

 p

 

p

  p

 unhörbar einsetzen 1.









2.

 p

 1. mf espr.

  





   

 

p



Kb.

 

  p  



Vc.

p espr.

p



 

Vla.

p

1.

 

Vl. 2



Trp. 1/2

Vl. 1



2./4. Hn.

Bpos.

   

 

pp

Bhn.

1.2.

unhörbar einsetzen

q = ca 90

q = ca 80

p



mf

q = ca 70

q = ca 80 1.2.

 

pp unhörbar einsetzen 2.

pp

 p



  





  

p

 p

 p



   



  

p

p

q = ca 80 pizz.

 p

q = ca 70

 

    

pizz.

pizz.  pizz.

 

 

q = ca 80 arco

arco



arco





arco







p

 32986

 p

pizz.

 

q = ca 90

 

p

p

arco

 p


71

  288

Picc.

S



        1.2.

1.

 

Fl.1/2

p

1.

 

Ob.1/2

p











 

Eh.

kl. Kl.

 

Kl. 1

 

Bhn.

Fg.1/2

Fg. 3



    

2./4. Hn.

Pos.1/2

Bpos.

Mtr. Pk.

Vl. 1



  

ff



Vla.

 

Vc.

 



 

ff

ff

 

Kb.

 

3

3

       

ff 3

   ff 1.2. 

  

ff

ff

3      

 



  



 

  



 

 

ff

ff 3

ff

33

ff

    

1.2.

  ff  mit Schnarrsaite     mit Schnarrsaite ff      

  ff

  

ff

3











  

 

ff

ff



     

3   3   3  

3   3   3  

3   3   3  

3

 3

 3



3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                                                 3

                        3



                       





ff

ff

32986

 

ff

 



  

  



2.4.    

  

S

 



   ff   







3



         

   p



  

ff

Vl. 2

Litolff / Peters



3

1.3.

 

 

3

  

     

Trp.3 (B)

Trp. 1/2

Kl. Tr.

 

Kl. 2

1./3. Hn.





ff 1.2.

ff

3

3

3

3

3

3

3

3


72

   p sub.

q = ca 80

291 1.

Fl.1/2



1.

Ob.1/2

p sub.

 1.

pp



1.

pp

q = ca 70

q = ca 90

 

 

 

q = ca 80

q = ca 90

 

1.2.

 p

Eh.

 

 

kl. Kl.

 

 

Kl. 1



 

 

 

 

 

Bhn.

Fg.1/2

 1.

1./3. Hn.

p sub.

Trp. 1/2

Kl. Tr. Mtr.

Pk.

Litolff / Peters

 

  



pp

 

 

  

 

 



 



 

   

 

 

   

 

  

 

unhörbar einsetzen

q = ca 80

 

   

   



q = ca 70

q = ca 90

 

  





   

 

   

 

  

 



p sub.

pp p unhörbar einsetzen

pp

p

unhörbar einsetzen

pp

p

unhörbar einsetzen

p pp unhörbar einsetzen pp

p

unhörbar einsetzen

pp

p

p

 



  

1.

 

 

      

Vc.

p

p sub.

Vla.





    psub.      

Vl. 2

1.

pp

p espr.

Vl. 1

mf espr.

   





 

p sub.

Kb.



 

2.

pp

pp

p sub.

 

2./4. Hn.



 1. 

p sub.

p sub.

Bpos.

 

Kl. 2

Fg. 3



q = ca 80

1.

 p



1.

p 2.

 p

q = ca 90

 

 



 

 

 

 

 



  

 

pp

p

p

p

p

  

32986

 

 p

 p

 p


Fl.1/2

73

  297

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Fg.1/2

1./3. Hn.



Trp. 1/2

Be.

Mtr.

Pk.

Vl. 1

 



 

 

1.



 

pp



 pp 1.   



 

1.

pp 2.

pp



 

pp

3  3  3   3                    



pp

  3.

pp

pp

 

 

  

 

 

 

 32986

pp

trem.

 

pp trem.

pp

 

pp

trem.

trem.

ff

4. 

 

pp

1.

ff

  p

3   3  3  3                

 

pp

 ff

2.

pp

1.

 

ff

ff

pp





pp

Vc.

 

ff

ff

  

pp

ff

pp

 

pp



Vla.

Litolff / Peters





Vl. 2

Kb.

  



 

2./4. Hn.

Bpos.

2.

pp

1.

pp

Bhn.

Fg. 3

 

trem. pp


74

T III. Die Revolutionäre

  301

Picc.

q = ca 100

Ob.1/2

kl. Kl.

Bhn.

Fg.1/2

 

Fg. 3

Kl. 2

1./3. Hn.

 

    

ff

Trp. 1/2

Trp.3 (B)

Bpos.

Be. Mtr. Gr. Tr. Pk.

Vl. 1

 

Vla.

Vc.

Litolff / Peters

 ff

 ff      ff     ff     ff   T q = ca 100 ord.   

Vl. 2

Kb.

ff

Pos.1/2

     ffp ff      ff ffp  1.2.     

 

   ff     ff     ff

     

ff ord.



ff ord.



ff ord.

 ff   ord. ff

ff

  

ff

 

                      

ff

       

         

ffp

  ffp  ffp



ffp

ffp

ffp

 



ff

  

ff

pizz.

  

pizz.  

3

ff

   ff     2.  3

1.

ff

3

  

  

 

   arco   

arco

arco

 ffp   

ffp

  ffp  ffp

ffp 32986

ff

  p



  















   

mf

p

p

p

 

ffp

q = ca 100

3

ffp

q = ca 90

  

3                    

arco

       

3

         pizz.

3

 

         3 ff 3 3 3         ff          1.2.   3 ff      3      

 

3

pizz.   

3

  

3

ff

 

         3         

           3 3 ff          ff  3     3     3 3 ff          

ff 1.2.

1.2.

ff



ff

 

2./4. Hn.

 



Eh.

Kl. 1

ff

 1.2.

    3    

q = ca 100

Fl.1/2

q = ca 90

1.2.

 

ffp

 ffp 

ffp



ffp

   ff   ff

 


 

75

q = ca 90

304

Fl.1/2

  

Ob.1/2

1.

1.2.





mf

f

Eh.

kl. Kl.

Kl. 1

 

Kl. 2

 

1./3. Hn.

Trp. 1/2

Trp.3 (B)

Be.

Gr. Tr. Pk.

mf

mf

1.2.

             ffp ff     ffp 5          ffp 5 ff                    ffp ff            ff ffp 

2.4.

1.2.

Kb.

 

Litolff / Peters



ffp

 

f

Vc.

ffp

  ffp  

           

Vla.



 

 

 

mf

f

  

mf

p

   p

 

  

    

 

  

mf

mf

p

  p

  p

 ff

 ff

 ff

  ff  ff



2.4.

 

  f

 

   

    

1.3.

    f   f

ff

ffp

    

f

ffp

  

Vl. 2

ffp

ffp



q = ca 90

Vl. 1

1.3.

ffp

5



ffp

5

5

 1.

 

            ffp   ff  

Pos.1/2

ff



  

2./4. Hn.

Bpos.



1.

           3

mf

 

Fg.1/2

Fg. 3

mf

Bhn.

3



q = ca 100

ff

   

ffp

ff

        ff   ffp

          ff ffp     ff

ff

ff

q = ca 100              ffp 5                ffp  5                ffp               ffp f 5                5

5

32986

ffp



p





   

p

p

3

  f



ffp



ffp

  

ffp


76

q = ca 90

    307 1.

Fl.1/2

p

kl. Kl.



fp

Kl. 2

Bhn.

fp

Fg. 3

1./3. Hn.

    

2./4. Hn.

Pos.1/2

Bpos.

Gr. Tr.

Vl. 1



Litolff / Peters

 



mf

fp

 





fp

 f

fp

ff

3

  

fp



fp

  

  

ff

 

  

ff

  ff

  

          

         

ff

 

3 3          f fp  fp fp f ffp 3 3          fp   fp fp 3                    3

fp fp

fp

q = ca 90

  ff

  ff

  ff    ff   

ff

     f

ffp

  

ff

32986

 



          



   1.2.

 

 

 



 

f



 

   5     5        

   



   5



   

  

ff

ff

  



  

  

ff



             



 

 

  

ff

ff

f

ff

ffp

q = ca 100

  

1.2.

 

ffp

    ff  

    f

  

ff

  

3

 

ffp

 

fp

 

mf





fp

ffp

1.2.        

 

fp

  

  ff   

3

f

 

f

f

fp

q = ca 90

fp

fp

q = ca 90

fp

 

 fp 

 

 Vc.

fp

  

Vla.

     



  

Vl. 2

Kb.

1.2.

 

Trp.3 (B)

 

2.4.

 

Trp. 1/2

T.-t.

1.3.

fp

fp       3 fp fp 3 fp       3 3

Fg.1/2

3

fp

3

       3

fp

p

fp

 

fp fp 3

 3     fp fp      

 



fp

3

   3   

1.2.

p

 

Kl. 1

fp



1.2.



1.2.

       

q = ca 100

fp

Eh.

 

   p

Ob.1/2

1.2.



5

5

     

                             


  





  

 

 

          ff 

310

Fl.1/2

1.

p

Ob.1/2

p

 

Eh.

Kl. 1

Pk.

Vl. 1

 

 

  

Kb. Litolff / Peters





3

3

   3           3

3 3

3

3

3

   





    

p

 

 

 

             

p

 

  



p

          ff

q = ca 100



 



         f



mf

  ff

  

  ff

 

  

 

  

ff

ff

ff

 

ff

q = ca 90



   ffp

 

32986

   

3

3

3

3

    3



ff

ffp

 

 

 

ff

p

Vc.

          

  

                 



ff

  

Vla.

        ff



Vl. 2

3

3

  

1.      

         ff  2.4.          ff



p

1.3.

 

3





p 1.

                      ff 







77

1.

q = ca 90

ff

Pos.1/2

 

Trp. 1/2

Gr. Tr.

  

2./4. Hn.

Be.

 

Fg.1/2

Bpos.

p

Bhn.

1./3. Hn.



 

Kl. 2

Fg. 3



q = ca 100

      ffp mf

  

ffp

  

ffp



(p)



mf

3

  

  

  


78

q = ca 90

 

313 q = ca 100

Picc.

Ob.1/2

Eh.



 



   

ff

   ff   

Vl. 2

Vla.

ff

 

Vc.

ff

    ff







      

   

   

 

 

 

 

                             

mf



mf

5

       



mf

ffp

   

ffp

ffp

5

ff

           

mf





      ffp ff 5 2.4.       ffp

q = ca 100       ff

Litolff / Peters

ff 1.3.

mf

5

          ff



ffp

5

mf

     

 

Pos.1/2

Kb.

ff

         ff

Trp.3 (B)

Vl. 1

    ff 1.2.    



5

  mf 2.

ff

 

Trp. 1/2

1.

ffp

5

2.



 

            ffp

  

2./4. Hn.

Bpos.

ff

 

Fg.1/2

ffp

5

        ffp 5 ff         ffp 5 ff          ff          

 

Bhn.

1.2.

5

 

Kl. 2

1./3. Hn.

 

 

Kl. 1

Fg. 3

ff

 

kl. Kl.

1.

mf





        1.2.

 

Fl.1/2





          

 

ffp



ffp

q = ca 90

 

ffp

  ffp 



 

ffp

ffp

ffp 32986



mf



  

f

ffp

    ffp             f ffp         

 



f

ffp



ffp

   

 

mf


Fl.1/2

315     



p

  

Ob.1/2



 



Kl. 1

Kl. 2





p

mf



p

p

 p

mf





mf

f

1.2.  mf

 p

 p

 f





 f



mf







mf

f

mf

f



Fg.1/2

Fg. 3

1./3. Hn.

Pk.

Vl. 1

Vl. 2

Vla.

Kb. Litolff / Peters

f

 

   

  

mf

 

ffp

ff

3

f

 



ffp

  ffp 

ffp

  ffp  ffp

       3                3 3                      3 3

       

   

   

pizz.

             ff



arco



arco

32986

 

5

mf

 

   

 

fff

        ff 3                  ff 

fff pizz.

 

   

     

 

            f

 ff 

3

   f     ff 3 2.4.          3 ff f          f    3 ff 3   1.              3 3 1.3.

fff

   

ffp mf

        ff

  

 

ffp

      

   

  Vc.

f

 

 

ffp

       f ffp 1.      1.

 

Pos.1/2

Rö. Gl.

        f 2.4.      ffp   f

1.3.

 

Trp. 1/2

Bpos.

 

2./4. Hn.

ff

  

f



Bhn.







79



 mf

mf



mf

 

kl. Kl.

mf

 



2.

p

Eh.

mf

 

2.

1.2.

5

          5 ff                   ff           55

ff

         ff

 ff




80

U

  318

Picc.

1.



mf

f



Fl.1/2

 

Ob.1/2

            1.

Eh.

ffmf



2.

       

ffmf

Fg. 3

1./3. Hn.

 

 f

         f ffmf a 2         

 

 

f

ffmf

 

  



  



   



 





 

1.3.

p

Bpos.

Gr. Tr. Pk.

Vl. 1

 

 

ffmf

 

Vla.

Kb. Litolff / Peters





ffmf

 

  ff         ff 1.   

  

  

f

 f

 f

ffmf



 

 

 

    

          p  

 

ff

 

ffmf

Vc.

       ff 

ff

     U f    

Vl. 2

ff

ffmf

Trp. 1/2

p

    p

ffmf

ffmf

    

      

      p    

f

ffmf

  

2./4. Hn.

 

       

Fg.1/2

f

mf

ffmf

Bhn.

f

      mf

Kl. 2

  



   

Kl. 1

f

ffmf

kl. Kl.

q = ca 100



p

 p

pizz.

 

pizz.

 

pizz.  



 



 p

p

p 32986

 

pizz.

pizz.



f

q = ca 100

arco

     ff 

 



  

arco

ff

        ff arco          ff  arco           arco

ff

         


Picc.

321   

Fl.1/2

ff 1.2.



ff 1.2.

  

Ob.1/2

ff

   ff

Eh.

kl. Kl.

Kl. 1



ff



ff

  

Kl. 2

ff

 

3



3

3

   3 3

    3

 

 

3

 

3

 

3

3

3 3

   

 

3

 

Fg.1/2

ff

    

 3

3

  

2./4. Hn.

               

    



     



          5

        

            

        

        

 

   

    



5

5       

5

 

     

5

       

   

 

      

81

          

q = ca 90

5

       

        

        

5

 1.2.

1./3. Hn.

3



Bhn.

Fg. 3

 

    

  

 

5

ff

 



 



 

1.

Trp. 1/2

Bpos.

Vl. 1

Vl. 2

        

Vla.

Vc.

Kb. Litolff / Peters

        

 



3

3

  3

   

3

  3

    

   

3

3

 3

3 3

3



  

               

      

   

      



       

      

    

   



     

 

    

ff

pizz.  

 q = ca 90

 

 32986

 p

pizz.



arco



pizz.

 

 



pizz.

 

ffp

arco

 

ffp

p arco

 p

arco

 p









mf

mf


82

   323

Fl.1/2

Eh.

kl. Kl.

Vl. 1

Vl. 2

  

Vc.

Kb. Litolff / Peters

 p



  



1.

3

p





 

 

 

3



 

f

 

    

         

 

  

 

 

f

    

 

 

mf

 

f





p



f

mf

p

p

 

p

1.3.

p



mf

1.

 

p



p



 1.

  

f

p

 

1.2.

     

mf

f

2.4.    f

 

1.

1.

     f 2.

  

  

  

 

  

 

 

  

  



 

p

3



3

           

 p

 p

 

 

f







       





 



  32986

f

f

3

f

 

 f

 f

f

f



p

     

     f 

3

Vla.

3

  

3

Pos.1/2

Pk.

Trp. 1/2

Bpos.

  

2./4. Hn.

  

 

Fg.1/2

1./3. Hn.

p

 

Bhn.

Fg. 3

3

p

1.

 

Kl. 2

3

 

 

Kl. 1



 

Ob.1/2

1.2.

mf

mf

mf

mf



mf

 p



f

p





p

p

 p

  


q = ca 90                         3

Fl.1/2

f 3 1.2.

 

Ob.1/2

f

kl. Kl.



 

Kl. 2

f

Bhn.

  

Trp. 1/2



f





3

 

3

 

   

 

 

3

 3    3  

       3

  f

   f

 



3



3

        



p espr.

 

   

     3

     3

 

 



 

mf

 

mf

p espr. 3

ffp f 1.

ffp

  

1.





 

            

3      

  

3

ffp f

ffp

     

3       

    

3



 



 

mf

mf

 



1.

mf

ffp

ffp

3

f

q = ca 100 3        qf= ca 90              3 ffp 3 3                   3

  

q = ca 95

2.4.

f

Litolff / Peters

  3   

mf

ffp

     

Kb.

  

f

Vc.

   

Pos.1/2

ffp

Trp.3 (B)

Vla.



ffp

      3 

2./4. Hn.

Vl. 2

ffp

ffp

3

3

1.2.

Fg.1/2

Vl. 1

  3    

3

f 3

Pk.

3

             

Kl. 1

Bpos.





f 3

1./3. Hn.



       f ffp                         

Eh.

Fg. 3

83

q = ca 100

q = ca 95 326 1.2.

ffp



ffp



ffp



ffp



ff

 

 

 

 1. gestopft

 

pp

2. gestopft

 



pp 2. harmon



pp harmon



  harmon pp

1.

      



    





p

    p

     

p

harmon ab

 











3            









3            









  

pp









p

32986



p

p

mf

harmon ab



offen  



pp

mf

harmon ab



 

offen







  pp

mf

3

3

pp

 

mf

 

mf


84

   331

Picc.

Fl.1/2

Ob.1/2

 

Eh.



ff



ff

 

kl. Kl.

f

ff

 

Kl. 1

ff

f

 

Kl. 2

f

ff

 

Bhn.

 

1.2.

Fg.1/2

f

Fg. 3

1./3. Hn.

ff

  f

ff

3

 

2.4.

2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

f

 f

  

f

 f



 

Vla.

f

  

Vc.

ff

3

      3 

ff



 



 

3

3       

1.

ff

  

 

3

f

  f

3



     3         3 3         3

     3        

    3    

3

3



      

3

3

 

 

   

ff

3 3

 

    ff    ff



p 1.



 







   

p







  

    ffp



    

ffp



ffp





ffp





 



p



ffp

 

             ff      ff



 

5

ffp

 

ff

ffp



 1.

       ffp 

ff

  

1.2.

ff

   

      1.3.    3  ffp         3 ffp 3 2.4.       

          ff f 3  2.  1.            ff

f

Litolff / Peters



ff

   

Vl. 2

Kb.

1.2.

f 3

Vl. 1

      f

Pk.

                  

1.2.

1.3. 3            f

Bpos.

     3 ff     1.2.    

  

 p















p

         ffp mf       ffp p       ffp 32986

 

  

  

   

   





3

3

p

 3  

mf


  334

Picc.

Fl.1/2

Ob.1/2

 

 

kl. Kl.

Kl. 1

Kl. 2

Fg. 3

1./3. Hn.

 

  

   



p

 

     p

 

Trp. 1/2

Trp.3 (B)

Pos.1/2

Vl. 1

ff

 1.2.

3

   

ff 3

1.3.

      

2.4.

3

ff

       

ff 3

   

    ff

3

3

 

   

   3

   

p

p

3

f

 fp

   

ffp

 

3

3

3

 

q = ca 80 q = ca 90

 p



p      f

 

ffp

      ff

ffp

 3   

3

   

f

p

     p f     3    p

32986

ffp

f

  sf

 1.3.

 

 

          



1.

  p 

3

 

  

p espr.

ffp

3

mf

 

                p

ff



p espr.

ffp

ffp

p

1.

  

ffp

ff

   

f



ff

3

ffp

 

ffp

 

ffp

  



ffp

   

 

ffp

 

ff

p

p

3

p

   

p

ffp

      ff

   

 

ffp



ff



mf

        

ff

 

 

ffp

ffp

ffp

3

 

mf

 

 ff 3   ffp      



    ff

  

Vc.

V

ffp

ffp

3

   

Litolff / Peters

ff 3

  

Vla.



 

  

Vl. 2

Kb.

ff 3

p

85 q = ca 80 q = ca 90

 

 

 

2./4. Hn.

Pk.

ff 3

   

2.

Bpos.

   

1.

Fg.1/2

ff 3

1.2.

Bhn.

    1.2.

Eh.

 

3      

ff 3

ffp 2.4.

   ffp

ff

3

ffp

       ff 3     ffp

  

 3  3  3             

ffp

ff p

V  

 





 

ffp

ffp



ffp

sf

3  3                ffp 3

 

ffp



ffp

f


86

1.2.

1.2.

338

Picc.

Fl.1/2

kl. Kl.

Kl. 1

Trp. 1/2

Trp.3 (B)

fp

 

fp

fp

 

1.2.





fp





fp



fp

fp





 



    3

f

3

       

3

3

   



fp

     

    

   

f 3

fp

3

    fp

fp

fp

fp

sf

  

fp



 32986

fp

fp

p 3

fp

3

 

   

fp

 





 fp

3

       3

3

fp

3

3

fp

        3

fp

f



  







3

   

p

 



3

3       3

fp

f 3

 3   3   3    3  

fp



f

fp

3

   

p

 

mf



fp

   

  

fp

      

3

1.2.

   3

sf

f

fp

 

p

  

f

 



 

fp

    

1.

fp

f

p 3

   

       

    

f 1.3.

f 3

fp

          

f

3

3

3

   

p

 





  

Vc.

fp



   

Vla.

Litolff / Peters



  3     

Vl. 2

Kb.

Pos.1/2

Vl. 1

 

2./4. Hn.

Pk.

 

Fg.1/2

Bpos.

Bhn.





 

Kl. 2

Eh.

1./3. Hn.

Ob.1/2

Fg. 3

   

 

3

fp

    

    f

3    

f

fp



 

   

3

    

3

f

3

 

fp

3

fp



    

3

   3

f

fp



  3

f

fp

  3

 


Picc.

Fl.1/2

 341      

kl. Kl.

Kl. 1

Fg. 3

1./3. Hn.

  

Trp. 1/2

Pos.1/2

 

Litolff / Peters

 

 

 

 

 

 

             

3

3

ffp

f 3

3

3

3

3

3

3



f

         

  

           



      

 3

f 3



3

3

3

3

ffp

f 3

3

3

3

f 3

3

3

3

3

ff

  ffp   ffp

 

ffp

 

ffp

ffp

ffp

ffp

ffp

 

f 3

3

3

3

3

3

f 3

ffp



3

3

3

3

3

ffp

ffp

ffp

  3

ffp

ffp



ff 3

ff

ffp

ffp

3

           ff

Kb.

3

3

ffp

 

3

f

ffp

 

ffp

5

f

3

    

Vc.

ffp

3

 

3

   

Vla.

3

   

Vl. 2

3

ff 3

ffp

3

    

    

3

ffp

ffp

3

3

    

3

3



f

ffp

     

3

3

ff

ff 3

3

3

ffp

ff 3

3

 

ffp

3



   

 

Trp.3 (B)

Vl. 1

3

3

3

f

    

    

3

3

    

ff 3

3

3

ffp

ff 3

3

3

   ffp ff 3      ff 3

            ff  fp

   3

ff

ffp

3

3

3

3

             f pp div a 3     f 3

3

3

3

ffp

3

              

f 3

3

3

3

3

 

     

5

 

87

3



         55 ff                ff  5               ff         

2./4. Hn.

Pk.

f

ffp

ff 3

ff 3

Bpos.

f

ffp

ff 3

   

ffp                    

ffp

    

  

Kl. 2



    

        

Eh.

Fg.1/2

ff 3

  

Ob.1/2

Bhn.

    

3

       3

3

div a 3

    

ffp



     

ffp

3

3



f

32986



ffp

3

f





3

 

3

   


88

  343

Fl.1/2

Ob.1/2

Eh.

 

  

 

1.

p

p

Bhn.

 

 

 

p

Fg. 3

1./3. Hn.

  

  

2./4. Hn.

p

 

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Vl. 1

Litolff / Peters

 

 

     p fmf      

  

p

      f             f      

p

 

 



fp

  

  

fp

fp

  







 



ff

 

 ff

 



ff

ff

 

 

 1.2.



fmf

   

 

 

 

3     

     

3

ff

ff

3

ff

   ff



 

 

       ff 3

f

ff



     



f

ff

 ff

f

    fp

   fp



fp

 

   

fmf

3      

 

   

ff

fmf

   fp

  

fmf

      fp

ff 3

fmf

     

   fp    

ff

 

 

ff

Vc.

Kb.

  

    

  

f

3

1.

  

Vla.

      p

          ff         p

1.3.

 

Vl. 2

     ff  3  1.           ff  3       ff

 

3

3

  

   ff

  2.

Fg.1/2

3

ff

fmf

3



 

Kl. 2

  

            f ff        

 

Kl. 1

           ff    f 3 3            f 1.2. 3

ff

 

kl. Kl.

q = ca 80

   

 



 





 





fmf

fmf

q = ca 80

   

 ff

5 3                               f fp fmf  ff ff 5                                     3 3 3 3 3 fp   fmf ff f ff pp 32986 3

 

    


89

  

  

 

 1.  

 

 

 

 

346

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

 

Pos.1/2

Pk.

Litolff / Peters

 



fp



                

fp

   

 

mf

    



1.2.     



 

 

 

 

 

 

 

 

 

 

 









q = ca 85 q = ca 90         

 

mf



fp

  

  

  

mf



 



 



 



mf



                 fp p



 

 

 32986

mf

mf

 

1.

 

fp

f

  





 

 

      

 

       ffp 1. harmon auf       

    

mf

harmon auf        

       ffp        



5





 

3

f espr.

 

 

 

mf

3

f

    

ff

Kb.

mf 1.

 

ffp

Vc.

 



ffp

Vla.

     

ffp

Vl. 2

  

ff

Vl. 1

 

              

ffp

Bpos.



  

ffp

Trp.3 (B)



  

  

q = ca 90 1.

fp

f 1.2.

q = ca 80

 

  

  

ffp

Trp. 1/2

q = ca 90

fp

ffp

2./4. Hn.

q =1.ca 85

q = ca 80







mf

q = ca 90

 







    

f




90

  350

Picc.

Fl.1/2

 



1.2.

   

 

mf

 



mf

Kl. 1

 

Kl. 2

 



 

mf

 

Bhn.

Fg. 3

1./3. Hn.

Pos.1/2

Bpos.

Vl. 1

  

mf









 







1.3.

  

   2.



  

  fp

  

mf

 

       

 

f





   

gestopft

fp

    

 

 

fp



f



   



 

 

fp

     fp              

 

 





 

fp

(f)

mf



 

          f

gestopft

f offen

fp

  

 

 

  



 

 

 

  



 

     

3

3

 

  



f 1. harmon f

 

 

 

 

 

    

 

 

 

 

fp





      fp   

(f)

                   5

3

harmon

    

 

            



 

 

 

Vc.

  1.

3

Litolff / Peters

3

 

(f)

Kb.

 

 

    

mf 3

Vla.

 

 

  

Vl. 2

  

 

Trp. 1/2

 

  

2./4. Hn.



fp

fp



  

     

(f)

Fg.1/2

kl. Kl.

 

fp

mf

1.2.

 

    



 

 

  



Eh.

  

  



 

Ob.1/2

 

fp

 32986

        

mf

fp


Picc.

Fl.1/2

Ob.1/2

353           f          f         

f

Eh.

kl. Kl.

91

               

               

                

p

                                 

                       

f

Kl. 2

Bhn.

 

f



 

                f

1./3. Hn.

2./4. Hn.

Trp. 1/2

Pos.1/2

Bpos.

Vl. 1

        

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

mf

3

 

 



      







3

p

 

 

harmon ab

 

 

 

  



 

harmon ab



  



 





f

  

 

  

  

   

3

   



f

mf

 1.                 mf

pizz. 

  

 



 

 

pizz.    

f pizz.

 

f pizz.

 

   



  

pizz.

           

 

   

f

mf 3

3

f

Fg. 3

1.2.

mf

1.2.

Fg.1/2

p

                         

  

  

f

Kl. 1

    

 1.

 

arco

p

arco p

arco p

arco p

32986

 



 



 





 

  

 

 

  

  



  

 

  



p arco

   



 

3

3 3             3

p


92

q = ca 80

           5 f     1.2.        

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

    

Fg. 3

   

mf

1./3. Hn.

2./4. Hn.

Trp. 1/2

Pos.1/2

  

Bpos.

    Vl. 1

Vla.

 f   senza sord.     

3

 

f

   mf

   

     mf



fp

3

3



3





f

f

f

  f

  f

  f

  f

 

 3    f

f

3

3

  

1. offen

     

f

    fp  

3

   fp   fp

q = ca 85

  fp

 

  fp    fp   fp

fp

 

fp

 

fp

mf 1.2.



mf

  



  



  



  



mf

mf



mf

  

  

mf

1.2.

  

33



 

     

 

mf

   

mf

3

  

    

mf

mf

 





 

 

 

       32986

  (flag. suono reale) p

    p

(flag. suono reale)



ord.





ord.



mf

mf

p (flag. suono reale)

mf

p

mf

  

(flag. suono reale)    p     (flag. f2)   p     (flag. f1)   p  (flag. suono reale)    

   (flag. suono reale) 

3

q = ca 90 (flag. suono reale)

f

3

 

 



     

   



mf

p

fp

3

1.2.

  

fp

     fp

senza sord. f

 

mf

Litolff / Peters

f



   

Kb.

senza sord.

mf

mf

Vc.

mf

fp

senza sord.         

 

  

 fp   

 



mf



   

fp

mf

mf





    Vl. 2

 

   

fp

 

   

q = ca 80



f 2. offen

  

Trp.3 (B)

fp

f

  

  

 fp 

    

   

fp







  

 

3

  

fp

   f            5 f             5 f      f         f 1.2.         f

 

5

f

q = ca 90

q = ca 85

356

 

mf

mf

ord.



3

ord.



3

mf

p

mf

p

mf

   


  358

Fl.1/2

Ob.1/2

Eh.

Kl. 1

Kl. 2

 

 







ff

mf





 





ff

 

1.

mf

1./3. Hn.

     

2./4. Hn.

    

mf

 mf        

mf           ff p  f mit         ff

 

ff

 

p



mit f

 

 



  

1.

 1.

   

 

   

mf

 

 1.

 

Bpos.

Vl. 1

    

 

mf

ord.

 

q = ca 80





ord.

ff

 



Litolff / Peters

 

 

 

mit f     



     ord.

liberamente

 p



  









    

    

mf

mf

mf

p







p

p

 p

mf

mf



q = ca 80 q = ca 85 q = ca 90

p

      ff f  mit     ff f  mit     ff mit f       ff

ff mit f

 

W 

ff

Vla.

Kb.

    

 

Vc.

mf

     

  

Vl. 2

         

1.



ff

Trp. 1/2



q = ca 95

ff



1.2.

q = ca 80 q = ca 85 q = ca 90

 

1.2.

ff

 

Fg.1/2

93

liberamente

W

ff

Bhn.

Fg. 3



kl. Kl.

q= ca 80 



32986

 

     2.

mf

q = ca 95

   

      3

mf

 

     3

mf

  mf


94

Flatterzunge

  364

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

1./3. Hn.

1.2.

1.2.

3       



mf



mf



mf



mf

pp



2./4. Hn.

1.

pp

Fg.1/2

 

Bhn.

q = ca 80

 



1.

mf

1.



pp

 3

Trp. 1/2

Vl. 1

   



   

 

    

ord.

 

ord.

1.3. gestopft



ff

2.4.

gestopft ff Flatterz.

 

ff Flatterz.

    

 

   

ff

  

q = ca 100

q = ca 80

 



    



  

 

 

 

pp

 

    

3

 p

  p

  mf

p

pp

Litolff / Peters



pp

pp

Kb.

    

pp

pp

Vc.

ff

ff

Vla.

 

  

Vl. 2

ff Flatterz.

    

 

 

ff

Pos.1/2

Bpos.

Trp.3 (B)

Flatterz.

pp

ff

    

mf



    2.

ff Flatterz.

  

q = ca 100

    



  

 

mf

p

p

  p

           fp ff            fp  ff              fp

  

ff

             fp ff                  3 p fp

  p



ff



p 32986

  

ff




95

 

q = ca 85

369

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Bhn.

1./3. Hn.



     

Vl. 1

ffp

 

   





mf

1.3.



mf

 

f

 







 

           5

 

 

f

 



  



             mf 

f



f

 



     

f 2.4.



 

 

 

 





         ffp ff         

 

 

 

 

     ff       

      

Vla.

 

Vc.

Litolff / Peters

 

 

Vl. 2

Kb.

 

 

Trp. 1/2

Pk.

  

ff

Gr. Tr.



  

2./4. Hn.

Bpos.

f

offen 2.4.

Pos.1/2

 

mf 5

   

3



 



 

3

  



mf

  3  ffp   offen 1.3.             ff

  





mf

1.2.

  







ffp

Fg. 3

 

1.2.

 

Fg.1/2

mf

Kl. 2

 

 

3

     ff ffp  3         

3   3

    

3

3 3

f

ffp

  f

q = ca 85





ffp

mf

3

 

3









ffp

mf

ffp

ffp

 

mf 32986

3

 f



 





f

3

          3         

   3  

mf

    

      3

mf

ff mf

 

fmf



     p



 



 

f

ffp

1.

3

 

   f

   f



  

          3         3 3

 

3

   


96

  

 

372

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

    

    



          

  



f

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

Bpos.

Kl. Tr. T.-t. Mtr.

Pk.

Vl. 1

Vl. 2

Vla.

    



        



Kb. Litolff / Peters

  



       

   

f

  

   

  





ffp

3

 

 

  



  





         

       

 





 

                



ffp

 





      2.4.

3

  

 

  

 

ffp

          

   



ffp

 

     

 

 3

3

  

    

    

3

 32986

f



ffp



     f      

 

ffp

f

ffp

mit Schnarrsaite



 



ffp

ffp



3

f

    

 mit Schnarrsaite

 3

   

ffp

ffp

ffp



X

3       3      

f

ffp

 

f

   

ffp

 ffp  

 

f

   

ffp

ffp

      

ffp

 

ffp

3

f

ffp



3

f

      

                        

ffp

    f       f          

q = 90

    



  

  

ffp





ffp

  

   

   



 

  

 

        f  

     

1.3.

 



f

   

  

  

                  f       

5

Vc.

 

   

X

 

ffp

 

f



    

ff

f

mf

   

   

mf

ff

    



q = 90

f

ffp

                   f                     3



 



 

3

trem.

ffp

ffp trem.

ffp

ffp



 

ord.



ffp ord.



ffp

f

  f


Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

375                    

Kl. 2

     

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

Trp.3 (B)

Pos.1/2

Kl. Tr.

Mtr. Pk.

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters



     

Trp. 1/2

Bpos.



                                                         

  

97

                                                                             

     

            

     

            

                               

   



  

  

   

  

   

       

        



  



  



  



 

             

   

1.

  

   

          

   f

 3     3   

 3   3 

   

    

f f

    f

 3   3 

 

 

       

                                

 



   

   

   

   

32986



    

 



     

 



1.3.



  



 

 

 



 

 

2.4.

3 3

 

3

3 3

  

   

      

         

  

   

  

  

  

                                                      

 

2.

  



     f                       

    

       

 



    3    3       3    3     

  3                             





   

   



 

     

  

 



 



 3

3

   

 

 

 

3

   3

   3

 


98

 

378

Picc.

Fl.1/2

 

Ob.1/2

Eh.

3



 

kl. Kl.

3

Kl. 1

Kl. 2

 

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

Trp. 1/2

Trp.3 (B)

Hfe.

Klav.

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

     

3 3

3

5

ff

 

   

    

                ff

    

3

3



3

3

 

          3  3     

3           ff       

  

5

ff

5

3

   

5

   

    

   

          5  

  

 

   

   

  3



3

  3

 

3

 

3

      3

 

   

 

 



 

  

ff

  

 f 2.4.  

 



 

1.3.

f

     

   

    



 

 

     



  

ff

ff

f

   

   

   



     

     

  3   



ff

5



3

      

         

 

  

   

     

3                    ff              

     3



          3   3     

   

ff

5 ff 3                ff 5 3                                  

 

Pos.1/2

Pk.



  

2./4. Hn.

Bpos.

 

1.2.

   

f

 f

ff

3

3

  



3

 

 

  3

3

                           5

ff

     ff

   3 5 non div.                        ff non div. 5                     ff 5                     ff

5 3

  

  





        



    

3

 

ff

 

32986



  

   




99

 

Ob.1/2

Eh.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

381

Picc.

Fl.1/2

kl. Kl.

1./3. Hn.

 

2.

 

 

    

3

 

Trp.3 (B)

Pos.1/2

Bpos.

Gr. Tr. Pk.

Hfe.

Klav.

Vl. 1

                   

Vl. 2

Vla.

  

  

3

 

 

 

Kb.

Litolff / Peters

Vc.

3

 

3

3

  3   

   

    

   

3

 

 3          3 3 3             



 



    ff   ff



   

  

 

     

 

   1.2.   

    



  

   

     

  



                 

 

ff

ff

  

ff

ff

              

    6

                    6 3                   5 3                                5

6

 

   

  

   

ff

  

          

     

        

3

        

     

32986

  

     

   

 

1.2.

        

5

3

 

1.3.

2.4.

 

 

   

1.2.

   

Be.

3

Trp. 1/2

2./4. Hn.



  

  

         


100

  384

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.



3

  

3



3 3

 

3



3 3

 3

   

Trp. 1/2

Trp.3 (B)

Pos.1/2

Gr. Tr.

Pk.

Vl. 1

 

 

3

 

 3             

3 3

  3

 

    

   

Vc.

3

   3 3

       3

 

                5       

 

             5

 

              

5



      



          

 

  

  

 

    

 

       

 

 

 

 

  



 



 



 



5

                         

5

   

  

5

       

32986

   

     

q = ca 80

   

   

 

p

 

 

p





p

          p



p



     







      



    

 p

p

  

p

 

p

 q = ca 80

     

q = ca 75



p

      

 





p

p



p



1.



p

 

q = ca 75

       p     



                       

5                5

 



   

5

1.2.

                                                

        

5

  3     

              

           

 3

 

1.

           

Vla.

Litolff / Peters



              

          

Vl. 2

Kb.

3

 

           

2./4. Hn.

3               

3

Bpos.

   



p

 


 

Fl.1/2

Ob.1/2

Eh.

Kl. 1

387 q = ca 90

Picc.

 

Kl. 2

   pp

     

Fg.1/2

pp

Fg. 3

 1.

1./3. Hn.

pp 2.

    

2./4. Hn.

pp





  p espr.



   





     

p espr. 1.



p espr.





p espr.

p espr.

    

   

Bhn.

Y

101

IV. Rose



 1.





 

p espr.

Trp. 1/2

   

Trp.3 (B)

 

    

Pos.1/2

Bpos.

Vl. 1



 q = ca 90

         

Vl. 2

   

Vla.

     

molto legato

Vc.

pp

Kb. Litolff / Peters

 

Y

pp

 

pp

div.

  

pp

  









espr.





p espr.





espr.

32986



molto legato sul D



p espr. molto legato



p espr.





 


102

  396

Fl.1/2

Ob.1/2

 

Picc.





mf



 

1.

   3

3

p

Eh.

Kl. 1

Kl. 2







mf

Fg.1/2

Fg. 3

1./3. Hn.

   

 

p

mf

p espr.

p

1.



  1.

p

 

sul G molto legato



 

Vla.

 

Vc.

 

       

 

 

p espr.

mf

  

mf

molto  espressivo  



  

mf



  

p

mf

  

p

mf 32986

3

p

  

  mf

  p



p

mf



p

 

mp

  

mf

  

Vl. 2

Litolff / Peters

p espr.

Kb.

   p

mf

2.



p



 

Trp. 1/2

Vl. 1

 

2./4. Hn.

Bpos.

 

mf



3

  p

 

Bhn.


103

  402

Picc.

Fl.1/2

Ob.1/2

 

Kl. 1

3

1./3. Hn.

 

Vl. 1



  3

p

    

    



3

 

mf

  3

  3



mf

   



            

p

3

3

1.

      3

  

3

mf

3

3

p

 

ord. 



mf

   

   

p







     3



  





mf

  



3

p

 

   

p

2.  

 

mf

mf



  

Vla.

  

Vl. 2

   

mf

Bpos.

1.



p

3

mf

Trp. 1/2

3

p

mf

 

  

2./4. Hn.

   



3

     

1.

p

mf

Fg. 3

Fg.1/2

  

mf

Bhn.



  

p

p

 

Kl. 2



mf

kl. Kl.

   

Eh.

q = ca 93 accelerando

p





mf

f

  

q = ca 93 accelerando





  



 3

3

3



mf

Vc.



mf

Kb. Litolff / Peters

   3

p

3

            3

p

mf

 32986

3

   3


104

  407

Fl.1/2

Ob.1/2

Picc.

  

 3

3

       

Kl. 1

p

3

    

Kl. 2

 3   

3

 

3

mf

3



3

 3  



  

pp

3

3

    3

         

            mf

Bhn.

Z

mf

Eh.

q = ca 100

pp

3

p

Fg.1/2

1./3. Hn.

 



2./4. Hn.

Trp. 1/2

Bpos.

Vl. 1

Vla.



    

mf

 





   

p





3

           pp

3

              3 



 



3

3

3

3

pp

mf

3

   3

3

3

Z

                    

         

p

Litolff / Peters

mf

f

   

3

            3

3 3

3

q = ca 100

  

3 3

Kb.

  

p

3

Vc.







1.

 



3

Vl. 2



2.

pp

Fg. 3



mf

32986

3

                      pp



3

         

pp

3

3

3



3




 

411

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg. 3

 

1./3. Hn.

2./4. Hn.

3

 

p



 

Vla.

Vc.

Litolff / Peters

fp

3

 

3

3

3

3

3

fp



fp







fp

   

 3

  



 

 



fp

fp

 

3

3

p

 p

3



3



 

fp f

32986

3

ff

3 3

ff

3 3

        

ff

3

   3    ff

3

3

ff

           ff 1. 1.2. 3         3

ff

3

3

3

         ff       ff        

3

3

ff

   ff  q = 120   3    

3      

ff

3

3

      



fp cresc.

3

    3   

       



3

ff

3

ff

3        

          

ff

3

fp

3

              

3





3



ff

ff

           fp

3



3

    

fp

ff

       

        

  

3                                                      3 fp p 3 3 3 3  3 3                                          fp p 3 3 3 3  3                                          

Vl. 2

Kb.



  

 3 3

         

  

ff

      

3

  

      3     

3

fp



3

3



105

      3      ff

            

2.4.

Vl. 1

Bpos.



q = 120

   

fp

      





fp

3



1.3.

            

Pos.1/2

Klav.

fp

Pk.

 

Be. T.-t.

fp

3



Trp.3 (B)



 

Trp. 1/2



 fp

fp

Fg.1/2



3

ff

3         ff   3       

3        

ff

3

ff


106

  416

Fl.1/2

Ob.1/2

Fg.1/2

3           3

3 3



3



3 3         





3       3 





3       3 





 

 

 3      3    

Bhn.

 



Kl. 2

   

Kl. 1

3 3         

kl. Kl.





Eh.





   3

    3   3

  3       3

3

Fg. 3

1./3. Hn.





  

3

     

1.3.

3 3      

2.4. 3

 

Trp. 1/2

 



     

Trp.3 (B)

 



 

2./4. Hn.

 

Pos.1/2

Bpos.

Be. T.-t.

Vl. 1



Vc.

Litolff / Peters

   

   

Vla.

Kb.

 



Vl. 2

 

       3

3

3

3

  

  3    3



  3

3

   

 

  

 

  

 

3

3

3

3

      3

       3

3

       3       3

3

3 3

     3

 

   

 

 

3

3

   

 

   

 

   

 

3

3

      3

3

p

 

3

 

 

 

   

  3

 

 

 



3    

 

  

3

3

3

3

32986

 

   

  

3    

p

p

p

  p



 

 

 

 

 

p

   

   

 

 

 

p

 



 

 

3

 

 

3

 

  

p

2.

p

 p  1.  

       

3

 

p

p

3

  2.

  1.

      

3 3

3

  3 

 

 

3

   

    

 



3     

 



 

   

3

3

3

 

3

  3      

 3      3    

 

3

3

3

q = ca 90

 

3 3          3

3

3

   

 

q = ca 90

 

 



mf espr.

 

 

 

   

   p espr.

3

   3





p espr.

 


107

  423

Ob.1/2

Eh.

Fl.1/2

Kl. 1



  3

p espr.

 







mf

Bhn.

Fg.1/2

1./3. Hn.



2./4. Hn.

 

Kl. 2

Fg. 3

Trp. 1/2

Bpos.

Pk.

Vl. 1

    

Vl. 2

 

Vla.

Vc.

Kb. Litolff / Peters

    3



  

   





3

 







 

 

mf 3

 

3

f



3

        



3

 

  

 



mf

32986


108

  429

Picc.

q = ca 120

A1

q = ca 110

Fl.1/2

Ob.1/2

Eh.

 

Kl. 1

p

Kl. 2

ppp



ppp

p

Bhn.

    mf

Fg.1/2

Fg. 3

2.

 p

   

 

mf

1.

1./3. Hn.

p

 

Bpos.

Pk.

Vl. 1

 

 

p

p

q = ca 120

 p

Vl. 2

 p

Vla.

Vc.

Litolff / Peters

 

p



  p

ppp

ppp

 

ppp

 

ppp



p

ppp

 

ppp

p

 



p

 p

  

p

  

ppp

ppp

ppp

ppp



mf

ppp

  mf

mf



p

ppp

p

  

ppp

 mf

mf

 

ppp

ppp

ppp



mf

1.

   



p

 

 

 



mf

ppp

p

p



 

 



 



p























 





p

mf

mf

mf 32986

        

3

 

mf

   

 

    

3

3

  

  mf

p

p

p

p

mf

 

 

 



 

mf

3

A1 

 

mf

mf

 

p

 3 mf

 

p

 

   

 



 

ppp

f



   

p

mf

ppp



 

f

 

mf

   

p

p

 



p

Kb.

Trp. 1/2



ppp

p



p

ppp 2.

2./4. Hn.

ppp

p



q = ca 110

3

 

3

 

 

3

mf

mf

mf

3   

mf

mf



    3

   3 3

  


   435

Picc.

q = ca 100

  



     f

  1.2.

 

Fl.1/2

f 1.2.

Ob.1/2

1.

6



 

Eh.

 

 

kl. Kl.

f 6

     

Kl. 1

  

f

 

           f

Kl. 2

5

f

 

Bhn.

f



    

Fg.1/2



f

Fg. 3

1./3. Hn.

      3

Trp. 1/2

Bpos.

Vla.

Litolff / Peters

     

  

     3   

 6           

5

    3

        

3

 

 

  



3

                  5

   5   f

 32986

mf

 mf



mf



mf

mf



 mf

f

 mf

                mf

f 1.3.

3            

q = ca 90        



          





1.3.

    

1.2.

2.

3

f

     3

     

   

3

     3

 

3

  

f Kb.

  

f

Vc.

     

f

Vl. 2



  

1.

  

1.2.

q = ca 100

Vl. 1

   3      

 

 3      

 

f

3

  3  



      



f

3

     3    

     

2./4. Hn.

             

    

         f  f

109

q = ca 90



3

mf



2.4.

f

mf

1.

 f

mf

 3  3  

 3    



3   3          

     



     

  

   

     

3

3

mf

mf

mf

             mf 

3   

f


110

   438

Fl.1/2

1.

p

1. p

Kl. 1

Vl. 1





p

mf

 

 p

 





p

1. p

1.



 

mf





1. p

p

p

 

Vl. 2

mf



p

mf

2.

Bpos.





 

Trp. 1/2

p

p

 

 

2./4. Hn.

 



p

1./3. Hn.



1.



  

mf



1.

Fg. 3

Fg.1/2



p

Bhn.

p

p

Kl. 2



Eh.

q = ca 75 q = ca 90

 

 

Ob.1/2

1.

q = ca 75 q = ca 90 molto legato

  

 fp

 

mf

 

   

  

   

fp

   

Vla.

         

mf

 

Vc.

f

  p

Kb. Litolff / Peters

3

3

 

 3    

molto legato



mf

molto legato



fp

mf

 32986



 



 

 

p

  

p

mf

mf


  



 

447

Fl.1/2

Ob.1/2

Eh.

Kl. 1

Kl. 2

  

3

  1.

  1.

 

   

p

p

3

 

3

3

p

 

 

 

 3

p

3



3

3           p

mf

3



 

Fg.1/2

  1.

1./3. Hn.



2./4. Hn.

Trp. 1/2

Bpos.

   

Vl. 2

sul D



 

Vc.

Kb. Litolff / Peters

 

sul G







  







 

 p

 

 

3

3

mf



mf

 p

mf

p

 



p

mf



mf

 32986

p

  





 

 

 3

 

p 3

p

 



q = 80

     3

 

 



p

 

 

3

3



3



 

3

mf

 

q = ca 110





3

p

p

3



 3

 





mf

p

 p

B1 3 3 3           p

 



 

3

1.

3



mf

p



 3



3

mf

2.

  





 



mf

Vla.

p

1.

p

sul A

Vl. 1

 

 p

p

p

Bhn.

Fg. 3

q = 80

    

p

111

q = ca 110

B1

 

3

p

 p

 

 3

3


112

q = ca 65 q = ca 90

    

q = ca 80 q = ca 90 q = ca 80

454

Fl.1/2

mf

Ob.1/2

Eh.

Kl. 1

Kl. 2

Bhn.

 

mf

   

mf

pp

3

mf

mf

 

Fg.1/2

     3     3

mf espr

 



1./3. Hn.

 

 3

 

2./4. Hn.

Trp. 1/2

Bpos.

mf

mf

mf

mf

Kb. Litolff / Peters

 



1.

2.

pp

straight mute auf

straight mute auf

pp

 

pp

3

mf

mf

 

 

1.



mf pp



pp

 

Dämpfer auf

Dämpfer auf

pp



pp

  

  

3

 3   3 



3



   







32986

3

3

 



  

mf





pp

      3

  

mf

  

 pp

3

       

3      



pp



pp



q = ca 90

mf

q = ca 80 q = ca 90 q = ca 80







 



 

3

pp



 

pp

 3

3





   

Vc.

pp

  

mf pp

 

 

1.

   

 

     

Vla.

pp

 

pp

  

Vl. 2



q = ca 65 q = ca 90

Vl. 1

 

  Hfe.

1.

mf

 

 



mf Fg. 3

q = ca 90



 

pp pizz.

3

 


  461

Fl.1/2

  

mf 1.2.

Ob.1/2

113

1.2.

 

3

    mf

  

Kl. 1

mf

3

mf

 3  

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

Trp.3 (B)

Hfe.

Vl. 1

Litolff / Peters



 

 

fp

 

fp

mf 3

      

fp straight mute



straight mute ab

fp straight mute



 

   



q = ca 80

   



mf



fp

q = ca 90

    3

  

mf

  3  3



fp

p

mf





mf

 

p 2. senza sordino

  3 

fp



mf

1. senza sordino

fp

 

mf

 



straight mute ab



   

mf

p

3

  

fp

3





fp

2.

mf

q = ca 60





3

3

f



  

      



3



p

   



fp

3

fp straight mute

  

fp 2. con sordino Dämpfer ab



p

con sordino Dämpfer ab



Tamburin

       3    

 p

fp

  

mf

Kb.

Vc.

  3  

Vla.

 

Vl. 2



  



fp



1.

 

Trp. 1/2

Schlgz.

q = ca 90

fp



2./4. Hn.

Bpos.

mf

q = ca 80

fp

 

 3  

Kl. 2



  

3

    mf

fp

 

mf

kl. Kl.

fp

 3  

Eh.



 

3

q = ca 60



  



 





 p

    3









arco

32986



 



   3

mf 3

   mf

mf





mf







mf

mf


114

  468

Picc.

 

Fl.1/2

Ob.1/2

Eh.

 

Kl. 1

 3

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

f





f

Bpos.

Vl. 1

 



Kb. Litolff / Peters

   f

 



 



 

 

f 3

  





f

f

f

p molto espr.



1.





p

p

   straight mute ab   

    

   



mf



p molto espr.

  3

 



p espr.







32986



 

1.

 molto espr. 2.



 

C1  







molto espr.

 

 

molto espr.



p

molto espr.





p

 p



molto espr.

p

3

p









ruhig

   



  

3

 

molto espr.

p





p

f

f

f

 3

molto espr.



  

    

C1

molto espr.

 1.

3



 

3

3

      

Vc.

1.

   

    



 

p

p



f

3

Vla.





  

Vl. 2



1.

f

Trp. 1/2

  



3

3



  

 

2./4. Hn.

    f

      

Kl. 2

p

f







   1.

ruhig

molto espr.

  


  476

Picc.

Fl.1/2

Eh.

kl. Kl.

  



 





 

  

  

  

Kb. Litolff / Peters

    

3

3

 

ff 3



  



    ff

ffp





1.3.



2.4.

    3

ff

   ff

 

3

   ff



 



  q = ca 80

f

  

ffp

  

   

ff

 

 3

ffp

      

3

fp

  

 3              ffp ff ffp 3 3                               ffp ffp fp  3                3

  

ffp

 ffp

3

ffp

fp

      

fp

32986

ff 3

  

ffp



  

 

 



ff

  



 

3



Vc.

  

  

  

3



ff 3



Bpos.

 

ffp

    3

  

 



3



 

fp

    

ff

ffp

    

  

3

 





ffp

 

3

  

fp

ff 3



 

  

Vla.

3

3

Pos.1/2

 

p

ff



ffp

3

3

  

   

2. p

ffp

Vl. 2



ff

   

 

Vl. 1

ff  

 

   

ffp

     

 



Pk.

3

3

  

  

ffp

fp

             

 

ffp

      

  



3

3

fp

ff

Trp.3 (B)

    

       

Trp. 1/2

      p

     

3

ffp



ffp



  

ffp

 

  

2./4. Hn.

ffp

 

 

 

1.2.

   

q = ca 90

  

  

  

Fg.1/2

1./3. Hn.

Bhn.

  

  

Kl. 2

 

 

  

Kl. 1

Fg. 3

 

  

Ob.1/2

115

q = ca 80

3

 q = ca 90

senza sord.

ff 3

3

ff senza sord.

     ff

   

senza sord. ff

     f

ffp

          ffp ff                 ffp ff



ffp

  

ffp

 

 

    ff

     ff


116

   

Picc.

Ob.1/2

Eh.

Kl. 1

Bhn.

 

  

 



 

    

1./3. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Be.

f 3

ffp

f   ffp  3

ffp

f 3

ffp

    

 3      

3





f 3

ffp

 ffp

f

f

    

3    

   3

   3

 

f

 3   

  

  

 

3

3

 

      ff   

Kb.

  

molto espressivo e patetico

 











3



  

molto espressivo e patetico

    

Vc.

         3

   3



  

 

f 3

ffp

        3

 

  

3

  

3

32986

 f 3

 

ffp

 

 

3

ffp



f

ffp

f

ffp

 

f

fp

f

fp

    

3 3

    3    3    3 3      3

3

    

3

3

3

3

       3 3         3 3         

 

 

3

3 3               

ffp

  



   

 



  f p 

   3 

   

  

  



   

    

f 3

  

3

  

3

 

3

ffp

       f 3 ffp  

 

3

 

f 3

  

ff

Litolff / Peters

ffp

  

  

    

f 3

      

Vla.



 

     f   

Vl. 2

     

    

   

ffp

 

 

2./4. Hn.

   

f 3

  

   3      



   

   



   

   

 

Fg. 3

Vl. 1

 

 

Fg.1/2

Klav.



  

Kl. 2

Hfe.

  

     

kl. Kl.

Pk.



   

Fl.1/2

   



480

 

   

     

3                   3   3         3        3 3    

3





3

3





3

  3    

           

  



 

  5   5



 



f

ffp

f

ffp

 

 3   3      3  3      






 ff   ff   



  483

Picc.

Fl.1/2

Ob.1/2

117

   

  

 

ff

Eh.

kl. Kl.

 

Kl. 1

Bhn.

Fg. 3

1./3. Hn.

ff 

 



ff



ff



 

Kl. 2

Fg.1/2



ff

2./4. Hn.

Trp. 1/2

 

ff

ff

  ff

Bpos.

Pk.

Hfe.

Klav.

Vl. 1

    ff    f         

  

Vla.

Litolff / Peters

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                       

     

ff

 ff

 





3

 

  

   

 

 



 



 

 





 





 



3

3

3

        



3



                        

Vc.

Kb.

ff



 

 

                        

Vl. 2

 

 

ff

Pos.1/2

 



ff

 



ff



   ff    ff   

Trp.3 (B)

 

3

3

3

3

   

 

   

ff

3 3 3 3 3 3 3 3                          3

3

3

3

3

3

3

3

                                                   3 3 3

3

3

3

3

3

3

3

                        3

 32986

 

 

3

3

3



3

 

3

 


118

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

485               

               

3

3

3            3            3     

3

   3  

3

   3  

3

  3  

3

3     

3

Fg.1/2

        

Fg. 3

        

5

1./3. Hn.

2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Vl. 1

Vl. 2

            

3

   

3

3

3

 3

  3

     

     

      

                

             

    

Vc.

Kb.

        

5

5

mf

  

mf

f

       

 

f

 

   

 

        3      3

 





p

 



mf

3

mf

p

 

     

   

     3

mf



2.

p

p

p

mf

  f

 

 

      

rallentando

mf



   

f

     f    f      

mf



mf

f

32986

p

2.

   

f







f

p

 

 

 

f

   

 

      

   

  

 

 

mf

f

p

    

 

 

     

mf

f

f





1.

mf

f

q = ca 75

rallentando

 

f

  f            f               f            

  

     

    

3

        

Litolff / Peters

         

3           

5

Vla.

3

       f        f

     

5

     

 

   

molto legato

q = ca 75

 

p molto legato





p

molto legato





p molto legato





p


119

 

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

      

489 q = ca 90

Picc.

  

Kl. 1

p espr.

  

3

Trp. 1/2

Trp.3 (B)

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

 

2./4. Hn.

Pos.1/2

Bpos.

Vl. 1

        q = ca 90

 



espr.

Vl. 2

 



Vla.

 

 

Vc.

Kb. Litolff / Peters

 



 



mf



   

  

mf



mf







 

3



 



mf

32986

 



p

3

 

 p











p

p




120

D1

 

Eh.

kl. Kl.

Kl. 1

497

Fl.1/2

Ob.1/2

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

  

2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pk.

Kb. Litolff / Peters





pp







pp

 1.

pp

 



1.2.





pp

 

 



 

1.

pp

2.

   



pp

 pp

1.3.

pp

2.4.

  

pp



ff

  ff

   

ff



ff

3

1.2.

 ff

 

 

 1.2.



pp

 

 

  

  pp

q = 70 rallentando

 

 

 



 

ff



           



 

3

3           

ff

ff

p

3

ff

 

p

 32986

ff



pp

  



q = 100

pp

  

  

q = ca 65

ff

pp

 

3

ff

q = 100 1.2.

pp

 

Vc.

1.



  

Vla.

pp

           

q = ca 65



 

Vl. 2



D1

Vl. 1



Pos.1/2

Bpos.

q = 70 rallentando 1.2.

 ff

 

ff

3

pizz.



pizz.   

  

pizz.


  



505

Fl.1/2

3

f

 

Ob.1/2

 

121

   3

  

 3    3          

   

    

   

3         

   

   

  

   

  

   

  

f

 

Eh.

Kl. 2

Bhn.

Fg.1/2

1./3. Hn.

f

           3

           3

   

   

 

3         

 

3         

   

 

3

f

3

f

 

f

f

f

Vl. 1

2.4.

f

Kb. Litolff / Peters

   

   





   

   



 



 

 



 

 



 f

arco f arco

f

arco

f

3

  



 3           

 



      

f



 



 

   



f

1.2.

 

 

Vc.



 

 

Vla.

  



f Vl. 2

  

  

 

Pos.1/2

   

 

  

Trp.3 (B)

Bpos.

1.2.

1.

f



  

Trp. 1/2

3

f

   

2./4. Hn.

3

f

 

Kl. 1

Fg. 3

3

 

kl. Kl.

 

 

 3    

  







3

     

    





3

    

  





    

3

     

  





3

     

  





3

3

3

3

3

32986

         







      

  

 

 

     



  

     



  


122

  508

Picc.



1.2.

Fl.1/2

3

1.2.

  

Ob.1/2

    

Eh.

kl. Kl.



Kl. 1

Kl. 2

  

3

3

3

Fg.1/2

    

 



   

    

        

      

       

   

  

  

      

  

 

 

   

    

 







 







  3.

  2.

2./4. Hn.

   



 1. 

4. 



Trp. 1/2

   

Trp.3 (B)

 

Pos.1/2

Bpos.

Vl. 1

Vl. 2

     

3

3

   



1.2.

1./3. Hn.

3

 

Bhn.

Fg. 3

3



 

            

           







 

        





 

     1.3.









2.4.

   1.2.

                    

  

   

 

  

    

 



 

    

1.

   

     

    

      

    

  

                                

Vc.

                 

 

            f 1.     

                            

 

3

   

1.2.

   



   

       

Vla.



    f       1.2.





 

             Kb.          Litolff / Peters 32986



 

                        


Picc.

Fl.1/2

 510           

1.2.

Ob.1/2

 

Eh.

    

kl. Kl.

    

   

    

   



                      

 1.2.

               

       

123

           

    

    

 



 

            

                                  

               

   

   

                      

   

              

Kl. 1

 

Kl. 2

 

   

            

Bhn.

 

  

   

              

   

   

Fg.1/2

1./3. Hn.

2./4. Hn.

              

Trp. 1/2

Trp.3 (B)

 

Pos.1/2

Bpos.

Vl. 1

 

 

Vla.

   

Vc.

Litolff / Peters

3

3

        3   3

      3     3

3

 





3             3     

  



3

  

 

   

   

  

  





 

  

  

3

  

3

3

                                              

3

 

 

    

3

   3



  32986

                            

     

                                 

Vl. 2

Kb.

1.        

    

 

 

1.

     

 



 

    

    

     

 





  ff 



ff

ff

ff

  ff

               

 

   ff               

                                                                    



 





 


124

       ff      512

Picc.

Fl.1/2

ff

                ff        ff      

Ob.1/2

Eh.

kl. Kl.

ff

 

           

                   ff                   ff

Kl. 1

Kl. 2

        ff                                     

Bhn.

Fg.1/2

ff

Fg. 3

1./3. Hn.

                   

ff

Trp. 1/2

 

Trp.3 (B)

 

 

 

Bpos.

Pk.

Vl. 1

                   ff                    ff        

Vc.

ff

Kb. Litolff / Peters

   

  

   

   

   

  

  

   

  

  

  

   

    

  

   

          

   ff







  

   

 

       

   

    

  

    

    ff          ff

      ff

             

            

   

    

          

     

 

       

 

  

 

   

     



   

      

            

32986

   

         

 

   

1.2.

     ff          

   

  

  

    

ff

    

   

   

 



        

   

ff

ff

Vla.

   

        

       ff                

Vl. 2

   

  

Pos.1/2

     

2./4. Hn.

                   

  

   

  

  

                        

 


     514

Picc.

Fl.1/2

  

Ob.1/2

Eh.

 

kl. Kl.

        

Kl. 1 Kl. 2

      

           

Bhn.

Fg.1/2

      1.        

Fg. 3

1./3. Hn.

2./4. Hn.

Trp. 1/2

 

Trp.3 (B)

     

Pos.1/2

             

Bpos.

Be. Pk.

Hfe.

Klav.



Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

125



      

 

    

           

 

    

           



 



 



 



 

 



    

           

   

  

           





 

  



 

  

    



  

 

 

    

           

 

 

      













    

           

  

              

                                   



    

           

 

         

                       

 

    

            



    

           

 

    

           

 

    

           

     1.2.      

 

  2.  



 

   1.    

    

    

  



 

 

 

 

       

 

1.3.

2.4.

 

1.2.

ff

    

               ff                  ff

           

                  

    

    

    

    

    

    

    

    

              

                                   

                               

    

           

  

  



    

 







 









                                                                      

    

32986

  

  

  

  

  

  

  

   

  

  

  

  

  

  

  

           


126

  517

Picc.

                

                  

                      

                

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

1./3. Hn.

2./4. Hn.

Trp. 1/2

Pos.1/2

Bpos.

 

Gr. Tr.

 

Pk.

Hfe.

Vl. 1

                

                               

                

                

Trp.3 (B)

Klav.



 

 3          f

      f                                                                                  Dämpfer auf                     Dämpfer auf                    ff

3

Vl. 2

                 

Vla.

Vc.

Kb. Litolff / Peters

q = ca 95 q = ca 90

Fl.1/2

Fg. 3



   



          

  

q = ca 95 q = ca 90

p

 

p

 

Dämpfer auf

Dämpfer auf

Dämpfer auf

32986

   


127

E1 V. Larissa

  523

Fl.1/2

q = ca 85

rallentando

q = ca 75

Ob.1/2

Eh.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

Pk.

Hfe.

Cel.

  

 

   

E1

Vl. 1

    Vl. 2

Vla.

Litolff / Peters

   

 

q = ca 85 con sord.



pp

 

con sord.



p con sord.



p

 

pp



p con sord. p

 

con sord.

      

mf espr. con sord.



p

       p

con sord.

q = ca 75



 

pp

   

Flag. (b1)

  

      

p



pp

 

pp Flag. (suono reale)

   





  





   

p







   







p

p

pp

 



pp



Flag. (es2)





ord.

pp

 

ord.

 

con sord.

mf espr.

 

Flag. (suono reale)

con sord.

  

Flag. (suono reale)

Flag. (suono reale)

 

Flag. (suono reale)

 

p

p

  

p

rallentando

  



 

Vc.

 

 

Kb.

pp 32986



ord.

 p

ord.

p











p







p

      mf espr.

 p

3

ord.

 p

  

3        

mf espr.

  

  


128

  531

Ob.1/2

Eh.

q = ca 80

q = ca 75 rallentando

Kl. 1

Kl. 2

Bhn.

 

Fl.1/2

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

2.

 p

Bpos.

  



Vl. 1

 

Vl. 2

    

Vla.

  Vc.

Kb. Litolff / Peters



 q = ca 80



 

 



 



    





    



 

 



    







  

 

 





  

p

  

p

mf





  







   

 

 





    





   

 

 





    





     

mfp

mf

  



mfp



q = ca 75 rallentando

  

mfp

     mfp          

    

mfp

 



mfp



      

 

mf



 

 

 

         

f

  

 

   

 

p 32986



mf

p

mf

 





     

 





   

mf


  538

Fl.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Trp.3 (B)

 

 

ffp

ffp

f





f

ffp



 f



f



ffp



ffp

f





1.3.     

ffp

f

    

2.4.

f

mf

    

ffp



 

  ff

 

f

 

 

f

ff



straight mute auf

ffp

straight mute auf



ffp

p

Dämpfer ab

     

Dämpfer ab

  

Dämpfer ab

senza sord.

senza sord.

senza sord.e non vib.



senza sord.e non vib.



p senza sord.e non vib.





p senza sord.e non vib.

ffp



 Dämpfer ab 



   



Dämpfer ab

Litolff / Peters

f



Dämpfer ab

Kb.



f

q = ca 65

Vc.



Bpos.

Vla.

ffp

f

Vl. 2

ffp



 

q = ca 85

 

1.2.

Pos.1/2

Vl. 1

p

  

Trp. 1/2

Pk.

 

2./4. Hn.

T.-t.

Fg.1/2

1.2.

 

Bhn.

1./3. Hn.

129



q = ca 90

Ob.1/2

Fg. 3

q = ca 65

ffp

 



p

f





q = ca 90

f

q = ca 85

ffp



 f

ffp

ord. 

5

        

f ord.

 f

5

    



ord.

f ord.

5

 f

32986



ffp



 

5

              5

mf

 

 

mf

mf

       5

mf

 

mf

 f

   


130

 

q = ca 80

541

Fl.1/2

 

Ob.1/2

Eh.

kl. Kl.

Bhn.

1./3. Hn.



2./4. Hn.

Trp. 1/2

Trp.3 (B)

Bpos.

Be.

 

fp

3

 3     mf

fp



3

fp

mf

 

2.

f

 



fp

  

fp

q = ca 80

   

       

 

 

  

fp

  

  

     

  

mf

  



mf

  



p



mf

  

3

p

 

  

3

fp straight mute

   f

   f

    

   

 p

 



mf

   mf

   mf

 

 f



p



p

mf

     

32986

fp



fp



f

p

3

p

 

p

p straight mute ab

straight mute ab

   p

           p 3

3



3

3

f

 

        p

 p

          p



         fp 3 p f        fp    3

3

p

f

f

5

5

p

          fp

3

   p espr. 

    3   

p



   

mf



3  

fp

   

3

mf



3

fp  

 

f



 

p espr.

F1  

fp

fp

f 2.

 



3

3

f

fp

mf

 1.

straight mute f   

 

Litolff / Peters

 3    

mf

fp

   

Kb.



mf

Vc.

3 3     

fp

fp

 

Vla.

fp



 

p

 

 

Vl. 2

fp



3 3      

1.



 3   3    

  

Vl. 1

3

 

Pos.1/2

mf

5

3

Fg.1/2

Fg. 3

3 1.2.                        3 p mf 3  3       3

      3

Kl. 2

3

mf

5

Kl. 1

1.

F1  

3      

1.2.

 


q = ca 85

  

  

544

Fl.1/2



131

 



Ob.1/2

Eh.

Kl. 1

Kl. 2

 

Bhn.

 

Fg.1/2

Fg. 3

  p



    



 



    



 

3

3

3

3



      1.2.      

1./3. Hn.



2./4. Hn.

Trp. 1/2

Bpos.

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                   

q = ca 85

Vl. 1

3



3

  



3

 



3

3

3

3

3

3



                                              

Vl. 2

   

 









5 5 5                                                         5

5

Vla.

Vc.

Litolff / Peters

5

 

  

5





   

 



 





Kb.

5



 32986

 

5

5

5



 



 

 

5


132

  547

Picc.

Fl.1/2

 

Eh.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.



 

 

  f

 

ff

f

 





3



3

3

3



3

3

Vla.

 

Vc.

Kb. Litolff / Peters

 



5

5

 

 

ff

5

  

p

    



p

 ff

 

pp

ff

ff



32986



pp



  

pp

pp

ff

ff

    





  Flag. (suono reale)

mf

q=80 q=75

ff

                     5

p

pp



mf

ff

ff



   

ff

                  Vl. 2

3

3     

pp

                        3

f

mf

ff

3     

f

pp

mf

 

p

pp

ff

3 3             

Vl. 1

ff

Trp. 1/2

   





2./4. Hn.

Bpos.

 

1.

ff

Ob.1/2

kl. Kl.

 

q=80 q=75

pp

pp

  

pp

    

 Flag. (suono reale) pp

pp

  Flag.  (c3)  Flag.  (suono reale) Flag. (c3)

  ord.



mf ord.



      mf  Flag. (gis1) ord.   Flag. (cis2)

 

Flag. (e1)

        

p ord.

mf





p

mf

3

3

   


  551

Picc.

 3

    

Fl.1/2

                

  fp 

    

  1.2. 

1.

p

Ob.1/2



3

3

3

3

1.

3

3

mf

Eh.

    

Bhn.

Fg. 3

1./3. Hn.

mf

Bpos.

Vl. 1

  mf

3

  f



mf

fp

3            

 

p

 1.

mf



 

  3     

   2.  

p

fp

      3

p

3

3

fp

mf

f

fp

 



1.

fp

mf

   2.

3

fp

1.3.



fp 2.4.

mf



fp

q = ca 70

ord.

ord.



mf

3

3

  



    



p

    

Litolff / Peters

mf



 

fp

f

Kb.

 

p

Vc.

 

 

fp

mf

Vla.

fp

f

p

3       

Vl. 2

 

 



 

  

1.2.

p

fp

fp

3

 

fp



            mf

    p

 

mf

 p

 

p

 

  

  

  

  

 

q = ca 65

mf

mf

    

 



mf



 

mf

q = ca 70



fp



fp



q = 75





fp

 

fp

fp

fp

f

    

mf

 









 



  

 

fp

fp

fp 32986

   



  

q = 85

q = 80

  

      

fp mf

 

q = 85

  

 

mf



  

q = 80

 

1.

 

fp

1.2.

fp

q = 75



p

fp

3

  

mf

Trp. 1/2

p

  

2./4. Hn.

  

Fg.1/2

Kl. 2

f

Kl. 1

f

 

3

kl. Kl.

133

q = ca 70

q = ca 65

q = ca 70


134

   555

Picc.



3

      3 1.2.

Ob.1/2

3

Eh.

        3

kl. Kl.

mf

    

Kl. 1

mf

    

Kl. 2

mf

Bhn.

 

1.

Fg.1/2

1./3. Hn.

   3

f

3

   

Pos.1/2

Bpos.

  

Vl. 2

Vla.

 mf     mf   

 

1.

 

 p

1.

3

 f

ff

    

f f

 

p

mf



f

 

p

 

p

 

p

 



mf





p

   mf

 p

p

p



 p

1.2.

mf

 

1.3.

 

 

mf

 



1. senza sordino mf

 

  



f

     



  

  

    

  

f

f

      mf

p

f

  







 32986





p

mf

  

f

p



mf

mf

  mf

 







mf

 

 

p

mf

mf

 

    p



f

f



   

 

f

1. 1.2.





 



mf

 

   mf

p

f

mf

    

 

3

p

           f   

mf

   

mf

 

mf

       

3

 

f

         f



p

f



p

mf

3

f

          3

1.2.

mf

mf



 

  

 



  

3

mf

mf

f

 

  



p

 

1.2.

3

p

      3

mf

1.

  

p

3

  

p

 

  Vc.

mf

  

 

p

3  

Trp.3 (B)

p

ff

Litolff / Peters

 

 

Trp. 1/2

 f

Kb.

f

   

f

  



2./4. Hn.

Vl. 1



   f 1.2.           

Fl.1/2

Fg. 3

f

 mf

 mf     3

   3    

 p

 p

 mf


G1

 

q = ca 75

560

Picc.

Fl.1/2

Ob.1/2

 

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

  

   f

f



 f

 f

 f

f

 f

 

f

1./3. Hn.

  f  

2./4. Hn.

2.4.  

Fg. 3

f

f

Trp. 1/2

  f

senza sord.

Trp.3 (B)

  f

Pos.1/2

  f

Bpos.

Pk.

Cel.

q = 65

     

p espr.

1.

2.



 

pp

   3     p espr.

     mf espr.

 

         3 

p espr.

 

ord.



 







 









  



 

 



 











 



 

p

pp



1.

p

p

 

p

1.

 1.     

3



   

 

p espr. 3

        1.        

 

     f        3 3 3 3 f     



pp

pp

 

p

pp

 

1.

135

q = ca 75

pp

q = ca 75 Flag. (suono reale)

Vl. 1

G1   

 

f

 f

f

Vc.

Kb. Litolff / Peters

 

f

Vla.

p

q = 65

          p Flag.  (cis3)         p Flag.  (suono reale)     

f

  Vl. 2



   f

Flag. (g3)

p Flag. (suono reale)

 

p



pp ord.

pp

       ord.

pp ord.

p espr.

32986

ord. pp

pp

q = ca 75




136

  566

Fl.1/2

Ob.1/2

kl. Kl.

Kl. 1

 

 

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

mf espr.

  

 

Pos.1/2

Bpos.

Hfe.

   

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

 

p espr.

  

  

    

  

 





 

 pp

q = ca 70

Vl. 1

   

   

  f      f

2.4.

 

ff

Pk.

f

ff



1.2.

f

 

Trp.3 (B)

  f

ff



   

   

  

  

    f

   f    



 

   1. cup auf 

f

  f   f

  f

f

32986

5

  

1.



p

   





mf

mf





  

q = ca 85

mf

mf

q = ca 75

 pp



pp

  pp

 pp

   



                          f 5 5                           f 5 5                f 5 5               f 5 5                f        5

q = ca 75

  

 

q = ca 85

  

  

 f

q = 90

   

      

f

Trp. 1/2



3

f

 

 



2./4. Hn.

p espr.

  

f

 

1.2.

           

Kl. 2

 

          3

Eh.

q = 90

q = ca 70

   p espr.


 

572 q = ca 85

Fl.1/2

Ob.1/2





mf

1.

 

 

f

137

 

  mf



      

1.



mf

3

3

Eh.

kl. Kl.

p

 

         

Kl. 2

Bhn.

Kl. 1

Fg.1/2

Fg. 3

3

mf

3

f



   

p





1./3. Hn.



2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Hfe.

    



q = ca 85

Vl. 1

 

p

 p

     





p

  

Vla.

p

Vl. 2

Vc.

    

Kb.

p

Litolff / Peters

mf

mf

 

mf

mf

 



mf

mf espr.

 

 

  

  

 

 

 

 

   



   



 

q = 70

   

   





 

 

        



  

32986

p

 p

  p

  p

    

 

p

   

 

 

 

 

 

q = 70

  

     

     


138

  579

Picc.

Ob.1/2

Eh.

kl. Kl.

Bhn.

3

1.

   pp

        5

p crescendo

   

p crescendo

        pp 3

3

   

 p

  

5

    

crescendo

p crescendo

     5

5

1.      cup

5

mf

5

weiche Schlägel

 

solo



espressivo

 



 



 

pp

pp

   3

 

pp

3

     3



3

p





p



p



p

 

 

 





     





pp

6

p crescendo

pp

q = ca 85 tutti

 

5

    

5

       

       

5

      p cresc.

p cresc. 5

5

    



  

5

   



           

mf cresc. 5

       1.2.

5

pp

3

  1.2.

pp

Vc.

      



    

pp

Vla.

  

Litolff / Peters

q = ca 90

Vl. 2

p cresc.



Vl. 1

pp

Hfe.

  

2./4. Hn.

1.



Trp. 1/2

1./3. Hn.

Kb.

q = ca 85

Kl. 2

Vibr.

   

Kl. 1

Bpos.

Fl.1/2

Fg.1/2

q = ca 90

3

     

   5

 

 p

p

 32986

 

     



6

fp


  584

Picc.

Fl.1/2

Ob.1/2

Eh.

Kl. 2

Bhn.

Fg.1/2

fp

 

 

   fp  

Kl. 1

fp

 

fp



fp

   fp     1.2. 

fp

Bpos.

Vibr.

Hfe.

Vl. 1



 

          

 

fp

1.

 

f

 fp    fp    fp    fp    fp   

 

fp

   

f

mf

p







   

unhörbar einsetzen 1. 3



p

     

 







mf

f

 2.

mf

 

1.

p

 f

 

mf cup ab



mf

 p



p p

f

p

 

p

      f

f

mf p

3        3                   3  3          3                 

  32986



   

3    3 

p

3



mf



3

p

p p

mf

   mf



mf



mf

     

q = ca 90 q = ca 85

p 3

  

 

  p

   p 3

3    

p

3

      p

mf

3

      mf



mf

f

f



 

 

   





  



   

q = ca 95

ff

mf

f

  fp   

f

p

fp

  

 fp    

   f

Vc.

Litolff / Peters

   

Vla.

  

Vl. 2

Kb.

 

fp

fp

  

 

fp

fp

fp

ff



1.2.

1.3.

fp

q = ca 90 q = ca 85

1.

2.4.     

Trp. 1/2

fp

fp

2./4. Hn.

q = ca 95

      

1./3. Hn.

139

kl. Kl.

 

p


140

 

590 q = ca 95

Picc.

     

Fl.1/2

 1.

p

Eh.

kl. Kl.

Ob.1/2

 

Kl. 1

p espr.

Kl. 2

 

 

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

  

2./4. Hn.

Trp. 1/2

Bpos.

Hfe.

Cel.



 

  

Vl. 1

 

 

q = ca 95

 

pp espr.

 

pp espr.

  

pp espr.

 

Vc.

Kb. Litolff / Peters

 

 

pp espr.

p

  p

p

 





mf espr.

 

1.2.

mf

1.

mf

   



mf



     3



p

 

   

 

p

 

     flag. (e2)    

          p 3

  p

 p

3

3

        3

3

 32986

q = 90

 

mf

p

q = ca 85



ord.





mf ord.















mf ord.

mf ord.



mf ord.

3

3

3 3     

mf

 3    3  

 

       3  3     mf           



3



3

3

p flag. (h3)

p flag. (as2)

 



3

flag. (f3)   

p

 

 

flag. (d4)    

 3  





3

p

3

  

   

 

3

  

   

mf

 

p 2.

p

pp espr.

mf





 



q = ca 85

1.

p





 

pp espr.



p

pp espr.

Vla.

pp espr.

            3 3 3

p espr.

  

Vl. 2



q = 90

mf 3

   

mf 3

 

   


H1

  595

Picc.

Fl.1/2

  

3

 

1.2.

Ob.1/2

mf

mf

 

kl. Kl.

Kl. 1

 

mf

3

 

Bhn.

      3

    3   

Fg. 3

1./3. Hn.

Pos.1/2

Bpos.

    

Vl. 2

Vc.

Kb. Litolff / Peters

3

 3

  3    

 

           mf

senza sordino

                     

   

  

   

 

   

 

   

     ff

3

ff

    ff

32986

    

    ff            f ff    H1 3               ff          

ff           

 



3

ff

   

           

         

 ff    

ff



 

ff 2.4.

ff

   

Vla.

 

3

ff 1.3.





ff

Vl. 1

   

 

   



 

ff

Pk.

ff



ff

5



   

 

Trp.3 (B)

5

mf

Trp. 1/2

ff

        f



3

         ff



  

        

 

2./4. Hn.

ff

5

        1.

Fg.1/2

5

   

             

   



mf

ff

ff

    

             

3

3    

Kl. 2

      3

  

Eh.

     



141

  

 

     

                               

   



  



  

   3          ff           

 

     

  

 

3

3

      


142

  598

Fl.1/2

1.2.

 

ffp

  

  

Bhn.

Fg.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Fg. 3

1./3. Hn.

 

   

  

Pos.1/2

f



gestopft

 mf

harmon auf

    

 

gestopft



  





harmon

ff

 ff

ffp



ffp

 

  ffp 

5

  

f

 

ffp

  

1. offen

 

 

 

ffp

ffp

ff

ffp

Pk.

Vl. 1

 

  f     

  

    

f

  

    

 

     

      f

   

Vl. 2

     

Vla.

f

    

Vc.

f Kb. Litolff / Peters

 

 f

pp

          

 

pp

       f



pp

 



3      

p

3

     

32986

 

ff

f

Bpos.

 

 

ff

ff

   ff 2.4.  

offen

2.

   1.3.

      

p

p

mf

 1.2.

p

mf

f

Trp. 1/2

ffp

  

2./4. Hn.

1.2.

ff

f

 



pizz.

arco

 

p

ff



 

 

 

 



  

  

pizz.

p

ff pizz.

p

3 3    

mf

 p

f

ff

arco

arco

5



pizz.

ff

   ff

  arco

ff


  603

Fl.1/2

 

143

 

3       

3       

 

fp

1.2.

Ob.1/2

f

Eh.

f



kl. Kl.

fp



Kl. 1

fp

                  p

3

  



3



         3

 

p

mf

3

  

 

  

 

     

 

 

3   harmon ab         

 

Kl. 2

fp

Bhn.

fp

   

Fg.1/2

fp

Fg. 3

1./3. Hn.

 1.    

1.

fp

   2.

2./4. Hn.

fp

f

Trp. 1/2

Pos.1/2

Bpos.

Vl. 1

Vl. 2

Vla.

fp

fp

Kb. Litolff / Peters

p espr.



  

   

 

p

  

Vc.



 p

     

 

  



3

3

3   3       f

  

 





   

mf

mf

 

32986





 



p espr.

  

   p

     3



3

p

 

   

 

  

  

   p


144

  

Fl.1/2

Ob.1/2

Eh.

Kl. 2

Bhn.

Fg.1/2

 

q = ca 70

pp



    

 

ff





ff



1./3. Hn.

 

Trp. 1/2

Hfe.

Litolff / Peters







f

p

ff 4.

 

ff



   



mf

f

f



mf



 

p

  f

f



p

     p

 pp

  

 

       

              

ff

q = 60 q = ca 90

q = ca 70

pp

pp

pp

pp



pp





ff



ff



ff



ff



ff 32986

f

  





p

Vc.

p

  

Vla.

pp

pp

mf

Vl. 2

Kb.

 2.



Vl. 1





   

 

2./4. Hn.

Bpos.

mf



f

ff

1.2.







1.2.

p

f

ff Fg. 3





ff

pp



f

ff

pp

   

ff

pp

  

    

1.2.

pp

q = 60 q = ca 90

p

f

ff

 

Kl. 1

1.2. 

kl. Kl.

 1.

608

f

f

f

 p

3       3

p espr.



mf





mf

   

         



3

p

mf

f

f

3


612             

 

 

3

  



3

Fl.1/2

f

f

fp

 

 

Eh.

 

fp



 

kl. Kl.

f

3

Kl. 2

 

Bhn.

  

Fg.1/2

fp

     2.  f

fp

 



     



2.

fp







Trp.3 (B)

Pos.1/2

Bpos.

Vl. 1

 

pp



pp

pp Kb. Litolff / Peters

ffmf

  3   

   

1.3.

2.4..

ffmf

3

ffmf

 ffmf 

ffmf

  

ffmf

 

 

  3

 

f

mf

 f



3

     

 

fp

   



fp

p

fp

 

Vc.



pp

Vla.

fp

ffmf

ffmf



fp senza sordino



ffmf

ffmf

  

Vl. 2

1.



fp

2.

ffmf

p



fp

p Trp. 1/2



fp

1.





ffmf

fp

mf



ffmf

5

1.



     

mf

1.2.

fp

     f

5

fp



fp



  

2./4. Hn.

p

fp

 



 

fp

fp

 

ffmf

         

Kl. 1

1./3. Hn.

fp

3

           

Ob.1/2

Fg. 3

3

145

I1  1.2.  

 

p





fp

 



fp

 32986

ff

   

             

non div. 5

5

ffmf

5 5                

ffmf

fp



 ffmf I1 

5 5                   3

ffmf

     3

p

ffmf


146

  615

Fl.1/2

Ob.1/2

 

ff

ffmf

ff

ffmf



ffmf

kl. Kl.

Kl. 1

Kl. 2

ffmf



ff



ff

ffmf

ff

ffmf

ffmf

Fg.1/2

Fg. 3



ffmf

Vl. 1

Vc.

Kb.

Litolff / Peters





 



 

 

f

f







ff

  1.

1.2.

 

 

f

   

   

    ff     

  

      f ff      ff



ffmf



             mf ff

    ff

 



  



  

 

f

5

f

führend       (ff)

ffmf

ff

  



   

(ff)

Vla.



ff

  

Vl. 2

 

 

ff

  

ff



ffmf Bpos.

ff

ffmf

Pos.1/2

 

   

  

Trp.3 (B)

     

f

f

ffmf

Trp. 1/2

 

ff

ffmf

 

   

5

  

2./4. Hn.



             mf 1.2.

1.3.

1./3. Hn.

1.2.

ff

 

Bhn.

 

 

Eh.





 

 

5 5                            f

  

f

32986

       


147

  617

Fl.1/2

Ob.1/2

  

 

 

Eh.

 

 

 

1.

 

 

Kl. 2

 

 

 

Bhn.

 1.

Fg.1/2

Fg. 3

1./3. Hn.

 

   

1.3.

f

2./4. Hn.



 







 

 









 



 



   



 

 

  

Kl. 1

 

kl. Kl.

 

 



 

2. f

 

 

 3. 

1.   f

 









2.

f Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Vl. 1

   

 

 

 

 

 

Vl. 2

Vla.

    

Vc.

Kb. Litolff / Peters

            5

 



 

           5

     

   

 

 







 





 

          5

   

 

        

32986

     5

 

  

  

6


148

  619

Fl.1/2

Ob.1/2

  

    



 



ff

    

 

kl. Kl.

        ff

 

Eh.

 1.2.

 

q = ca 85

   

 

 

  

 

  

 

   

 

  

ff

   

 

Kl. 1



ff

 

Kl. 2

Fg.1/2

Fg. 3

1./3. Hn.

Bhn.

   

 

    ff 1.3.        

2.4.

 

 1.3. 

    

 

2.4.

ff

1.2.

  

1.2.

   

Vl. 1

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

  



  ffp 1.  

  

     ff

   

 

ff

   3                        ff 3           5

5

ff



  

 

 

 

 

  

    ff

f

 

  

 

                 

q = ca 85 3

 

  



 

       

 

       

 

 



  32986

3

   

   

(ff)



    f

ff

     

1.2. 3

ff

ff

 

ff

ffp Bpos.

ff

ffp

ffp

 

    ff   

   ff    



ffp

ff

Pos.1/2

 

ff

Trp.3 (B)

ff

Trp. 1/2

ff

  

  

2./4. Hn.



    

 

  

5

5


Picc.

 622      f  

        ff  

 

       

 

    

1.2.

Fl.1/2

 

f

1.2.

Ob.1/2

Eh.

       

Kl. 1

Kl. 2

   

ff

       

3

f

kl. Kl.

ff

f

5

 

ff

     

f

     

        5

f 3

Fg.1/2

Fg. 3

  1.3. 3      3

f

1./3. Hn.

f

      2.4.

2./4. Hn.

f

Trp. 1/2

3

               

3

5

   f

Pos.1/2

f

Bpos.

          f

Vl. 1

Vla.

Vc.

Litolff / Peters

3

3

 3 3            f

3

  

      p espr.

3

 

 

ff

     ff         



ff

       f ff 3 3 3      3                       p espr. f

Kb.

3

                      3

 

f

      

       ff      ff   3 3 3 3                 ff 3 3 3 3          

non div.

 

   



f

Vl. 2

3

3 3             

f

Pk.

3

       ff           

              

ff

    

ff

5

f

Trp.3 (B)

ff

     

       

3

ff

5

3

       f ff                       5 f 3 ff                                  3

Bhn.

       ff        

f

149

q = ca 80

3

ff









 

pp

pp

pp

  

ff

        

3

ff

q = ca 80

32986

p espr.

p espr.

p espr.

   

     

    mf

 

 

 




150

Picc.

  628

Fl.1/2

q = ca 70

q = ca 85

q = ca 90

       1.

Ob.1/2

Eh.

 

Kl. 1

pp



 

p espr.

mf

 

   

  

3

p espr.

Kl. 2

Bhn.

 

2./4. Hn.

Trp. 1/2

Fg.1/2

Fg. 3

1./3. Hn.

Bpos.

Vl. 1

    

Vl. 2

 

Vla.

 

Vc.

q = ca 70

q = ca 85

  

 





q = ca 90

   p espr.

  

Litolff / Peters

p





p espr.

mf

3  

1.

   

    

  p

 



  3

       3

3

mf

 32986



     3

  3

mf

Kb.

3    

    3

   

p

  

3

3



 

p

 


  634

Fl.1/2

Ob.1/2

  

Picc.

1.

p

 



mf

3

Kl. 1

Bhn.

Fg.1/2

 

 3

  



1.

1./3. Hn.









 mf

pp





 

   

p

2./4. Hn.

Trp. 1/2

Bpos.

Vl. 1

   

 Vla.

 

Vc.

Kb. Litolff / Peters

  3   3      

 

   3

3

3

mf









mf







3











3

mf



      

       

J1 

3

p

 3    



3 p

pp

pp



 pp

    p espr.

mf

 32986

   

pp

mf

 

Vl. 2





pp

3       



mf

pp

 

mf







p

p

Fg. 3



pp

p

Kl. 2

3

Eh.

 

                      3 3 3 3

3

2. p

151

J1

3

  p

3

 



p


152

 

639

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Bhn.

Fg. 3

1./3. Hn.

mf

1.

 



 

    

p

   3

p

mf



mf



      2.

3

3

   

Bpos.



Litolff / Peters



   

3

 



3

espr.

  

3

 

mf



mf

        



1.

mf

f

2.

5

        

       f

mf

3

3

 1.

       f

2.4.

    

 



mf

ffp

ffp 1.3.

 

ffp

 

 

 

ffp

ffp

ffp



 

ffp

3

ffp

   

3



ff non div.

 

 f

ffp

3

ffp



ffp

32986

 

ffp

non div.

f

 ffp  

3 3   3   non  div.              mf ffp f                           3 3 3 3



 





   

ffp

ffp

   

       

5

f

p

  

  

f

 

   

 

ffp

   



 

  

 ffp  

 3       

Pos.1/2

Kb.



ffp

Vc.

f

Vla.





Vl. 2

  

ffp

Vl. 1

mf

Pk.

1.2.

mf

    

3

p

Trp.3 (B)

 

Trp. 1/2

 

ffp

f

 

2./4. Hn.

   p

Fg.1/2





1.

p

Kl. 2

              




153

  643

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

 

 

 

 

p

p

 

       p 3

3

3

   

1./3. Hn.

Trp. 1/2

Bpos.

Vl. 1

 

2./4. Hn.

Kb. Litolff / Peters

1.

mf





 



 

 1.

 

fp

fp

 

  



 

1.2.

mf

fp



fp

 

fp

 



2.

  

p

fp

  

 

   



p



p

     

  



 



 f

q = ca 80

f



  

p

 

q = ca 70

f



 

 





5

   

fp

mf

 32986

3

mf



fp

  



 

fp



 

Vc.

  



 

 

mf

Vla.

fp

     

Vl. 2

1.2.

p Fg. 3

q = ca 90

fp

Fg.1/2

  



1.

p

Bhn.

q = ca 80

1.2.

1.

Kl. 2

 

Kl. 1

q = ca 70

3  

q = ca 90

 



mf

 mf

  

   

   

p

3

mf

mf


154

  647

Picc.

1.2.

 

Fl.1/2

1.2.

f

 

Ob.1/2

       ffp

 ffp

f



ffp

     

Kl. 2

Bhn.

Fg. 3

1./3. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Bpos.

Vl. 1

f

    

Litolff / Peters

 

3

ffmf

3

ffp



ffp

 

f 1.2.

 

f

 

 3

    

1.

  

 



mf

 f

   3



    5

f

    

 

f

3 32986

    

 

        f

 

     3

3

   

q = ca 95





3

5

mf



1.

mf

  



f

f 1.2.





   

3



mf

3

f 2.4.









f

3

p

f 1.3.



mf

          

f

f



mf

f

 





        

 

f

1.2.

Vc.

f

  

Vla.

Kb.



      



mf

ffp

ffp



      

mf



 



 

ffp

1.



      f

f

 f          

 

Vl. 2

 

 

2./4. Hn.

f

          

3

Fg.1/2

        

ffp

f

f

ffp

   

q = ca 95

f



 

Kl. 1

ffp

 

kl. Kl.

 

     

f

Eh.



3


 

q = ca 100

650

Picc.



1.2.

 

Fl.1/2

ffp

 



 

ffp

 



   



ffp

f

 

Bhn.

Fg. 3

1./3. Hn.



ffp

                       f 3 3 f 3  3         3          f   fmf 1.3. 3           f 3

1.2.

Fg.1/2

2.4.

Trp. 1/2

 

 ffp  

Trp.3 (B)

 



Pk.

Vl. 1

 

f

 

 

 

 

f

Litolff / Peters

3

   f

Kb.

 

 

    



 

   

     



              3 3                 3    3                    3

32986

 



1.

1.



mf



 

mf

  

3          

 

mf

f



mf

3         mf f 1.            

 

 

3

mf

f

  

mf

 

  



1.



mf

 

 

 

 

 

 

 

 

 

 



p espr.

3

 

  

 3 3            

f

f

3

  

   

3

 

q = ca 90

 

              fp

 

3

fmf

 

3

  

Vc.

fmf

 q= ca 100 

f

  

ffp

  

Vla.

3  3             

 

Vl. 2

3

ffp

 

Pos.1/2

3

ffp

 

2./4. Hn.

Bpos.

ffp

f

Kl. 2

ffp

f

Kl. 1



f

kl. Kl.

 

ffp

f

Eh.

 

f 1.2.

Ob.1/2

155

q = ca 90



  

    

  

   

 

 

   

 

p

p

     p

 

  p

       

non div.

non div.

mf

  

   

  

  

   

 

  

 

pizz. non div.

   f   

pizz.

f



mf



   

mf

 

 

 


156

   654

Picc.

Fl.1/2

   

1.2.

   p

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

fp

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

Trp. 1/2

Bpos.

Vl. 1

Vl. 2

mfp

 





 



 f

 



f



 

 



p

  

  

   



 

 





  f

 





 





  f

 





 





  f

 



 

 





 







 

mfp

fp

mfp

fp

   p

fp

 



mfp

fp

 

mfp

 

  

 

mfp



1.2.



1.2.

 







f

f

mfp

     p

mfp

fp

 

  

      

Vc.

   

1. straight mute

   

 

     f

 

   

 

mf

      mf

 

    mf

f





3

   mf

3



mfp

f

   f

 

 



 



 





  

q = ca 80

 

ff



 f



  f

    

5        3                           3

mfp

arco

3

f

fp

 





arco

 

 

mfp

fp

p

  







q = ca 85

 





 

1.

  

 f

 1.3.

 

 

mfp



   

 

1.2.

fp

  

 

Litolff / Peters



1.2.

 

  

Vla.

Kb.



1.2.

p

Bhn.

q = ca 80

q = ca 85

 

 32986

f


  657

Picc.

q = ca 70

q = ca 75 q = ca 90

       p ff      

Fl.1/2

Ob.1/2

ff

Eh.

p

    

    





ff

  

Kl. 1

ff

  

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

ff

p

p

    p 

ff

  

            p ff   2.4.          1.3.

ff

  

Trp. 1/2

ff

p

 p

   

    1.2.     f

        f 3

1.2.

f 3

ff

kl. Kl.

K1 

    

        f 3

f 3

 f  f

 f

1.3.

2.4.

straight mute ab

 f 

  f

  f

   f

senza sord.

f



Pos.1/2

 

Bpos.

Trp.3 (B)

Vl. 1



   ff

  

Vl. 2

ff

   

Vla.

Vc.

Kb. Litolff / Peters

ff

 

p

p



q = ca 70

 p

p

ff

p

 

p

ff



p espr.

3

   

 pp

 



  

pp



pp



pp

f

q = ca 75 q = ca 90

 

f

     

3

 

 

  

1.2.

1.2.

   

   

   

    

ff

ff

ff

ff

 f

   

ff

f



 ff 

f

ff



ff

 



 



 

    ff   

f

ff



 ff

  



ff

ff



32986

f

3



K1                f ff

       3

157

 

 ff

ff

  ff

 ff

       

    ff

    ff

    ff


158

Picc.

662     ff  1.2.  

Fl.1/2

1.2.

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

q = ca 70

ff





ff



   ff

  ff

ff





ff

    ff

Fg.1/2

Fg. 3

1./3. Hn.

2./4. Hn.

 ff    ff    

Trp. 1/2

Bpos.

Pk.

Vl. 1

p

ff

    p

    p

    p

ff

        p ff                    

Vla.

ff

Kb. Litolff / Peters

3

3

3

3

                

Vc.

ff

3

3

3

3

3

3

3

3

p

    p

                   p ff



 



  





ff

   

Vl. 2

    p cup auf



   

 ff    ff   

2.

 

   

    

ff

Pos.1/2

  

Trp.3 (B)

1.

   

p

ff

p

 

1.

ff

       

p

q = ca 90

    p

  

Bhn.

q = ca 80

p espr.

 p

pp

 1.



pp

1.

pp

1.

 

pp

2.



pp

q = ca 70

q = ca 80

 

q = ca 90

p espr.

6

  p

pp





     3

pp

     3

pp

 32986

3

mf

pp





p

   3



pp 3

 p

         



p



  



3



pp

pp

 

 

3

3

        

3

3

3

3


q = ca 70

    pp     



666

Picc.

Fl.1/2

pp 1.2. pp

kl. Kl.

 

Kl. 1

Bhn.

Fg.1/2

1./3. Hn.



1.3.

Bpos.

Vl. 1

mf

pp

 

 

Vc.

 

 3

 3



 p

    





pp

 

pp



p



  

 





 32986

 

 



mf

p

p

p espr.

p



mf



 

1.

q = ca 70 q = ca 80

mf



 

3

p

q = ca 80

mf

3



             

Vla.

p

mf

1.



 

       



 

1.

mf

6

q = ca 70

 

p

  

  

mf

      

p espr.

p

             

159





Vl. 2

Litolff / Peters

p

1. cup

 

 

Kb.

mf

  Hfe.



mf

Trp. 1/2

pp

p

mf

 

   

pp 2.4.

p

mf

 

pp

 

    p  

  

2./4. Hn.

p

mf

1.2.

Fg. 3

  

mf

 

Kl. 2

p

 

    p

mf

pp

q = ca 70 q = ca 80

  

 

Eh.

 

mf



Ob.1/2

mf

q = ca 80

p

p

 





pp

 pp

pp


160

  671

Fl.1/2

Ob.1/2

Kl. 1

Kl. 2

Bhn.

mf

  mf

 





 

p 1.

 p

 

 

p

mf espr.



1.

 

  

 

Vl. 2

q = 60 q = ca 80

q = 60

mf

mf

  Vc.

  

q = 80

q = 60

 

p

    mf

  



 p

 

  p

 



p

 

mf



p

 1.

p

q = 80

 

 





  



p

p

 

Vla.

Litolff / Peters

mf

Kb.

q = 80

 1.

Trp. 1/2

Vl. 1



q = 60

2./4. Hn.

Bpos.

mf

q = 80

Fg.1/2

1./3. Hn.



Eh.

Fg. 3

q = 60

q = 60 q = ca 80

      p espr. 

 32986



 



   mf

 

         

p















mf


161

  678

Ob.1/2

Eh.

Kl. 1

q = ca 60 q = ca 80

q = ca 60

Bhn.

Fg.1/2

Kl. 2

Fg. 3

1./3. Hn.

 

 

  



 

 

 

Vl. 1



q = ca 60 q = ca 80

    

Flag. (gis3)

pp Flag. (fis3)

  

   

pp

Flag. (cis3)

 

1.

p espr.

 

 



 



  

q = ca 80 Flag. (c4)



q = ca 60

 

 

 

 

Flag. (f3)   









 

 

 

  

  









pp

Flag. (b3)

 

 

 

 

   







  

 

 

Flag. (h1)   

 

   

 

 

  

 

    

 

 

 

q = ca 60

  

Vla.

Vc.

 

pp Flag. (suono reale)

Vl. 2

Litolff / Peters

p espr.

Trp. 1/2

Kb.

2./4. Hn.

Bpos.

q = ca 60

Fl.1/2

q = ca 80

 

Flag. (f2)

pp

  mf

 

 

     



mf

Flag. (suono reale) pp

Flag. (as1)

pp Flag. (fis1)

pp

 



Flag. (suono reale)

pp 32986



Flag. (fis2)

 

 






162

q = ca 100

685

 

Fl.1/2

Ob.1/2

Eh.

Kl. 1

Kl. 2

Picc.

 

Bhn.

p espr.

1./3. Hn.







 

Trp. 1/2

Vl. 1



2./4. Hn.

Bpos.



q = ca 100

q = ca 80

Vla.













p espr.

Vc.

Litolff / Peters

q = ca 100

q = ca 110

 

Vl. 2

Kb.

q = ca 80

q = ca 100

Fg.1/2

Fg. 3

q = ca 110

p espr.

 32986

pp

pp


Fl.1/2

L1 VI. EIN ENGEL 694      1.2.        p

 

Ob.1/2

   1.

p

Eh.

kl. Kl.

     

    

 

    

    

p espr.

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

p

Be.

Klav.

Vl. 1

Litolff / Peters







  





   







    





 

      







     



con sordino

p

     

p

   





p

     



 



 

    

 





   

              

     

      

 





   

 



            

 





   p

 

 

 

 

 

  p



32986

        

p



       

   



  p

     

     

p

Vc.







                        p klangvoll                    L1 legato            

Vla.



 

Vl. 2

p espr.

Kb.

   

 



     

 

    

1. mit cup

Bpos.







Trp. 1/2

      

163

1.      

2./4. Hn.



      p

Kl. 1

    





      




164

  700

Picc.

              

Fl.1/2

Ob.1/2

      

kl. Kl.

              

Kl. 1

Kl. 2

 

Eh.

                          



             





 

  

    



  



 

Fg.1/2

Fg. 3

   

1./3. Hn.

2./4. Hn.

    



 







 





Bhn.

     



Pos.1/2



Bpos.



Trp.3 (B)

Klav.

Vl. 1

                

     

Vl. 2

 

Vla.

Vc.

Kb. Litolff / Peters



   

 

                                        



 

    

3

   

ff

pp

ff

q = 100



ff



mf

  

pp

1.

 

pp

   

   

q = 90 mf

mf

 p

p

p

        f

mf

pp

q = 100



     ff   

pp

mf

3

pp





ff



mf

 

pp

pp   

ff

 

pp

 ff

pp

 

pp

 

32986

pp



ff





 

pp



ff



pp



ff

2.

 

p

f

ff



Trp. 1/2



2.4.

   



  

   

3           ff   f mf 3  3           ff   f mf

1.2.







q = 100

q = 90







q = 100

   mf

p


165

706      

Picc.

Fl.1/2

Ob.1/2

q = ca 120

Eh.

kl. Kl.

Kl. 1

 

Kl. 2

 

Bhn.

Fg. 3

     



       f

      



fmf

1.

f

1.2. ff

  

1./3. Hn.

 

Fg.1/2

Dämpfer ab

f

1.

  

3    

q = 110

mfp



q = 120

mfp

 

       



3



Trp. 1/2

 

Trp.3 (B)

Pos.1/2

Bpos.

Klav.

Vl. 1

 

      



Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

fmf

  

q = ca 120

 

  

  

        

f

   

    fmf   fmf

3

    f

   ff

fp

 fp

 

q = 110



fp

       f   



fp



fp

fp

fp 32986



fp



fp





mfp

 



fp



fp

 





fp





fp

 f

mfp

    mfp

  f

 

q = 120

mfp

   



2.4.  fmf

 

  

 

2./4. Hn.

 

  

  

    

 

mf

mf






166

 

q = ca 110

710

Picc.

Fl.1/2

Ob.1/2

Eh.



mf

 



 

  

   

1./3. Hn.

 

mf

1.



mf

 

 

 

 

p

ff







ff



p

   

  

2.4.

p

 p

ff



   



rallentando







1.

p



 M1   

q = ca 80

3

mf



  

q = ca 110



 

ff

f

ff



ff

ff

32986

 



legato

p

p

 p



legato

p

ff

mf

legato



 

5                       3



     p klangvoll       

p

3



p

   



 

 

p

p 1.3. senza sordino

1.



  

 

p

ff

   



p



ff







   

 

p

mf

Litolff / Peters

 



mf 1.2.

3       

Vc.

Kb.

 



     

ff



p

  

3

p



      

    

Vla.



 

ff

3

 

   

 



ff

mf

    

Vl. 2





Klav.

Vl. 1

       

Trp. 1/2

2./4. Hn.

Pos.1/2

 



M1 

  

3

mf

mf

Fg.1/2





mf

Bhn.

 

mf

 

Kl. 2

  1.2.

mf

Kl. 1

 

mf

1.2. 

q = ca 80

 

mf

kl. Kl.

rallentando

  





legato


   713

Picc.

Fl.1/2

Ob.1/2

 

 

 

 

 

 

Eh.

        

 

  

  

q = 75

 

 

 

q = 70

        





kl. Kl.

Kl. 1

Kl. 2

 

Bhn.

 

 

Fg.1/2

Fg. 3

Trp. 1/2

Vl. 1

 

    

Vl. 2

 

   Vla.

     

Vc.

Kb. Litolff / Peters

 

  

                 

                     

 

 

         

  

  

      

  

  

  

  

      

  



 

 

32986

                                        



   





 

  

                  

 

 

 

 

cup ab

          

 

  

2./4. Hn.

Klav.

   

1./3. Hn.

Pos.1/2

167





    



     

  

q = 75

 

q = 70

 

         

 

  



   

 



      


168

   718

Picc.

Fl.1/2

Ob.1/2

 

Eh.

kl. Kl.

Kl. 1

 

Kl. 2

   

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

      

2./4. Hn.

Trp. 1/2

 

Pos.1/2

Bpos.

Klav.

Vl. 1



      

    

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

q = ca 75

 

 

 

 

   

     

  

         q = ca 75            

   



 

ff

   

 

     

q = ca 120

  



mf









   

 

 

   

fp



3

fp



fp

fp

 fp 

fp

fp

  

fp





fp

 



  

mf

 

mf

  mf

mf 32986

   









 



 



 

 

fp

   ff

   ff

 

ffp

ffp

fp

fp

ffp

ffp

fp

fp

ffp

mf





fp

fp



    ff     ff     ff 



 





 





 fp fp         fp   fp fp 2.              ff 3          fp fp 1.3. ff      ff 2.4.      

 

  fp

1. senza sord. ff

 

   

 

3

1.2.



3

 

 

 

 

    



1.2.

1.2.

ff





q = ca 120



 

  



 

 

 

 

 

        



 fp

   

fp

3

 3

 3



         



fp

 



fp

fp

3

    3


 

q = ca 100

q = ca 110

723

Picc.

Fl.1/2

Ob.1/2

   

 

fp

f



   

fp

kl. Kl.

Kl. 1

Kl. 2

fp

fp

    

Trp. 1/2

Trp.3 (B)

Pos.1/2

Pk.

3

Vc.

Kb. Litolff / Peters



 fp

   

fp

 

f

     

 

3

        3

3

        

  

mf

f

      mf

f

fp

   

 

senza sordino



   ff

ff

 

ff

1.cup auf

cup auf

              

q = ca 110

 

      

 

q = ca 100

    

  

  



  

5

ff





 

           

fp

 

fp

  32986

5

f

ff

 

      

fp

ff

fp

fp

f

 ff   

ff

  

2.Dämpfer auf

 

ff

q = ca 120

2.4.

q = ca 110

3

ff

1.Dämpfer auf



 

 

1.2.

   



ff

1.3.

 

 

  

ff

  

 

 

ff

 

f

 

ff

 

 

fp

      mf

 

ff



3



 

fp

fp

Vla.

f

ff

 

fp



  

 

  fp 

     

fp

Vl. 2

fp

 

ff

 



f

q = ca 100

Vl. 1

  

1.

169

q = ca 100

ff

     1.2.         

2./4. Hn.

Bpos.

f    



mf

1./3. Hn.



fp

ff

Fg. 3

f



fp

Fg.1/2

f



 

Bhn.

   

q = ca 110

    f

fp

 

Eh.

q = ca 120

ff

ff



p espr.



p espr.

p espr.

 

 

3


170

N1

  727

Picc.

 

Fl.1/2

q = ca 95 rallentando

q = 70

q = 80

    p

    1.

p

   

Eh.

kl. Kl.

   

   

Bhn.

Fg.1/2

   



 

 

 

 

 

     p   pp      

Ob.1/2

Kl. 1

Kl. 2

Fg. 3

1./3. Hn.

2./4. Hn.

Trp. 1/2

Be. T.-t.

 

Klav.

Vl. 1

 

  Vl. 2

  

Vla.



      

Vc.

Kb. Litolff / Peters

         mf

 p











p

mf

mf

  

mf

3

     



mf

  

  

      

  

3

3

 

p

 



p

 p

p

1. con sordino

   con sordino 2.      p

q = 70

p klangvoll

q = 80 legato

    p





p

p



    p     

   







p 3

 p

 p

32986









           N1

   

3

 

p 1. cup

 

p



p

  



 

mf

mf

 q = ca 95 rallentando

3

  

1.

p

p



pp

pp

pp

 p

 p

 p


  

















733

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

     

171



   



    











   



Kl. 1

 



 

   



Kl. 2





   

 



   



   



   







    





   

Fg.1/2

1./3. Hn.

   

2./4. Hn.

Trp. 1/2

Bpos.

Be. T.-t.





 



 

  

Vc.



        

Vla.

Litolff / Peters

  

 

Vl. 2

Kb.

 

Klav.

Vl. 1



 pp

    



   





  

 



  

  

 



  

   

  

           

  

    

 

 

   

 

 



 

   

   

 





  

 

 





   

 

 

 

 

     

     

  

  

 

 

 

 

 

 





32986

 

   



                               

 



   

   



   



                           

 

  

 

 

  

   

  

Bhn.

Fg. 3



 


172

     739

Picc.

   

Fl.1/2

Ob.1/2

Eh.

 

 

   

kl. Kl.

       

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

           

Trp. 1/2

Bpos.

Be.

T.-t.

Vc.

Litolff / Peters

   2.



 

 

p

 



 

1.

p

 



 



 

 











 





   

 

cup



 pp 

     

p

        



 

 

      

pp



 

1.



  







         











 

   

   

   

     

 

    

 1. 

1.

 





 







    

         



    

 

    

Dämpfer ab



     

cup ab

                         

 



      

    

Vla.



                  

Vl. 2

Kb.



Klav.

Vl. 1

 

 

2./4. Hn.







            



 

        



 

    

 





 

 





 









32986


  745

Picc.

Fl.1/2

Ob.1/2

kl. Kl.

Kl. 1

Kl. 2







 







Fg.1/2

 

Fg. 3

 

1./3. Hn.

2./4. Hn.

Trp. 1/2

Bpos.

T.-t.



 Vla.

 

Vc.

Litolff / Peters

  

  

 

   

mf



mf

fp

 

  

fp

f

 

 

  

fp

mf



                 ffp mf f 3 1.         

f

   

 

senza sordino

ffp

  

f

       f        





1.

fp

  mf

 

f

fp

 

  fp

f

       f       

  fp 

     

 

f

mf

fp

     

f

         f 

  fp

2.

     

   

f cup ab

f

   

 

f

  

ffp

 

f

   f   

ffp

 

ffp



f

  

ffp

 

            

f

ffp

ffp

  

mf

fp

        



 

q = ca 110

 ffp    

fp



   

ff

3

3

2. senza sordino

mf

fp

f

ffp



 

3



fp

1.

f



   

    f

 

q = ca 100

 3            3 mf f 1.2.              

   





ffp

 

Vl. 2

Kb.

    pp                



ffp

   

 1.







Vl. 1



Bhn.

Klav.



Eh.

Pk.

173 q = ca 110

 32986

3

f

       3

mf

3

3

 

   f

f

 

 f

 f

f



   

q = ca 100

   

    

       mf

 p





p

p

  


174

    

O1

 

Ob.1/2

Eh.

 

Bhn.

Fg.1/2

750

Fl.1/2

Kl. 1

Kl. 2

Fg. 3

1./3. Hn.

 

2./4. Hn.

Trp. 1/2

Bpos.

Vl. 1

           3

fp

     

  fp

f

fmf

     p espr.

3

     p

 

  p    

mf

 

Litolff / Peters

fp

q = ca 100

Vla.

  

3

mf

q = ca 90

Kb.

 

Vc.

3

mf

p

Dämpfer ab

  

Vl. 2

    1.

 

p

  

mf

   

mf



mf

mf

p

 

fp

 f

f

    

 



      3

f

 

mf

  

    



q = ca 90

O1

f

  fp

   

 

 

f

mf

fp

f



  f

  

fmf

fmf

    

  

 



  

 

f

mf

f

    3

3

mf

  p

   

p

fmf

p

 







 

32986

q = ca 100

p

mf

 

  

fp

       

3



 



 

mf espr.

mf espr.

  


   755

Fl.1/2

 

Ob.1/2

p

mf

3

 

Bhn.

Fg.1/2

Fg. 3

1./3. Hn.

mf

Trp. 1/2

Pos.1/2

Bpos.

Vl. 1



  

     1.

fp

mf

2.



p

   mf

   

 

mf

mfp









mfp



        

mf

mf

mf

3

  mf

    

pp



mf

  

3

p

Flag. (suono reale)









fp

   

mf espr.

  Flag. (suono reale)  fp

  

Flag. (suono reale)

fp Flag. (suono reale)

 

q = ca 95

       

mf ord.



mf ord.

 f

3       

mf

f



 



mf

ord.

3

p

mf

pp

Flag. (suono reale)

pp

Flag. (suono reale) pp

p

pp



   

mf

p

  Flag. (suono reale) 

p ord.



 Flag. (suono reale)  



ord.

ord.

 

q = ca 100

 

pp

3  

  

32986

3      

p



3

ord. 3       

Flag. (suono reale)

ord.

mf

q = 90

q = ca 100

1.

  2. p  

pp

q =90 q = ca 100

p

 1. senza sordino

1.

p

Flag. (suono reale)

fp

fp

 

mf

fp

 Flag. (suono reale)   

Flag. (suono reale)

 

mf

fp

3

pp

q = ca 90 q =100

  

mf



175

p

    

2.

mf

pp

p

mf

   

      1.

   mf

1.

q = ca 100

       q = 90

mf

1.



 

mf

 

 

mf

 

Litolff / Peters

fp

Kb.

Vl. 2

Vc.

mf

   

Vla.



 

mf

fp

 

2./4. Hn.

fp

3



q = ca 100

mf 1.

          

      

Kl. 2

fp

q = ca 95



3

Kl. 1

q =90 q = ca 100 1.2.

   

3

 

kl. Kl.

3

mf

    

1.

Eh.

q = ca 90 q =100

           1.

   pp

pp

p

   p

   


176

Picc.

 

 

Fl.1/2

 

mf

 

Eh.



  





Kl. 1

Fg. 3

1./3. Hn.



Trp.3 (B)

Pos.1/2

Bpos.

Pk.

Vl. 1



        

1.2.

  

 

1.3.

2.4.

ff

3

 ff

  ff



ff

  

  f

 q = ca 90

5

f

32986

     

 3

    ff

       ff   ff

     

3

ff



  

  

 

 

f

 

 

 f

 

f



 

f

 

 

f

 f





 

 

     

 

f

f



   

f

 f





 

 

 

 

 

 



ff

  

senza sordino

ff





ff senza sord.

                3

  

ff

q = ca 95

  



ff

3

mf

     

f



3

3



ff

3

f



ff

3



  

  

         3

ff

ff



Vc.



3

 



ff

  

  

Vla.

 

Vl. 2

Litolff / Peters

f





f

mf

Kb.



    



ff

f              

f

mf

3

  

ff

      

3



mf





f                   

mf

Trp. 1/2



f

  

2./4. Hn.



  





  

f

mf

 

Fg.1/2



ff

3

f

1.2.

Bhn.





                  f

1.2.

mf

Kl. 2





kl. Kl.

        3

mf

Ob.1/2

q = ca 90

q = ca 95

760

f

f

f

5

f

      f         f

 



   

 





 

f

f

f

 

 f


  763

Picc.

Fl.1/2

 

Eh.

kl. Kl.

Kl. 1

Ob.1/2

Kl. 2

Bhn.

 

Fg.1/2

Fg. 3

1./3. Hn.

1.

    mf

Pos.1/2

Bpos.

Trp.3 (B)

Pk.

Vl. 1

 

Vla.

Vc.

Kb. Litolff / Peters

        





1.

 mf

2.



mf

p

q = ca 80

 p

 p

1.2.

      f

1.2.

mf

f

    f mf     f mf      mf

f

    f mf      f mf 1.2.      

f

mf

 1.3.

2.4.

   f

   mf

f

mf

     f

mf

1.

 f

  

 

   

mf

 

pizz.

 pizz.



     3

mf



arco mf

 

 

 



 



 



     

    

     



ff

   

ff

 

ff

ff

    ff    

   

     ff   cup auf   ff

    

ff

  pizz.

ffp



ffp

    mf

ff pizz.

   

ff pizz.

f

 

   

f

 

ff

     

p

mf

arco

q = ca 85



 

p

3

q = ca 95

    mf

 

       

         ff       ff         ff         

p



f

177

 

 

   

p

Vl. 2

      3

1.2.

mf

p 2.

mf

Trp. 1/2

 

p

1.

 



3

 

2./4. Hn.



q = ca 85

q = ca 95

q = ca 80

    3

arco

 p

arco

  p

3 arco       3                 f ff p   3                                  ff mf  f p

32986

 f

     

  ff

   3

mf


178

q = ca 70

Picc.

 

  

    

  

Fl.1/2

Eh.

kl. Kl.

mf

  

 3    

  

   

fp

mf



mf

Vl. 1

 

mf

 1.

1. mf 2.



Kb. Litolff / Peters

  

f

f

  

1.

 

fp

 

  



mf



f

1.

cup

p

3

3

q = ca 70

f

p

 

 







mf

3

  3



fp

   

f

 

  

  



p

 p

pp

 32986

  

 

pp

3

 

p

  

fp

f

  

f

q = ca 65

   

f

3

fp



1.2. cup

         

        

3





     

mf

3

 

mf



f

fp

 

 

  

 



 

Vc.



fp

 

Vla.



f

fp

  

Vl. 2

3



 

mf

f

5

fp



1.

f

    



mf

Bpos.

f

fp

 

Trp. 1/2

f

 

2./4. Hn.

f

 

Fg.1/2

3

mf

Bhn.

1.2.

 

Kl. 2

  



 

Kl. 1

1./3. Hn.

1.

 

Ob.1/2

Fg. 3

q = ca 65

  

767

           3

3

mf

   p

 




q = 70

770                           3 3 3

3

Fl.1/2

p

 

Ob.1/2

Eh.

kl. Kl.

mf 1.2.

f

mf

f



 

    3

mf

     

Kl. 1

p

mf

f

  3

 

pp espr.

   pp

179

P1 accelerando 

 

 

 

 

 

3

     pp

f

3

3

Kl. 2

Bhn.

 

 

 

Fg.1/2

Fg. 3

1./3. Hn.

  

Pos.1/2

Bpos.

Vl. 1

 1.

fp

f

 

 

f

mf

f



f

 

mf





 

pp espr.

           3

3

          

       3

pp espr.

3

                       f mf ff fp f mf                       3 3 

Vla.

Vc.

  

3

mf

mf

 mf

f

f

f



1.3.

 

  

 



 



  

f espr.

1.

f espr.

pp espr.

fp

   

pp espr.

fp

fp

    fp

   fp

32986

 

 

 

 

pp espr.





f espr.

2.4.

 f espr.      ff P1 accelerando   

          

pp espr.

 

q = 70

mf

       

3

   

3       

Vl. 2

Litolff / Peters

mf

 

Kb.

 

2./4. Hn.

Pk.

1.

molto legato

 

 

f espr.

 

 

molto legato

f espr. molto legato

 

 

  

  

f espr.


180

776

 

Ob.1/2

Eh.

Kl. 1

Kl. 2

Bhn.

Fl.1/2

Fg.1/2

Fg. 3

1./3. Hn.

 

 



3

Vc.

3

q = ca 90



 

     



 

3

3

3

  

3

3

3

mf

 



 





mf

     





 









 

 

 mf

 mf

Kb. Litolff / Peters

 32986

    

    



  

Vla.

    



  





mf

Vl. 2



Trp. 1/2

Vl. 1

 

 

2./4. Hn.

Bpos.

q = ca 90


 

782

Fl.1/2

Ob.1/2

Eh.

1.2.

  mf

 

   

p

3

3

Kl. 2

Bhn.

 

   

2.



 p

Fg. 3

1./3. Hn.



3

p



2./4. Hn.

3

 

 

Bpos.

Vl. 1

 

 



3







Vc.

p

 







3





3

32986

f

3



3



ff



  

3

 3

 

3

   

3

  ff



3



  

ff

    3

   

3

 



ff

   



 

 

   

3

f 3

3

3

f

p

 

1.3.

f

      

 



f

  

 



3



       

  

 

f

p



ff

3



ff



  

  

3

f

p

Litolff / Peters



   

f

3



3

  

Vla.

Kb.

3

 

Vl. 2



   

  

 

ff

    

ff

3

 

 

 

f

3

3

3

 

2.4.





ff

f 3

  

ff



f

p

 

f

 



3





   

  

f

3

f

  

p

Fg.1/2

 

  

ff

 





ff

  

p



f

 

   

 





 

mf

    

 

Kl. 1



mf

 f

1.2.

p

kl. Kl.



181

3

ff

3

   

ff

 

3

  ff

3

  ff

 

3



3




182

 

rallentando

788

Picc.

Fl.1/2

Ob.1/2

  

 

  

 1.

3

  



f 1.



3



3

 

Kl. 1



p

3

     

1./3. Hn.

p

2./4. Hn.

Trp. 1/2

Bpos.

Vl. 1

 

  

Kb. Litolff / Peters

 p

mf



       3

3

p

mf

 



f



  3

3

3       

3



  

3

p

mf

p

 





p



3

 

3







 

f

 

f





3

 

f

 3

 

 3

3

rallentando

  

mf



 

 3  





3

p 3

3

  

32986

 



mf

mf

 p

3

mf

3





 









3





  

f

     

 



  



 

Vc.



    

3

Vla.

  

p

p 3

      

Vl. 2

mf





3



3



3



  

  

3

  

 

1.

  



p Fg. 3

  



f 3

3

Fg.1/2



3

     

Bhn.



f



   3

Kl. 2

   



   3



 

  

p

kl. Kl.

 

f

    

Eh.







3

 

p

p




183

 

q = ca 80

793

Picc.

Fl.1/2

Ob.1/2

Eh.

rallentando

 

 

 

 

 





q = ca 70

   



 





 

Kl. 1

 

Kl. 2

 

Bhn.

 

Fg.1/2







1.

  p

Fg. 3

1./3. Hn.

 

 

 

 

 

 

 

 

 

2./4. Hn.

Trp. 1/2

Bpos.

 3     

q = ca 80

Vl. 1

p

Vl. 2

Vla.

Litolff / Peters

Vc.

Kb.

 

rallentando

  

     

q = ca 70

   

3

  



pp



pp

 

pp



pp

 32986





3

 3

   

   

pp


184

 

EPILOG: ERINNERUNG UND TOD

801 q = ca 90

Picc.

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Bhn.

Fg.1/2

Trp. 1/2

 

1.

 

 

pp

p espr.

pp

p espr.

pp

 

1.

 

 

p espr.

 1.

 

  

p espr.

p espr.

  

 

p espr.

Besen

  

3

Vl. 2

Vla.

 

Vc.

Litolff / Peters

3

3

3

pp espr. 3

3

3

3

3

    

pp espr.

p espr.







  

pp

3

3

pp espr.



      



   



 32986

3

      3

          3

pp

p espr.

pp

 

mf espr.

3

Stopfdämpfer auf

2.        3

p espr.

3

       3

p espr.

pp

3

  p

 

q = ca 90

q = ca 80

            3

3

3

3

  



           

3

     3

3



     mf espr.

3

p espr.

pp

3

                      

p espr.

pp

              

pp

3

3



pp

Kb.

pp espr.

3

3

pp

Q1 q = 50 q = ca 60 q = ca 90                              

Vl. 1

3

p espr.

          mf espr.  

3

        

p espr.

3

p espr.

1. cup

p espr.

p espr.

3

      

1.





      

     mf espr. 



q = ca 90

3

p espr.

q = ca 80

p espr.

 



  

2.

Hfe.

2./4. Hn.

 

1./3. Hn.

Q1

Fl.1/2

Be.

q = 50 q = ca 60





pp

pp

   

mf espr.



pp



3


   806

Fl.1/2

 

Ob.1/2

mfpp



mf

 

 

 Stopfdämpfer auf

p



  

Stopfdämpfer ab

p

3

3

3

3

           

Vl. 2

p

pp

p

 Vc.

 



   pp

p

 p

3

3

  3

3

3

3

3

3

           

3

3

3

  

  3

 3

  3

           

 3

    



mf

pp



 



          

pp

 

cup

mfp

          

  

 



q = ca 90

3

 

senza sord.

      

 



3

pp

pp

 

Vla.

 

 

1.

       

p

f

p Stopfdämpfer ab

pp

   3

3

   

 

5

p

 

3

 

3

   

1.

p 3

3

 

     3

q = ca 60

 

q = ca 70 

   

 

3

 

             

3

mf

             

3

3

   

Stopfdämpfer 1.3. p 3 Stopfdämpfer 2.

3

Vl. 1

Litolff / Peters

mf

 

            

Kb.

pp



3

 

 

 

3

3

   

mf

 

Trp. 1/2

Hfe.



 

2./4. Hn.

          3

mf

Fg.1/2

Bpos.

5

 

Bhn.

mfpp

     

Kl. 2

1./3. Hn.



5

185

          q = ca 90

q = ca 60

        

mf

 

Kl. 1

q = ca 70

mf

1.

Eh.

Fg. 3

 1.  

    p 3 5

  

mf

  p 3

mf



pp 32986

 

   

5


186

  

  

 

  

 





  



 

 



810 1.2.

Fl.1/2

p 1.2.

Ob.1/2



f



p

Eh.

p

kl. Kl.

p

Kl. 1

p

Kl. 2

p

 

Bhn.

Fg.1/2

Fg. 3

2./4. Hn.

Trp. 1/2

Bpos.

       





 p



              3

3

3

3

3

3

3

   

Vc.

3

3

3

3

3

   

3



  

    

         

3



 

       

3

 5

3





   

  

3

3





1.2.

3

3

3

                            

Vla.

   

        

Vl. 2

 

                3

Litolff / Peters

    



 

Kb.

 

Vl. 1



f

Hfe.

mf



3

    

1./3. Hn.

 

 



   



5

6

            

 

3

   



       6                     6 6 

32986

6


  813

Fl.1/2

1.2.

Ob.1/2

 

q = 50 q = 80

  

 

q = ca 90

kl. Kl.



sfpp



    sfpp   

Kl. 1

Kl. 2

  sfp

 

Fg.1/2

Fg. 3

1./3. Hn.

 

2./4. Hn.

Trp. 1/2

 

 

 

 

 

   

(senza sordino)

p

Bpos.

Hfe.

Vl. 1

f

 

 q = 50 q = 80    sfpp

Vl. 2

 

sfpp

Vla.

Vc.

     sfpp    sfpp

Kb.

   

sfpp

Litolff / Peters

 



pp

    3







    3

 



 

 1.

pp



2.

pp 1.







 

cup ab

pp

 

  

             



p

1.

 

sfpp

 

pp

pp

  

Pos.1/2



sfpp

 

 

sfpp

Bhn.

pp

 

pp

1.

sfpp

Eh.

187

 1.



mf

 

q = ca 90

6

6

6

6

                                   6

6

           5



5

p

3    



  32986

3



  

                     pp

p

5

5

5

5




188

R1

  

Picc.

Fl.1/2

6

p

 1.2.                         p

6

6

1.

  







     

p

      

Kl. 1

p

  p 

Kl. 2

Bhn.

Fg.1/2

1./3. Hn.

Trp.3 (B)

Klav.

Vl. 1

Vl. 2



 

Vc.

Kb. Litolff / Peters

p



        6

  



       

6

 



2.4.







   



 5

  

  

p espr.

3

1.2.

p espr.



pp



pp

 ff

pp

ff

pp



  

ff



   

  

R1

          

3

  

6

 



5

    

sfpp

5 5 5                        3

ff

pp

ff

3

ff

pp

ff

ff



pp

 

1.3.

pp

ff

1.2.

 

ff

senza sord.



pp

5                 

 

ff

pp



pp



cup

ff



5

1.

pp



senza sord.

  Vla.



 

Trp. 1/2

Hfe.

6

  

2./4. Hn.

Bpos.



 

kl. Kl.



6

Eh.

ff



6

6

6

1.2. Ob.1/2



            6

816

ff

                       

5

32986

6

6

6

6

                        sfpp 5 5 5 5                          

sfpp

sfpp

            

6

6

6

6

5

5

5

5

                     sfpp 6 6 6                           sfpp

  sfpp

6


189

  818

Ob.1/2

Eh.

Kl. 1

Kl. 2

Fl.1/2

 

Bhn.

 

 

Fg.1/2

 

      

Fg. 3

1./3. Hn.



 

 







     

3

3

     

3

3

Trp. 1/2

Hfe.

f



 

 

 

 

3

 

2./4. Hn.

Bpos.

3

 





Vl. 1

   6      6      6      6      6      6       6     6                                                      

Vl. 2

                                                                  

Vla.

                                          

6                                                 6

6

6

6

6

6

6

5

6

5

6

5

                                                 5

5

5

5

                           6 6 6 6     6

Vc.

Litolff / Peters

6

6

6

6

6

6

6

6

6

                                                                                   5

Kb.

6

6

6

6

32986

6

5

6

5

6

5

6

5

                                                                   5

5

5

5

                          6   6

66

66

66


190

  820

Ob.1/2

Eh.

Kl. 1

Kl. 2

Fl.1/2

 

Bhn.

 

Fg.1/2

Fg. 3

1./3. Hn.

 

Trp. 1/2

Hfe.

Vl. 1

 

 

 





 

 

 

3

1.

     p espr.

 

p espr.

 



3

3

 





 

1.

 

3

 

   6       6     6      6                            



                        6

6

6

6

                                                 6

6

6

6

6

6

6

6

                                                                             6

6

6

6

6

6

6

                                                                        5 5 5 5 5 5 5 5                                           

Vl. 2

6

6

6

6

                                                      

Vla.

5

5

5

5

6

6

6

6

                                                                  5

5

5

5

                                                      6 6

Vc.

Litolff / Peters



3   

6

Kb.

  

2./4. Hn.

Bpos.



 

6 6

66

66

32986

66

66

66

6 6


Fl.1/2

  822

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Vl. 1

 

3

  3



  

3

Trp. 1/2

Hfe.

 

2./4. Hn.

Bpos.

 

Fg.1/2

1./3. Hn.

 

Bhn.

Fg. 3

191

 

 



3



3

fp

3    

2.



Vla.

 

 

     cup ab

3

  



6 6

 q = ca 70









p espr.









 

                                                  





 

6

Vc.

p espr.

    

6 6 6                                      6 6 6 6                              5   5    5 5                          5 5 5 5                                                                                

Vl. 2

Litolff / Peters

fp



                                              6 6

p espr.

1.2. 

   

cup

 

 

  



3







p espr.

1.

fp

6

Kb.

p espr.



 

  

 p espr. 

3

     fp

fp

6 6

p espr.

 







  

6                                                        6

p espr.

fp



    

 

 

p espr.

    

3    





 



1.2.



fp

 

1.

q = ca 70

6



6



6

6

6

6

6



 32986

    

p espr.

p espr.

p espr.


192

Fl.1/2

  826

Ob.1/2

Eh.



 

Kl. 1

 



1./3. Hn.

 

Hfe.

 

   



   



   

  

  p



3

3

3

3

 

3

p espr.



 

 2.



p espr.

Bpos.

p

1.2.



    3

3

    3

3

    3

3

3

3

   

p

 

Trp. 1/2

1.2.



2.

2./4. Hn.



  

p



1.2.

Fg. 3



 

Fg.1/2

q = ca 70

p

 

Bhn.

q = ca 60

p

kl. Kl.

Kl. 2

S1

  3



 



p espr.

pp

 

2.4.

p

 

1.3.

3

p

 3   3

 p

 

   3

    3

Vl. 1

 

Vl. 2

Vla.

Vc.

Kb. Litolff / Peters

 



 

S1  

q = ca 60





q = ca 70

 p

3

3

 p

     3  3  



 

 













p

p

p 32986

3

   



p espr.

      3

3

3

       3

3


193

  832

Fl.1/2

3

      





                         







Kl. 2

                          f mf                

 ff 

Bhn.

               

ff

Ob.1/2

mf

Eh.

kl. Kl.

f

3

f

mf

Fg.1/2

Fg. 3

2./4. Hn.

f

5

mf

3

f

5 5

f

mf

f

Trp.3 (B)

Pos.1/2

Be.

   



Vl. 1

Vl. 2

Vla.

Vc.

 ff 

Litolff / Peters

ffp



ffp

senza sordino



ffp



    pp 

 

ffp

  ff     ff       ff     

3 5 6 6 6 6                                      

   

mf

f

3

5

6

6

6

6

ff

6

6

                                              ff

mf

f

           

 

                                               mf ff f                                         3

5

6

f       5                  ff          6 3  5 f mf mf

Kb.

ff

f

 

ff



5



              

Trp. 1/2

Klav.

ff

5

3

mf

Hfe.

f

mf

3

ff

    3             3 f mf               

1./3. Hn.

Pk.

3

Kl. 1

ff

5

3

6

32986

ff

 


194

   1.2.   834

Picc.

Fl.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2



      



  



 

Klav.

 3 

3



   

    3   



   

  

  



   

  

   3

3

3

    3



ff

   ff   

senza sord.

3

3

 

  

 

    3

   

3

   

3

ff

                              non div.                              

3



3

3

 3   3

3

    3

3

   

3

   3

 3  3

3

   3

3

      

     

   

  

   

3

3

   

non div.

Vla.

        



      ff     p                                     non  div.                            

Vl. 2

    3

Vl. 1

3

    ff   

Pos.1/2

Hfe.

 3  

  

Trp.3 (B)

Pk.





Trp. 1/2

Be.

3   



ff

Bpos.

  

   

 

2./4. Hn.

ff

   



Fg.1/2

1./3. Hn.



       

Bhn.

Fg. 3





Ob.1/2

  

3

3

3

3

   

                

       



   

  

        

3

   

3

         

3

3

3

3

3

3

      3

3

       mf 3                                

3                                  

 

                                     

                             

   

3

  

3

Vc.

non div.                                                                 

Kb.

Litolff / Peters

3



   

    32986

3

   

3

  


Edition Peters in Leipzig For more than 200 years, Edition Peters has been synonymous with excellence in classical music publishing. Established in 1800 with the keyboard works of J. S. Bach, Edition Peters had by 1802 acquired Beethoven’s First Symphony as well as several solo piano and chamber works. In the second half of the nineteenth century, an active publishing policy enabled the company to develop the catalogue through the promotion of contemporary composers such as Brahms, Grieg and Liszt. This policy continues today: as the publishers of composers such as John Cage, James Dillon, Jonathan Dove, Brian Ferneyhough, Bernd Franke, Anders Hillborg, Mauricio Kagel, Rebecca Saunders, Richard Strauss and Erkki-Sven Tüür, Peters continues its historical role as a champion of new music. This is accomplished in conjunction with the continuing development of the traditional catalogue.

The offices of Edition Peters in Talstraße, Leipzig Geschäftssitz der Edition Peters in der Leipziger Talstraße

Seit über 200 Jahren steht die Edition Peters für höchste Qualität im Bereich klassischer Notenausgaben. Gegründet im Jahr 1800, begann der Verlag seine Tätigkeit mit der Herausgabe von Bachs Klavierwerken. Schon zwei Jahre später waren die Rechte an Beethovens erster Sinfonie sowie an diversen Klavier- und Kammermusikwerken hinzugekommen. Durch enge Zusammenarbeit mit zeitgenössischen Komponisten wie Brahms, Grieg und Liszt gelang es in der zweiten Hälfte des 19. Jahrhunderts, den Katalog beständig zu erweitern. Dieser Tradition ist das Unternehmen bis heute verpflichtet: Als Verleger von Komponisten wie John Cage, James Dillon, Jonathan Dove, Brian Ferneyhough, Bernd Franke, Anders Hillborg, Mauricio Kagel, Rebecca Saunders, Richard Strauss und Erkki-Sven Tüür ist die Edition Peters weiterhin Anwalt neuer Musik, während zugleich das angestammte Verlagsprogramm kontinuierlich ausgebaut wird.

w w w.e d i t i o n p e t e r s .c o m




    836

Picc.

Fl.1/2

Ob.1/2

Eh.

kl. Kl.

Kl. 1

Kl. 2

Fg.1/2

2./4. Hn.

Trp. 1/2

Trp.3 (B)

Pos.1/2

Be.

3

     3  



 3  

        3      3        3       



3

3

    3

   

Pk.

Hfe.

Klav.

3

3

   

  

    

   

33

         

33

Kb.

33

     

            

3                                  

   

3

ffp

    32986 ffp

      fff       fff       fff       fff        fff       

 

   

  

  

  

  

 

  

                                                                                             3

        

3



3

33

    

                       3        

  

             

Litolff / Peters

3

195

3

3

3

Vc.

3

      

                           

Vla.

3

            

                                   

Vl. 2

      

   

Vl. 1

3

3

f

Gr. Tr.

3

 

   

Bpos.

 3    

       

1./3. Hn.

 3  

              

   

  

Fg. 3

  



      

Bhn.

   

         

 



   

           

 

     fff      fff      15.4.2007 fff rev. 2011 Bartók -pizz.

 fp



fp

     fff     fff       fff      fff 3                    ffp fff ff       fff              fff  

 



fff


Edition Peters For more than 200 years, Edition Peters has been synonymous with excellence in classical music publishing. Established in 1800 with the keyboard works of J. S. Bach, Edition Peters had by 1802 acquired Beethoven’s First Symphony as well as several solo piano and chamber works. In the second half of the nineteenth century, an active publishing policy enabled the company to develop the catalogue through the promotion of contemporary composers such as Brahms, Grieg and Liszt. This policy continues today: as the publishers of composers such as John Cage, James Dillon, Jonathan Dove, Brian Ferneyhough, Bernd Franke, Anders Hillborg, Mauricio Kagel, Rebecca Saunders, Richard Strauss and Erkki-Sven Tüür, Peters continues its historical role as a champion of new music. This is accomplished in conjunction with the continuing development of the traditional catalogue.

The offices of Edition Peters in Talstraße, Leipzig Geschäftssitz der Edition Peters in der Leipziger Talstraße

Seit über 200 Jahren steht die Edition Peters für höchste Qualität im Bereich klassischer Notenausgaben. Gegründet im Jahr 1800, begann der Verlag seine Tätigkeit mit der Herausgabe von Bachs Klavierwerken. Schon zwei Jahre später waren die Rechte an Beethovens erster Sinfonie sowie an diversen Klavier- und Kammermusikwerken hinzugekommen. Durch enge Zusammenarbeit mit zeitgenössischen Komponisten wie Brahms, Grieg und Liszt gelang es in der zweiten Hälfte des 19. Jahrhunderts, den Katalog beständig zu erweitern. Dieser Tradition ist das Unternehmen bis heute verpflichtet: Als Verleger von Komponisten wie John Cage, James Dillon, Jonathan Dove, Brian Ferneyhough, Bernd Franke, Anders Hillborg, Mauricio Kagel, Rebecca Saunders, Richard Strauss und Erkki-Sven Tüür ist die Edition Peters weiterhin Anwalt neuer Musik, während zugleich das angestammte Verlagsprogramm kontinuierlich ausgebaut wird.

THIS IS RENTAL MATERIAL AND MUST BE RETURNED AFTER USE PETERS EDITION LIMITED Rental Library Tel: +44 (0)20 7553 4020 · Fax: 020 7490 4921 e-mail: rentals.uk@editionpeters.com · newmusic@editionpeters.com · www.editionpeters.com

w w w.e d i t i o n p e t e r s .c o m

EP 12750, Richard Dünser, Radek Sinfonie