Page 1

Contemporary

Wallen Music for Tigers for Piano Quintet Score and parts

EP 7891


ERROLLYN WALLEN

Music for Tigers for Piano Quintet

Score

EIGENTUM DES VERLEGERS

ALLE RECHTE VORBEHALTEN

ALL RIGHTS RESERVED

EDITION PETERS LONDON

路 FRANKFURT/M. 路 LEIPZIG 路 NEW YORK


Commissioned by the Schubert Ensemble with funds provided by the Schubert Ensemble Trust and the Steel Foundation

First performance by The Schubert Ensemble, City Music Society London, Goldsmith’s Hall, 19th October 2006

This score reflects the state of editorial work and correction as of May 2010


for Volker and John on the occasion of their marriage

Music for Tigers 

Errollyn Wallen Con moto ( q = c. 100 )

  

Violin II

  

Viola

  

  

Violin I

Violoncello

 6

Vc.

                          

           







f

         

 

  

       f

 Pno.

Con moto ( q = c. 100 )

f, heavy

Piano

Vln. I

                      

         

                              Edition Peters No. 7891 © Copyright 2006 by Hinrichsen Edition, Peters Edition Limited, London

  


2

Vln. I

12

Vln. II

Vla.

Vc.

Pno.

 

Vla. Vc.

      

    f    

  

            

 



    

   

        

 



 

pizz.

                           arco



                           



 

             

         



       

 

   

                                                                    

 

      

22

Vla.

Pno.

  

f



f

              

Vln. II

Vc.



Pno.

Vln. I

    

 

                                    

Vln. II

17

Vln. I



           

    



6

            

 

 

 

  

            





3

  3

 

 

                f

       f

      

        

 

f

            


27

Vln. I

Vla.

 

Pno.

Vln. I

 

31

3

3

3



 



 



    

   

Vla.

 

 

Pno.

Vln. I

Vln. II

Vla.

 

Pno.





  



           

f

      

 3

  

  

   

3



3

   

   

       3 3 3 3  3       3 3



    

  

3

 

 

3

      

             3 3 3                      3                     

           

3



                          

3



     



3     



f

       

3



 

   

       

3

 

   

           

   

   ff    ff  

ff

ff

f

f

  

        



       

          

        

Vc.

 

             

35



 

3

3

      

     

 

Vln. II

Vc.

3

              

Vln. II

Vc.

3

  

   

3

3

 

 

  

 

            


4

     snap pizz.     

Vln. I Vln. II

Vla.

Vc.

Pno.

   

Vc.

Pno.

Vln. II

Vla.

Vc.

 

3

3

3

3



 

 

f

 

fp



3

3

3

3

    

  

jaunty

f



         



   

3

 

 

        

     

          

 

   

 

     

     

 



              

    

3

    

 

 

  

 

 

    



   

                 



3

                                                                     

 



3



                  

 

arco

     

f

fp

     



3

  

 

fp arco

 

Pno.

                       

46

Vln. I

3

 

     

                                                          

Vla.

3

   

Vln. II



42

Vln. I

     

snap pizz.

38






                        

5

50

Vln. I Vln. II

pizz.

Vla.

Vc.

Pno.

Vln. I

Vln. II

Vla.

Vc.

        

pizz.

3

        

55

    

   

          

   

Vc.

Pno.

 

  

         

   

                          





           



3

       

59

   

   

   

ff

3

3

3

3

3

 f

   

     9

 

 

  f

 

 

3

3

f

 

    



  

f





   

 

     



 

3

   

     

    

        

  

ff

ff

ff

      

3

  

   

5

       

pizz.

      

7

                          

         

     

3



          

Vla.

 

                   

Pno.

Vln. II

arco

    

3

Vln. I

           arco      

 

                                   

 



 

3

      arco    

 

  

 

  

   


6 Vln. I

62

 

Vc.

Pno.

Vln. I





      f

fp

 

 

  



 

 

     

   3

3

                     

 

    

    

 



3

 

 

 

 

        

  



    

     

3

           

3

                             



                    

 

       

  



  

 

3

3

3

pizz.

   

       3



  

3

   

 

 

 

arco

  

 

                      



   

 

  



 

                                                    

  

 

       

69

Vla.

3



       

Vln. II

Pno.

               

Pno.

Vc.

 

3

65

Vla.

Vln. I



   

Vln. II

Vc.

3

3

  

3

             

 

Vln. II Vla.

         3

 

       3



 


Vln. I

72

   

Vln. II

Vla.

Vc.

   ff

 



 



76

                       

                         

79

Vc.

Pno.

 

Vln. II

Vla.

 

 

 

                                     

                    

Pno.

Vln. I

 

  

   

Vln. II

Vc.

ff

                                   

Pno.

Vla.

                      ff                       

ff

Vln. I

7

3

3



3

3

    

 

3

  



 

3

   



   

                

             

 

                  

 

3

   

3

           

            

                                  

  

       

 

     

 

  


8

82

Vln. I

Vla. Vc.

Pno.

Vln. I

Vln. II

Vla.

Vc.

 

Vln. II



                

  

 

 

 86



 

               

pizz.    

                        

 



 

       

arco

 

pizz.

     

f

arco

Vln. I

Vln. II

Vla. Vc.

Pno.

 

 

mf

89

 

 



    

     

   

       

 



  

   

             3

3

                                             

 

 

         

                    f                   

 

               

 



                  f  3 3           gliss.      f mf 3 3                     f mf

   

3 3 3 3                3 3 3 3                

mf

Pno.



             

 



9



 



 

3



 

 

3

3

 

 



 



      

   

 

                


92

Vln. I



  





  





  

  



 



  

 

 



      

               3

3



 

 

                        

3

  



  



            

      



           

98

                



   

       

   



 

Pno.

Pno.

5

 

95

Vla.

Vc.

     

                  

 

Vln. II

Vln. I

  

Pno.

Vc.

           

Vla.

Vln. I



Vln. II

Vc.

9

   



       


10

Vc.

101 

  

    

        



Vln. II



Vla.

Vc.

 109

 

Vln. II

Vla.

Vc.

Pno.







        

         

      



   

gliss.





                 







           

Pno.

Vln. I

104

Vln. I

  

Pno.









         

                            

                       











    

  

 

                    



 

gliss.

           

          

         



. gliss

           

                                         


113

Vln. I Vln. II

Vla.

Vc.

116

s. glis

Pno.

 

                             



 



  

            

               



7

                

 

 

                   

 

                     119

 

Vln. II

Vla.

Pno.

 

                              

  

Vc.

 

                                 

Vla.

Vln. I

                                                    gliss.          

Vln. II

Vc.

Pno.

Vln. I

11



    

 

               

    

 

   

                    

 

 

    

         

         3



3



    

     

 

 

5



       



    











          


12

Vln. I Vln. II

Vla.

Vc.

122

Pno.

   

                    

         

   

                      

  

   

Vln. II

Vc.

    

128

Vla.



Pno.

Vln. I



  

    

                                

Vln. II

Vc.

                            

125

Vla.

                                                                                      

Pno.

Vln. I

 

      

  

3

 

 

     

  

  

 



               .  s s i gl  

 

   

 

    

                    

                                           

    

      spicc.                                

 

        5     





 

5

 



  



                       


13

Vln. I

131

                        

Vln. II

Vla.

Vc.

Vc.

Pno.

Vln. I

Vc.

Pno.

    



   

    



 

  



                        

  

    

 

    

    

                             

    

 

       



  

    

          

137

                                

                      



 

                                    

             

Vln. II

Vla.





  

   

Vln. II

Vla.

  

134

 

Pno.

Vln. I

 

           

               

          

         

         

     

     



    

 



         



             

   

                7

                 7


14

Vln. I

140

Vla.

Pno.

Vln. I

Pno.

Vc.

pizz.

  

146  

  

      

           

           

            

 

  

       

 Pno.

  

                       

Vla.

Vc.

143

Vln. II

 

                      

Vln. II

Vc.



arco

3

3

3

3

     

      3

3

 

  

            

                    

                          

              

  

3 3        


15

149

Vln. I

Pno.

pizz.

 

Vla.

Vc.

Vln. II

pizz.

    

pizz.

Vln. II

  

3

3

         

Vln. II

Vc.

Pno.

 

  

       

   

 

 

      



     

arco



 

      

 

 



  

   

  

pizz.

     

             

pizz.

           

   

  

    

                 

   

              

   

Vla.

3

156

Vln. I

3

Pno.

3

        

3

                    

 

   

     

152 arco

Vln. I

   

 

p

p

p

pizz.

p


16

Vln. I

160

 

Pno.

Vc.

   

Vla.







       

 Pno.





 

    

      

 



 

5

 

     





 

arco

 















     

             

   

        ff

 





   

    

 

  

   





 

 

   

      

           

arco

 arco



163

Vln. II

         

Vla.

Vln. I



Vln. II

Vc.

arco



   ff

         

         ff        

               ff

ff

      


Vln. I

Vln. II

Vla. Vc.

166

 

Vln. II

Vla.

Vc.

   



Vln. I Vln. II

Vla.

Vc.

Pno.



 



 



  



    



  

 

       

172

   















    

  

3



                 

 

 

 

                                                      

  

           3

                                                                                           



3

3

               

 

 

                         3 3   3 3                                                            

Pno.



                       3 3 3 3                                

169

Vln. I

3

3

 Pno.

17



 



 

                       







ss. gli


18

Vln. I

176

Vln. II

Vla.

Vc.

Pno.

Vln. I

 

     

 

           

           

    

 

 

 

 

            

    

        3





3 3

 

     



 

        



           



 

             

          

 

           

    

3

       

         

             

 

    

  

Vla.

Pno.

 

          

179

Vln. II

Vc.

    

  

 

    

         

pizz

  

fff

pizz

 

fff

pizz

  

fff

pizz

 

             

fff

        fff                     


19

Andante q = c. 60

 

arco

5

                     3

mf

Vla.

 

arco

 

                mf

mf

3      

arco

 

3

     3

Vln. II

3

Vc.

Vln. I

Pno.

  

9 

mf

pizz.

3

pizz.

p

3

3

3

 

    

 

p

3      

  

3

3

 

 

p

    

           

3

  

 

p

f

 

                 

 

p

11

 Pno.

 

   

3 3          



Vla.

p

mf

       



Vln. I



 6



    arco

Vc.



Vln. II

II

 



 9

 

9

 

 

 9





9

9

 9



9



 9




20

Vln. I

12

 

Vla.



 14

 arco

 

arco

 



9

        

   

   

      

p

   

      

p

mp

p

     p

mp



   

mf

mf

mf

p

 

 

 



p

p









   

mf

  

p

                     

 

    

 

3

3

3

3

f

                                  3

3

5

                                 

Pno.

mf

mf

3

3

3

  

  



 

9

   

mp

16 

9

    

mp

     6

p

mf

3



Vc.

 



9

 

Vla.

Pno.

3

5

p

 

Vln. II

Vc.

 

                                 

Pno.

Vln. I

p

 

Vln. II



       

f

p



 



 




Vla.

19 



  

 

Pno.

Vln. I

21

                                 

mp , simply

 

Vla.

 

    

Vc.

  

Pno.

  

 

 

   

 

    

       

                        

   

  

 

  

        

mp, simply

   mp , simply

          

           

           

         

          

24

Vla.

Vc.

mp

Vln. II

mp , simply

mp , simply

            

Pno.

Vln. I

 

 

con

mp , simply

      

p , simply

    

 

Vln. II



22



 

  

 

 

 

 

  

 

   

           

       

  

   

  

 



 

 

3

 


22 Vln. I

26

   

Vln. II

Vla. Vc.

Pno.

 

  

 



  

Vln. II

Vla. Vc.

Pno.

            

    

Vln. I

   

Vln. II

Vla.

Vc.

Pno.

  



  

  

 

 

 

 



        

   

 

                          

 

   

3

    



 

3

  

     

  

3

  

 

  



 

           



     

 

      



 

 

  

  

    



30

3

 



    

   

  

28

Vln. I

 



  

      

 



  





 

 

 

 

                             

 

   

 

 

     



3

            f


Vln. I

32

             

Vla.

f

 

 

Pno.

   

         



 

           

                         

 



 

    



 

   



 

   

    

          

      

         

 

 

   

   

   

 

 





   

 







                     f

                     

                          



 

             

   

   



        

 

 

    

36

Vla.

Pno.

Vln. II

Vc.

 

Vla.

Vln. I

34

 

Vc.

f

Vln. II

   

 

Pno.

Vln. I

f

             f               

Vln. II

Vc.

23

 

                               con    

 

     


24

Vln. I

39

              

Vln. II

Vla.

Vc.

Vln. I

            



40

3

 

 

Vla.

 

Vc.

41



  

   

6

  

   

6

6

 

6

  

6

 



6

6 6

6

 

 Pno.

 

3

         

 

 

                              

Vln. II

Vla.

6

Pno.

Vln. I

 

 

                          

Vln. II

Vc.

             

Pno.

6 6

6

6

6

6

    

 



 

 



        6 6

6 6

6

6

6

6

6 6

6 6

6 6

6 6

        


Vln. I

42

 

Vln. II

 

Vla.

 

Vc.

 Pno.

Vln. I

44

Pno.









6 6

  

 

   

 

   p    p

   



3



   

3

 

     

   

 

   

        

 

       

3

 

   

 

3

     

3

mp mp

                       

mp

   



5

p

 



       

  

    

p

p

    

  

46

  

   

             

    

Vln. II

Vc.

6

Pno.

Vla.



    

Vla.

Vln. I

 

6

Vln. II

Vc.

25

3



   

       

 

    


26

Vln. I

48

Vln. II Vla. Vc.

Pno.

Vln. I

 



   

           

   

 

 

 

Vla.

   

   

        

   

     

     

         

   

 



   

   

   

    

   

   

   

   

 

   

 

 

   

           

       

                                     

  

5

 

  

 

  

  

         

 

  

 

   

    

    

 

   

 

  

      

 

 

  

    

 

   

  

     

    

    

53

Vln. II

Pno.

Pno.

Vc.

    

   

Vla.

Vln. I

         

51

Vln. II

Vc.

       

 

          5

  

  



 



  

    

   

 

   

     

   

    

 

          

6


Vln. I

55

Vln. II

Vla.

Vc.

Pno.

Vln. I Vln. II

Vla.

Vc.

 

    

 

    

 

    

               

           

 

        

 

 

   

    

 

     

  

   

  

 

 

  

 

 

 

  

 

                         

       

     

       

 



 

         

 

 

       

   

 

       

            

  



 

                                  

59

     

 

Vla.

Pno.

    

57

Vln. II

Vc.

 

Pno.

Vln. I

27

                   

  

       

       

 

   



       

       

     

   

 

 

                                                  


28

61

 

 

 

 

Vln. II

 

 

 

 

Vla.

 

 

 

 

 

 

 

 

Vln. I

Vc.

Pno.

Vln. I

                                                   

62

  

Vln. II

Vla.

Vc.

Pno.

 

 

  

          

 











       

 


29

III Vln. I

Furious q = c.100 5

        

 

ff

Vln. II

Vla.

Vc.

   

       

ff

Vln. I

Vln. II

Vla.

  

3



ff

   

     

3

3



3





5

  

 

 

 

 

 

3

 

  

 





Sultry q = c. 76

         

p

 

pizz.

pizz.



 p

 p

 

pizz.

 p

          

              

3

 

3

   

 Pno.

5

ff

    

ff

Sultry q = c. 76

    

       

Furious q = c.100

Pno.

 

6

  

 

            6



 

 

       


30

Vln. I

6

Furious q = c.102 arco

5

     

 

ff

Vln. II

Vla.

 

arco

 

           

6

        

ff

5

Vc.

3

ff



Furious q = c.102

 ff

Pno.

 

Vln. I

Vln. II

Vla.

Vc.

Pno.

 

 

9



3

3

 

5

 

 

 

 

pizz. p

 



 arco             f

 

 

 

   

  arco             f

 

         

            

p

mf

p



mf

     

     

mf

         mf

      

                mf

pizz.

   

arco

    mf

f

pizz.         

Sultry q = c. 76

p

               

            f 



mf

 

arco

 

       

p



 

arco

     

p

pizz.

 

           mf

p

   

p

    

      

 

mf

pizz.

   

      

arco 3

       

     

     

ff

  

Sultry q = c. 76

6

pizz.

 

arco



                  

  

f

pizz.


         

Vln. I

Vln. II

Vla.

Vc.

                    arco pizz.         

  

Pno.

Vln. I

Vla.

Vc.

         

          arco pizz.         

 20

Vla.

Pno.

arco



 

                 

arco





 

6

6

6

6

           

 

 

mf

6

6

6

6

           

 

             

 

arco



pizz.

 

             pizz.     as if doodling

pizz.

f , dolce

               

           

      



 

Vln. II

Vc.

               

         

Pno.

Vln. I

       arco   pizz.   

  

                                                 arco pizz. arco      pizz.       

      

17

Vln. II

31

      

13

     arco



 

6

6

6

6

           

   

             pizz.     

  


32 Vln. I

22

     

Vln. II

 

Vla.

 

Vc.

Pno.

                         6

6

6

6

arco

  

 

Vln. II

 

Vla.

 

Vc.

  Pno.

Vln. I

Vln. II

Vla.

Vc.

Pno.

 

arco



 

6 6                

6

6

3

   

6

3



   

 

Vln. I

6

 

                                 pizz. pizz. arco          

 

24



      

 

         

 

 

         

   f

f

6 6                           6

 

pizz.

6

     

     f

     

       3

         3        3

         3

            

         

26

     

3

  

f arco

        

3

  

f

 

                                 

       

  


33

        3 3          3         3            29

Vln. I

Vln. II

Vla.

Vc.

Vln. I

  33

      

Vln. II

 

Vla.

Vc.

  

p

 36

     7

Vc.

Pno.

 

p

 

         

       

  

   

    p    





  













 

 

     

 

 

 

 

 

f





  











f

   

f

pizz.



f

   



  

f

    



            



 

 

 







        

            

       

          

 

  

   

   

   

 

 

 

     

  

   

 

              

p

          

Vla.

6

Vln. II

 

      

                               p                

Pno.

Vln. I

                                              

 

Pno.


34

40

Vln. I

  

Vln. II

  

Vla.

Vc.

Pno.



   

 

       

  



 

 



  

    



Vln. II

Vla.









  

      po rt    .          



  

           



  

.    gliss        

p

   

3

 

3   3                    

           



        



        



          

arco

Vc.



 

Pno.

 

f

f



 port.  



port.

p

p

 











 

 

 

f

 

 

 

 

 

 

 

 

ff

f





 

 

ff

       ff

 

 

  

 



  

       



  



ff

p

  

3

44

Vln. I



 

 

 

 

 

 

 


    

46

Vln. I

Vln. II

  

Vla.

  

Vc.

Pno.

Vln. I

     

 

    

  

Vln. II

Vla.

Vc.

Pno.

 

     

 

  

   

 

          

              ff

     

 

 

  

  

   

    

        

 

 

 

    

        

   

        

 

 

   

      

        

            

     

                          



    

       

   

     

        

                        

           

       

35

    

      

 

 

                 

50

Vln. I

 

Vla.

Pno.

   

                             

                                     48      

Vln. II

Vc.

 

 

   

 

     

       

   

  

    

  

   

  

    

               

  

                               

                  

               

                   


36

  

52

Vln. I

  

  

Vla.

  

   

          

Pno.

Vln. I

54

 

Vln. II

Vla.

Vc.

Pno.

 

       3

        

 

  

  

  

    



3

   

  

  

 



 

 

  

 

  

3

 

 

3

  

   

  

      

      



            3



         

         3

       

       

       

        

3

     

     

 

      

3

  

  

3



                

       

       

  

   

      5

Vln. II

Vc.



     

                         

 


Vln. I

56

 

        

Vln. II

Pno.

  

   

59

Vln. I

Vln. II

  

       

          

     

            

 

Vla.

Vc.

 

   

  

     

Vc.

      

 

 

6

Pno.

      

 

   

  



 



 

  

 

         

  

        

     

       

                

 

6

6

3                   

       

  

              

         

  

3

3



                                 

      



          

 

                     

          

    



37

3

3

Vla.

  

   

 

3

  

      

3

       

    

  

   

  

fff

    

  

   

 

3

  

    

fff

3

        

5

5

fff

fff

          

fff

 

 

   


Music for Tigers

Errollyn Wallen (b. 1958) has been composer in residence at Dartington International Music Festival, Huddersfield Festival and Trinity College of Music, and Visiting Composer in Residence at Birmingham Conservatoire. Wallen received an MBE in 2007 for services to music. Works include: English Folk Songs: From Eleanor to Sweet William (text by Wesley Stace) for BCMG; the Cello Concerto and Concerto Grosso commissioned by Orchestra of the Swan; and the Spirit Symphony commissioned by the BBC (winner of the BBC Radio 3 Listeners/British Composer Award, 2005). The Errollyn Wallen Songbook comprises twelve songs for voice and piano.

Wallen

Photo © Gillian Edelstein

Errollyn Wallen

Errollyn Wallen ( *1958) war Composer in Residence beim Dartington International Music Festival, beim Huddersfield Festival und am Londoner Trinity College of Music sowie „Visiting Composer in Residence“ am Birmingham Conservatoire. 2007 wurde Wallen für ihre Verdienste um die Musik der britische Orden eines MBE verliehen. Zu ihren Werken zählen: English Folk Songs: From Eleanor to Sweet William (Text von Wesley Stace) für die Birmingham Contemporary Music Group, Cellokonzert und Concerto Grosso als Auftragswerke für das Orchestra of the Swan sowie die Spirit Symphony für die BBC (Sieger beim Hörerpreis von BBC Radio 3/British Composer Award 2005). Das Errollyn Wallen Songbook enthält zwölf Lieder für Gesang und Klavier.

w w w.e d i t i o n p e t e r s .c o m

Edition Peters 7891

[ISMN]

Wallen – Music for Tigers  

Full Score – EP 7891 Published by Edition Peters www.editionpeters.com

Read more
Read more
Similar to
Popular now
Just for you