Page 1

or e

No. 7840

sa l

sc

Dove

AIRPORT SCENES

pe ru

Orchestral Suite from Flight

Full Score

PETERS EDITION LIMITED 2–6 Baches Street • London N1 6DN

Tel: 020 7553 4020 · Fax: 020 7490 4921 · International Tel: +44 20 7553 4020 e-mail: hire@editionpeters.com · newmusic@editionpeters.com· www.editionpeters.com


sa l

pe ru or e

sc


1

or e

JONATHAN DOVE

sc

AIRPORT SCENES

sa l

Orchestral Suite from Flight

pe ru

Full Score

EIGENTUM DES VERLEGERS

ALLE RECHTE VORBEHALTEN

ALL RIGHTS RESERVED

EDITION PETERS LONDON

路 FRANKFURT/M. 路 LEIPZIG 路 NEW YORK


or e sc

pe ru

sa l

Commissioned by The University of Warwick Music Centre

th

The first performance of this work was given on 7 March 2006 at the Butterworth Hall, Warwick Arts Centre, University of Warwick, by the University of Warwick Symphony Orchestra, conducted by Paul McGrath

This score is a facsimile of the composer’s manuscript, reflecting the state of editorial work and correction as of January 2006


JONATHAN DOVE

Orchestral Suite from Flight

or e

AIRPORT SCENES

4 Horns 3 Trumpets in B flat 3 Trombones Tuba

sa l

2 Flutes (Flute 2 = Picc 1, Flute 1 = Picc 2) 2 Oboes 2 Clarinets 2 Bassoons (2nd Bassoon doubling Contrabassoon)

sc

Instrumentation

pe ru

Harp Piano

Strings

Score in C

Duration: approximately 15 minutes

Timpani

Percussion:

Player 1: Glockenspiel, Crotales*, Xylophone, Suspended Cymbal, Snare Drum, 3 Tom Toms, Tamtam Player 2: Vibraphone, Glockenspiel, Tubular Bells*, Bass Drum*, Tam-tam*, Clash Cymbals, Suspended Cymbal, Snare Drum, Whip, Tambourine (*shared)


or e

CONTENTS

Page

1. Take-off

1

22

sc

2. Storm

52

4. Departure

71

pe ru

sa l

3. Dawn Landing


Commissioned by The University of Warwick Music Centre

AIRPORT SCENES from Flight 1. Take-off

 

Oboe 1.2

p

  

                     f 

 5                       f

  

a2



   

 

       

Trumpet in Bb 1.2.3

 

    

Timpani

  

  

1.2

     

    



Harp

Piano

Violin II

p

6

5

3.

5

p

  

Violoncello

Double bass



mf

p

 

gliss

 

        



6            

f

 6               

a2

6

         

   p

 

  

 

 

mf

f



p



   

 



p

 p

 

Edition Peters No. 7840 © 2005 by Hinrichsen Edition, Peters Edition Limited, London

div.

 

 

          

f

        

fp

f

f

    6 

div.                             

   



           



 

CROT.  

               (C§)      p    

 

 

                                       

 

 

mf

p

f

  

f

  p

  

5              

5

  

5

p

  

mf

(fans off throughout)                  

mf

 

  

f



f

f

VIB.

 

f

6

GLOCK. gliss 5

 

   

            



      

6           

f

     

             p 

  

f

   

p

   

   

p

Viola

p

mf

5                       f

  

  Violin I  

f

5

pe ru

Percussion 2

sa l

  

Trombone 1.2.3

Percussion 1



f

5

3.4

1.

1.

f

5

p

    

 

p

p

 

Tuba

 

1.2

Horn in F 1-4

  

5

  

 Bassoon 1.2  

f

5

5

p

Clarinet in Bb 1.2

p

or e

h = 88  Excited   

sc

Piccolo 1.2

JONATHAN DOVE

                     

pizz.

 

f

 

pizz.    f

 


Picc. 1.2

7   

1

            



 

             



 







          



 

           



 

           



f

Ob. 1.2

Cl. 1.2

Bsn 1.2

   

   

     

   

  

a2         

2.4

1.

  

f

       f

       f

f

1.3 a2

 

 

f



              f

Hn 1-4

  

f

 

        

  



 

f



            f

  

f

f

sc

or e

2



a2

f

        

1.

 

f

f



         

 







f

 

 

Tpt 1.2.3

         

Hp   

Pno

Vln I

   7

   

      

 





Vln II

Vla

  

      

  f

           f

7





p

 



  

   7





 



p

f



 

f

     

f

  



       



 

       

  

            p

f

        



  

6



 



f

        

 



f

 









          f

 

pizz.

 

 f

             f

f

f

arco

 

arco

f



 

f

Vc.



p

       

f

  

  

f

f



 

pe ru

sa l

Perc. 2



f

        f

  f


3

14

Picc. 1.2

Ob. 1.2

Cl. 1.2

Bsn 1.2

2

           

p

  

p

  

         

  

f

1.2

mf

pp

 



Hn 1-4

  

 

2.3 

   

   

3.4

mf

1.

     

 p



 

mf



pp

Hp

Pno

Vln I

   



  

p

f

            



  





 



   





   

 

p

pp

f

mf

       



p







  

mf

mf

   pp

    

mf





pp



                                                                                            

 

  

mf

 

SUSP. CYMB.

  

p

 

 

 



    

      

f

mf

pp

pp

 



       

 

         

 



   

f

 

    p

 

 

                 

 arco           

                  

f

 f





     

 



                                  p

     p

f

                       f

                                                                                    

div.

p

Vc.



p

Vla

   

pp

         

Vln II

 

f

     

pe ru

Perc. 2



sa l

Perc. 1

p

pp

Tpt 1.2.3

Tbn 1.2.3

 

3                

sc

pp

p

f

p



           

f

 

f

p

 

       

or e

 

f

 

  

p

p

p

 f

 

 

   

p

f

                        f


ff

                           f

       

Ob. 1.2

       

ff

Bsn 1.2

Hn 1-4

  

                        f

ff

ff

1.2         

ff

3.

f



sfz

 

     

 

  

  



    

       

sfz

sfz

  

sfz

     

sfz

  

ff

f

ff

f

 

  

 

 

 

  

       ff

  

      

fp

fp

f

   

f



sfz

 

 

sfz





f

    

f

       sfz

 

              

                                             

                                  

Vla

Vc.

                                  

                               

                                               

              

ff

ff

sfz

                                                

Vln II

Db.

f



pe ru Vln I

   

  CROT.      f

Pno

               

sfz

B.D.

Perc. 2

       

sfz

sfz

Perc. 1

             

f

sa l

Timp.

       

ff

f

   1.2       3.

Tba

       

     

f

Tbn 1.2.3

ff

ff

       

ff

 1.3.        2.4.  

Tpt 1.2.3

 

  

f

ff

      

  

ff

ff

ff

Cl. 1.2

          

sc

Picc. 1.2

 23         

or e

4

ff


5

Ob. 1.2

Cl. 1.2

Perc. 2

4 31  



        

p

   

       

p

f

    

     

VIB.                  

     

  

p

f

p

f

p

      

p

f

                    

f

f

                     

p

 

Pno

















































p

 p



  





  





  





  





  





  











 













































 







 







 







 





 





sc



or e

Hp

sa l

  37

Ob. 1.2

mf

      mf

   

  

   

   

  

    

   

  

     

    

    

     

    

    

     

    

 

 

 

 

pe ru

Cl. 1.2

    

Bsn 1.2

Hn 1-4

Tpt 1.2.3

Perc. 2

Hp

Pno

 



 

 

 

Bsn 2 to Contra

p

   

  

  

  

  

   

  

  

  

  

1.3. a2

p

p

   

  

  

    

      

  

   

  

                                   

          

            

                               

               

                 





                       





          

              


5   

q = 88

41 Slower

 

 

 3

p

 

  

 

p

3  









       



3









3



3











3



3

p

p

  

  

p

1. 2.

Hn 1-4

 

3

  natural harmonics 

3



 

Tpt 1.2.3

 

natural harmonics

3.

3

 



p

2.

 

3

       



 

  

3

3

        



3

mf

 

1.

pe ru

  

3

  

1.

3

natural harmonics

 

 

               

p

sa l

4.

 

   

sc

  

Cl. 1.2

Tba

p

Ob. 1.2

Tbn 1.2.3



3

p

Picc. 1.2

Bsn 1

3

or e

6

3.

 



mf

p

 

sing

(play loud enough for singing to affect partials)

mf

                                                                                                                    

gliss. sul E

Vln I

  

     

gliss. sul E

Vln II

p

Vla

Vc.

   



f

6

6

    f

6

6

6

6

6

6

6

6

                                                                                          3

3

f



6

6

6

6

6

6









6

6

6

mf



f sul E

Db.

3

3

p

gliss. sul E

 

3

 

 

 

3





   3

                                6   6  6 6 6 3  6  


    

Ob. 1.2

   

  



6

6                 ff                         6 f 6

f

6

6

6

 cresc.

f

ff

   3

 

 

Tpt 1.2.3

  

Tbn 1.2.3



 

  





mf 2.

  



  

  

    

3

 f

 

 

  

3

natural harmonics

3

 

 

3

               gliss.

ff

 

 

3

 cresc.

 

1----------------2---------------3------------------

  



      5

3

 

  6    VII gliss.     

6

6

3

 

cresc.

 

3

1--------------2-------------3---------

natural harmonics



  

3.

pe ru

3

mf

 

3

1----------------2---------------3------------------

 

 

 

3

   

natural harmonics

mf

3

  

3

3

f

sa l

 3

Hn 1-4



 

6

6

 

   



 

3

 



ff

 

 ff

           



                                                                      Vln I                                                                                    ff

Vln II

Vla

Vc.

Db.

7

or e

Bsn 1

Hp

6                                  6 6 6

                                                                 6 6  6 6 f

Cl. 1.2

Tba

     

    

f

Cbsn

f

 

        

sc

Picc. 1.2

 

f

45

 

 

6

 

6

cresc.

6

6

6

6

6

6

6



6

6

6

6

6

6

6



cresc.                                                                                   6   6   6   6  6 6 6 6    


    47 ff



 

  

Cl. 1.2



 

 

ff

gliss.

 

gliss.

ff



Tpt 1.2.3

6

      

 



6

ff

Tbn 1.2.3

  

6

6

Vla

  

6

 

6

 

  

 

 



 



  













 

6

 

 













gliss on E

 

  

 

6

 

  

 

 

 

   

 

  

 







6

 

 

 

 

6

 

 

 

 

 

  

 

 





    



 

 

  

 

  

 

  

 

 

 

 

 

 

 

 









  







 

 

 

6   

 

 

   

 

ff



ff

  

  ff

 

ff

  ff

   

sffz

 

6





6

6

 

  

ff

    fp

    fp

 

 



    



 

6

 

   

6

   

VII

6

6

 

6

3

     

Vln II



VII

  Vln I    

    

 

pe ru 

gliss.

ff

    

5

 

  

 

cresc.

6

  

Db.

 

6

6

6

 

6

6

sa l

Vc.

  

Hp



ff

Hn 1-4

Tba

 

ff

  

 

6

 

Bsn 1

Cbsn

ff 6

ff

6

 

Ob. 1.2

 

sc

Picc. 1.2

6

or e

8

   

 

 


9

6   49

Cl. 1.2

Heavy

h = 54

2.

9

9



mf

Bsn 1

    9         9         9         9    

mf

3

3

3

mf

 

3

1.3. a2



3

3

3



3

3

3

3

mf

p

1.

mf

3

3

2.3.

Timp.

mf

 

p

 S.D.   pp B.D.  Perc. 2   pp

3

 3

 (C major) 

p

Pno

3

 

3

3

3

3

3

 

 

3

 

3

 

 

3

3

3

 3

9

9

9

9

9

9

9

9

9

9

9

9

9

9

 3

3

3

  

3

3

9

9

9

9

9

9

9

9

9

9

9

9

9

   

p

Vla

3

pe ru

cresc.

 

Perc. 1

Hp

3

3

    3 

3

3

 

sa l

Tba

3

 





p



sc

3

Tbn 1.2.3

cresc.

 

3

 



2.4.

3

3

3



3

Hn 1-4

  

3

3

    3  

or e

Cbsn

9

                   

 

  

mf

9

9

    

Vc.

mf

Db.

3

3



mf

3

3 3

  3

3

3

 3

3

3

3

 3

3 3

  3

3

3

 3

3


10

  53

  

f

Ob. 1.2

7

9

9

 

sffz

9

9

9

9

   sffz

f

9

9

9

9

9

9

   

mf

cresc.

Cl. 1.2 9

9

9

9

9

9

    cresc.

mf

     9         9         9         9         9         9         9         9    

Bsn 1

cresc.

3

3

  Tbn 1.2.3

3

   

 

    Perc. 2  

 

Hp

Pno

Vln I

3

 3

cresc.

 

cresc.

3

3

3

3

3

3

3

3

9

3

3

3

3

3

cresc.

 

cresc.

   

3

3

cresc.

3

9

9

3

cresc.

9

9

            f

 

Vla

Vc.

 3

3

f

3

3

 9

9

9

9

9

9

9



    ff

loco

9 9 9 9                                                        ff 9

mf cresc.

cresc.

9

9

9

9

9

9

9

9

9

9

9

9

    9

9

   

      

cresc.

Db.

f

 

ff

   

9

9

9

9

9

                                      ff

mf

9

sfz

9

9

9

1.2.

                         

 

Vln II

9

sfz

                

  sfz

 

 

3

pp

9

9

SUSP. CYMB.

    3 

3

3

 

 

   

3

3

 3

3

3



 

pe ru

3

3

3

3

    3  

 

 

Timp.

3

Tpt 1.2.3

 3

3

  

Hn 1-4

Perc. 1

3

3

3



 

Tba

3

3

sc

sa l

Cbsn

9

9

or e

       9

9

       9

       9

cresc.



       9

9

       9

   ff

    ff


 



8                                                               



                                                                                                 



                           ff

 

 

Bsn 1

Cbsn

Hn 1-4

             1.2.

Tbn 1.2.3

Timp.

Perc. 2



             

Pno

Vln I





 









   

 

2.3

f

 

   

   

f

mf

   







    

(B.D.)

f

f

mf









   

f

 

 

 





mf



mf



   



 

   



                                              

ff

   

  

 

 

 

ff Cb D# (E§) Fb G# Ab (B§)









1.

f

 





a4

 

                                             

   

 

 





 

 

  

 

 

  

 

 





  

 

 

 

Vln II

Vla

Vc.

Db.

 

ff

pe ru

Hp

 



sa l

Tba

 ff



Tpt 1.2.3

ff

sc

Ob. 1.2

ff

or e

58

Picc. 1.2

11

h = 66

Faster

div.

                                                                   ff  

     ff

  

 


12

  

                                       

 

                                                

63

Ob. 1.2

 

Cl. 1.2

ff

ff

                                   f

 

  

Bsn 1

Cbsn

Hn 1-4

   

or e

Picc. 1.2

    ff



                    

 ff

 

a4

 



     

Tpt 1.2.3

   

 

 

 

 

f

 

Tbn 1.2.3

 

 

pe ru

 

 

Vln I



  

f

     

2.3

   

  f



    

   

   

   

   

   

     



    

   

f

ff

f

mf

 mf

  

 

                             



ff

   

div.                                                             

                   

                                                   

                                  

  

Vln II

1.

f

 

(Susp. Cymb.)

Pno

 

f

    mf  Perc. 2  

3

       

Perc. 1

Hp

 

 

Timp.

       

sa l

Tba

3

sc

ff

f

Vla

 

Vc.

Db.

 

f

                                      

    ff

ff


13

Picc. 1.2

e = e

   66                                

                                        

Ob. 1.2

                      

f

                

f

f

Cbsn

                          



 



 1.3.  









Hn 1-4

2.4.



Tba

Timp.

     f

   Perc. 2    Perc. 1

f

mf

Hp

Pno

Vln I

mf

 

   



     

    1.2.     

             

   

f

 



   



   

   



   

   

   

   



f

f

     

   

f

f

f

 











  

 







   mf 



 

                       

   

                            

    

       

    

 

                                           

  

                                   

                                 







Vln II

Vla

Vc.

Db.

  

(Susp. Cymb.)

pe ru

  

 

 

 

      

sa l

  





f

Tbn 1.2.3

     

    

Tpt 1.2.3



sc

Bsn 1

      

or e



Cl. 1.2

   

                                        

  


14

9 q = q. prec.                                                      70

ff                                          

Ob. 1.2

                                       

Cl. 1.2

ff

Bsn 1



Cbsn

 

    



   

 

  



  

 

   



   

 

ff

  



  

 

 

  

  

  















 

brassy





brassy

Tba

Timp.

Perc. 1



Hp

Pno



Vc.

Db.

 





















 

 



ff

ff

ff

                         6

6

6

6

  f  (B.D.)    ff

S.D. (with snares)

f

   

 ff (C maj.)

 

 

 

ff



 

 



 

 

 Vln I 

Vla



 

 

Vln II



 









ff



pe ru

Perc. 2



 

ff



sa l

Tbn 1.2.3



ff

ff



sc

 

ff

ff

Hn 1-4

Tpt 1.2.3

or e

Picc. 1.2

    

(Ped>)

ff

   

ff

ff

    

ff

ff


73

Picc. 1.2

ff









3   



Cl. 1.2

Bsn 1

    

   

               

               

                                                             fff



   





 



 











   

3



 

 

 

 



  

cresc.

Perc. 2







  

 

Pno

 

Vc.

Db.

 

 

ff

 

 

                

 

 

                

   

     

   



               

fff





 

 

fff

 

 

 

fff

fff





  

 

  

fff

       

div.

 

 

 

       

ff

 

 

 

div.

        

Vla

 

       Vln I  

Vln II

 

 

f

ff

pe ru

Hp

TAM TAM



     



 6  6 6 6             Perc. 1   Timp.

  





sc







  Tba

3









  

 

Tbn 1.2.3

3







sa l

Tpt 1.2.3

 



   

Hn 1-4



fff

     













fff

                      

 

          3

                        

Ob. 1.2

Cbsn





15



or e

   



  






10

   76

Picc. 1.2

Ob. 1.2

Cl. 1.2

 

Grand h = 72

 3      

ff











 3        











  1.3.            2.4. f











 

6             3

3

ff

ff

Tpt 1.2.3











3    











3 2.3.         





f

ff







Perc. 2

Hp

  

  

 



1.

ff

GLOCK.











  



CROT.

 3



  

3





 

  

   

   

f

pe ru



 3                f

3

             

      

ff

ff

          

       

 3                3

    div.                           Vln I      ff

  





  

 

Vla

f

 

Vln II

3

3

f

 

Pno

6            

sa l

Perc. 1

  





f

Tbn 1.2.3

3

      

1.

sc

 

 3       

3

Hn 1-4

 

or e

16

                                        

    

         

   

          

      

       

       

    

   


17

Picc. 1.2

Ob. 1.2

Cl. 1.2

Bsn 1

Hn 1-4

 

 3       











 3     











 













Hp   

2.3.

  

          

Vla

Vc.



 

          

3













a2 

  

  

   

               

      

       





                              Vln I    

Vln II



ff

pe ru

 Pno   



sa l

Perc. 2



3

3



  





Tbn 1.2.3

Perc. 1

 3     

6            

ff





sc





a2

 



       



3

 

 

ff



 

 3       



Tpt 1.2.3

3

3

3         

6            

or e

   78

3

3

3





 

      

                3

3

                                        

    

         

   

            ff

      

       

       

    

   


18

Picc. 1.2

Ob. 1.2

Cl. 1.2

Bsn 1

Hn 1-4

 3      











 3     











3         

 











6             3

3











 3     













      



Perc. 2

    

Hp   

  

pe ru

 Pno   

3



          

Vla

Vc.

 

          

       









  

 

  

  

               

      

   

3

3

3





                             Vln I         

Vln II





sa l

Perc. 1

 

6            



3

Tbn 1.2.3

sc

 3      

Tpt 1.2.3

 

or e

   80

3

3





 

      

                3

3

                                        

    

         

   

          



      

       



       

    

   


   82

Bsn 1

Hn 1-4







3    























 





Hp   

Vln I







3    











  

3



 

       



















 

  

  

   

 3               

      







           



          

Vla

Vc.

                                

Vln II



      

pe ru

 Pno   

 3      

3



  

3



 Tbn 1.2.3

Perc. 2





Tpt 1.2.3

Perc. 1



  3           

3

 3      

19

or e

Cl. 1.2

sc

Ob. 1.2

               3 6

sa l

Picc. 1.2

               3 6

3

3





 

      

 3                3

                                           

 

    

         

   

           

      

       



        

    

   


11 20

Ob. 1.2

Cl. 1.2

Bsn 1

3    

 3     





















              













Tbn 1.2.3

  

Timp.

ppp

 





 



p

 ppp

 p



pe ru



pp





                                              

gliss. sul G

                                   

gliss. sul G

                      

 



p

 



8

p

gliss. sul G







8

8































p



gliss. sul G

 

p

Db.





                       

Vc.





Vla



1.





                                  Vln I   

Vln II

 

sa l

 

p

  

Tpt 1.2.3

 

 

3

Hn 1-4



or e

 

e=e

sc

Picc. 1.2

 

A little more relaxed

84

 

 

4

 gliss. sul G     p

 



 







4















4



 

 




86     

Ob. 1.2

 

Cl. 1.2

Bsn 1

 

Timp.

 

4

 

 

 

 











 

 

 



 

Vc.

  

  

 

8



4

       



      4    

 

 

 

  

 

 

 

 88    

Cl. 1.2

 

Timp.

                                                                                          8

 

       



   

 



 







8

4

8



      4   

  





4







 



 

 

  



pe ru Bsn 1

 

4

 



    

 

 

Ob. 1.2



 

sa l

Picc. 1.2



8



sc

Vla

Db.

8



 





Vln II



Vla

Vc.

  

Db.

   













4











 

8



 







 



 

  

 

8



 

4



  













 

 

  

 

 

 

 

  

 

  



 



   



 



4

 

 8



 



 



                                                             Vln I       



  



                                                      Vln I                                         Vln II     

 





 

    

 

21

or e

Picc. 1.2

4





 

  

  

 

 

 

 

 

 

 

 

 

 


22

2. Storm

Fl. 1

Ob. 1.2



  (Picc  1 = Fl. 2)   

Bsn 1.2

Hn 1-4





   

 

f



    

f

      f

Clar. 1.2

                    

   

f













   

 

   

 

                   

mf

1.3. 2.4.

1.2.

   p

  

  

  



 

 

f

3.





 

 

f

f

pe ru   Pno  

 

f

  Percussion 1   

                

 

f

  

            

sa l

   

   

ff

p

  

Vln I

Tbn 1.2.3

Timp







  

Tba

                

    



sc

Picc. 1

q. = 152

or e

Stormy

S.D. (with snares)      

f

f

p

ff

   

  





(Ped>)

                                                                         f

Vln II

             f

Vla

     

 

f

Vc.

Db.

 

 

 

 

 

 

 

 

 

 

pizz. mf

  

   

pizz. mf

  

arco ff

    

div. a 3

ff

    


23

   















  















   

 

   

 

   

 

Ob. 1.2

   

Cl. 1.2

                  

Bsn 1.2

Hn

1.3 2.4

  

  

                   

p

mf

  

 

ff

  

  

  

 

f

p

f

  







  

 

Perc. 1



Pno

Vln I

Vln II

Vla

Vc.



f

        

p

pe ru

Perc. 2

sa l

f

Timp.

 

f

Tba



f

f

B.D.

   

                

            

Tbn. 1.2.3

                

sc

Fl. 1

or e

5

Picc. 1

  

 

 

f

ff

   

  





(Ped>)

                                                                                                                                       

    

   Db.   

 

 

 

 

 

 

 

 

mf

 pp

 pp

pizz. mf

  

arco

ff

    

div. a 3

ff

     

      

 pp

 pp


24

Fl. 1



   mf

Ob. 1.2

   

Cl. 1.2



Bsn 1.2

   mf

 

 

ff

1.3 2.4

ff

     

  

  

   ff

 

                    mf

Hn

 

ff

                    mf ff

Perc. 1

  

 XYLO.     mf





Pno

Vln I

Vln II

Vla

ff



Db.







  

ff

 

    

    

  

f

 

   

 

   

   mf

  ff

 

ff

    

  

  

  

mf

 

ff

  mf

           ff

 



mf

  

  

                           

ff

            

 

 

ff

  

                

 

mf

f

    

mf

   



ff

  

 

mf

 



ff

   ff

 

      mf

    

    

     ff

 

             

                                                                                          

   

arco

ff

Vc.

   

  

    

    

f

                

pe ru

Perc. 2



sa l

Tba





 

 

f



ff

Tbn. 1.2.3



or e

mf



sc

12 9                Picc. 1 

  

 

   

ff unis.

 

ff

     

       

 

     

pp

 

pp

pp


25



Fl. 1

   

ff

 

          

Ob. 1.2

ff





      





     

    

          













         f







     





    



    

            

 

 



     

 

Perc. 1

    

f

      

GLOCK.

f





    

Hp

Pno

Vln I

Vln II

Vla

 

 

f

    



 





         

          

 



 

  

 

 





 

 

  

 

     

   



                     f

  





 

 

 

 



                     

f

     

 

 

 



                     

  

(Ped)

  



 



 





                                                                                                               ff

Db.

 

 

ff

ff

Vc.

 

  

f

         

pe ru

Perc. 2

        







sa l

                     f

ff

Timp.



f

ff

 

f

ff



 f



ff

Tbn. 1.2.3

Tba









f

   

     



f



 

     

         

         



  



Tpt 1.2.3



       



ff

1.3 2.4



      



ff

Hn



        

        

Cl. 1.2

Bsn 1.2



or e

ff



sc

  13       Picc. 1 

  





    





     

 

ff

   

div. a 3

ff

   

     

   


26

17

Ob. 1.2

Cl. 1.2

Bsn 1.2





1.3 2.4

Tpt 1.2.3

   



  





ff



ff

    

B.D.

f

    

  

Pno

 

  









 

 

 

 

      













  

   

            

 

   



    



ff

f

    ff

   

ff

    ff

                        ff

brassy

      





   

       





   

 

 

                       f ff



            

                        

   

pe ru

Hp





sa l

ff

  







13

Bsn 2 to Contra.

  

Tbn. 1.2.3

Perc. 2

                  



Tba



   

   

ff

Hn

sc

Fl. 1



or e

 Picc. 1   

     

 

 

VIB.

  

  

  



 

 

 

f

 

                        f

     

                

ff

  

sim.



  

ff



 

                                Vln I  

Vln II



Vla



Vc.

                   

    ff

  Db.       ff

   









   ff

   ff





            

 


27

Fl. 1

Ob. 1.2

Cl. 1.2

1.3 2.4

Tpt 1.2.3

Tbn. 1.2.3

f

ff

f

ff

   

   

  

    

    

  

  Hp   

 

  

  

 

 

          

  



               



ff

ff











  



  



   



 

 

Pno

f

  

f

ff

      

           Vln I  

Vln II

Vla

Vc.

  



          f

 



  





     



      

  

       

 

                             

      

       

 

   

        

 

  









          

 

 

   

      

      



  

  

  

  



  

  

  

  



 



   

 

 

 

     



 



 



   



 



 



 

      

 



f

 

   



      

           

pe ru

Perc. 2



  

 

     

f

        

  

  

f

             

  

   

       



  

sa l

Hn

   

  

  



    to Picc. 2   

    



sc

21

or e

      

  Picc. 1   

 

 

     

      



 

 

ff

   

 

 

ff



 

         



              

 



 



 

ff

ff

     

 



 



  

 

                                                                      







  





div.

      



      

      





         

   



    

   





     

ff

ff


ff

Ob. 1.2

Cl. 1.2

Hn

1.3 2.4

Tpt 1.2.3

Tbn. 1.2.3

Tba

Timp.

Perc. 1

Perc. 2

 

   

 

   

   

   

    

 

   

   

   

  

 

  

 

  

      

       

Hp

Pno

ff



  

ff



  



ff

 

   

 

   

  

   

  

 



3 TOM TOMS

7

  

 







   

 



 



ff

 

7



 

  



   



  

  

ff

  7

 

  

      



   



      

 





 

   

  





 

ff

B.D.

ff











  

 



 





  

                                           

   7

  

          



ff



       

 

7

  

ff

 

  7

2.4. ff

 

    

  

          

ff (F major)

ff

 

brassy               

       

 

  



ff

CLASH CYMB.

  

 

1.3.



   



7

ff

  

 



     



S.D.   



Db.

  

 

  

  

Vc.



  

7

ff



Vla

7

ff

ff

  Vln I   

Vln II



   

7



   

   

 

7

pe ru

  

   

7

                    7  ff                  ff

   

sa l

Cbsn

ff

  

   

Bsn 1

                     

14

Stormy

or e

25 1.2.                  Picc. 1.2  

sc

28

7

8



   8 



   8 



   8 



 8

          8

8

8

8 8 8 8                                                   

ff

      ff

   

7

8

8

8

8

8

8 7

8

8

8

8



   

                 

ff div. a 3

ff

7

     

87



   

                  7

8

7

 

 7               


Cl. 1.2

Bsn 1

Cbsn

Hn

1.3 2.4

Tpt 1.2.3

 













   

   

    

 

 



 



   

 













7







    



   

8



8

Vla

Vc.

Db.

8

8



























                    





 





 

 





 

  

8





 

 

8

8



8

 

 



8









8





8



                



                 

8







8



ff

  

8

     

 

8                 Vln I   

Vln II



 

7





 

   







ff

pe ru 



 



Pno

7



     

      





7

ff





       

    

 





sa l

   



   

   

   

     

     

            



7

           

Timp.

Hp



   

   

Perc. 2





Tba

Perc. 1



   

  

 

7

ff

Tbn. 1.2.3

 

   

 

sc

Ob. 1.2

 

 

or e

  28       Picc. 1.2 

29

8









8

8



 



       

8

8

8 8 8                                     

  

     

     7

                  7

7





               7

     

8

8

     

8

     


30

Cl. 1.2

Bsn 1

Cbsn

Hn

1.3 2.4

        



 

 

 

Timp.

Perc. 1

Perc. 2

    

Vln II

 



 



                         

pp

p



 



     

Db.



 



      

 

 







 



   





pp

  





pp

 

p





        

    



pp

     



  



 





 

 

 

   

 





         

 



  

 

  

 

 

 

  



  



  





     



pp

                                                          

 

 

                                 

           pp









 



 

 

                                





p

 8

8

8

8

p

Vc.

pp

8

Vla



 

pe ru Vln I

pp

 

   







Pno

pp

    

p

Hp



sa l

Tba



15  

              

 p

   

  

         Tbn. 1.2.3

sc

Ob. 1.2



or e

30        Picc. 1.2 

   

     

     

 

p

    p

                                                    pp

unis.                                                     pp


31

  Picc. 1.2   

  

  

  

  

Ob. 1.2

Cl. 1.2

 

            



      



mp

            

      

mp

     

  



  



mp

1.2.     

 

mp

           

Timp.

                 

  

 

Pno

Vln I

Vln II

Vla

Vc.

    

 

             



 

mp

  

mp

  

mp

 





       



                



to Bsn

   p

   

 

p



 



 



 

 





 

 

 

pe ru Hp



  

sa l

Tba

Perc. 2



 

p

p

 

Perc. 1





mp

sc

Tbn. 1.2.3

   

        

             

                                                                       

     Cbsn         

Hn 1.2



mp

mp

p

Bsn 1

           

or e

34

 

 

          





 

  

 

   

   

  

   

  

                                                

mp

mp

   



  



                

     



     



         

p

                                                                     p

         Db.   

 

 


32

Ob. 1.2

     

f

     

Hn 1.2

      

   

mf

    4      

  Perc. 2     

mf VIB.

   

Vln II

Vla

    

mf

  

mf

 

 

   

      



           

    

   

    

    

   

     

   

   

    

    

   

    

   

   

    

   



 

 

 

  

 



    



 

 

      

 

   

mf

 







    

4    



  

 

 

 



  

   

 

  





  

 

 

 

 





 

 

 

 

       

4

   

 



 

 

 

 

  

mf

 

   

  

 

 

 

  

 

 

 

   

    

                                                             

sc

Pno

 

      



   

mf

GLOCK.

Perc. 1

    

mf

Cl. 1.2

  



or e

16 39            Picc. 1.2  

mf                                

sa l

mf

pe ru

      43

Ob. 1.2

Cl. 1.2

       f

      

Tpt 1.2.3

Tbn. 1.2.3

Pno

    

   

                f    

f

         

f

 

1.

           

          



            

p

            



p

p

                        

  

  

               

f

 

           f

p

2.3.

     

  

  

 

  





                   

p

                     p            mf

 

                                

f (Ped)

                                                          Vln I     f

                                                         Vln II       f


33

17 47      Picc. 1.2  

Ob. 1.2



a2

 

f

 a 2            mf

Cl. 1.2

   

  











   

                 

          





   









1.

        

                  

Timp.

   

   

 

mp

    







     

GLOCK.

    

WHIP

f

f

 





f

          

 







 

Pno

Vln I

Vln II

Vla

  

mf

    

       mf

Vc.

     mf

Db.

  (div. a 2)      mf

 













 

                    

          



 

 

                     

   

  



 

  









 



 

 



 

 









 



  

  

 







                  

        

                     

                 

         

                   

  



f

 

     



pe ru

    



         

Hp





sa l

Perc. 2



         

mf

Perc. 1



    

sc

Hn 3.4

    



         

mf

Hn 1.2

  

or e

          



         

f

Bsn 1

 







    







   

 



 

          



 

 



 

 

 

  

 



 





  

              

  

 



 





  

     

  

 

  

 

             

  

 

  

            



 

   

 

unis.

mf cantabile

mf cantabile

   

     

 

 

   

    

  

 

  

  

  

  



   

 

    

       

 

      

 


34

  51                          18                                                          Picc. 1.2    

to Flutes

f

Cl. 1.2



    

 





 

 

  

                                                                                                

f espress.

f

Bsn 1.2



a2

or e

Ob. 1.2

   f                                                                                 

 

mf

f

  1.2.      

   

p

Perc. 1

     

  

 

f



   

      

Vln I

Vln II

Vla

     

   

    

   



       

Db.

    

     

 



   

  

   



   



       

 

f

f

 f

Vc.



pe ru

p

 

f

S.D.

Perc. 2

    

 

sa l

Timp.

  

sc

Tpt 1.2.3

 





f





 

 

 

f

















 

 

 

 





    





  

  a2

f







    



 





 

   

    

  

      





 

 

 

           mf



 









 

 

 

energetic

         mf energetic

          mf

energetic


35

   56

             





   

mf

Cl. 1.2

         

     

        

 

   

                   1.2.

Hn 1.2



Tbn. 1.2.3

Tba

   



  

   

 



   





f





        

 

mf

Tpt 1.2.3

     

                                  

  

     

  

  

                                 

   

XYLO.

Perc. 1

Perc. 2



f



 

 



 

 

 

   





  

 

  

  

Pno

Vln I

Vln II

Vla

 

      

      

f

       





  

Db.



    











p





        

p

 

p

 

  

 



 

 

 

   

 

   



 B.D.     

 

 



       

 

 

 



    

 



 

                                                           

pizz.     

  

mp

                                                         mp  

f

Vc.

  

pe ru

 

     

mf

mp

 

sa l

mf

mp

p

Timp.

mf

mp

f

f

Bsn 1.2



                                 

  

or e

Ob. 1.2

sc

Fl. 1.2

        







        



 



arco                             mp

                                       mp

   

 

mp

 

 

 

 

 

 

 


36

     61

Fl. 1.2



        

                 

  

 







                                         

  









                         

  

 







               

  



f

f

Ob. 1.2

  





f

f

Cl. 1.2

  

f

f

Tpt 1.2.3

Tbn. 1.2.3

Tba

Timp.









f

      

   

  

 

XYLO

       





 











     

        

pe ru

   

Pno

mf

  

 

  Vln I   



  



Vln II

      mf

    

mf

Vla

   



    

 



  

        

     

  

mf

Vc.

Db.

 





 

 

mf

 Perc. 2   

Hp

mf

                   



  

  Perc. 1   









f

  1.3.           2.4. 

  

or e

1.3 2.4





   

 

 

 

    





   

  

   



sc

Hn

   

mf

      

   

 

  









  7 7                           ff

    

 

   







 

 









 

 

 

   

 

 

 



  





gliss.



  



  

mf

 



         

 

  





 



 

mf

 

              

 

 



 

 

 

sa l

Bsn 1.2

f

  

 













   

 





 

 

 

 

mf

mf


37

Cl. 1.2

Bsn 1.2

Hn

1.3 2.4

Tpt 1.2.3

                               

Timp.

     





 

  

 







 

  

 

  



 

 

 

  

  

   



     

 

 

   

 

  

  

  

    



 

7                            7 ff

Vla

Vc.

Db.



    



  



 

              f 





 



   

   mf

    

 



 



 

  



ff

  



  

 



mf

  





GLOCK.        f

               

mf



 



  

f



     

   

mf

  



   





 





   

 



  

       mf



 

  

  



f

    



  

        f   



f

   



  

  

 

         





  



  

 

  

  

  Vln I   

Vln II

   

f

f

pe ru Pno



       



  

Hp



19  

  Perc. 1   

Perc. 2

 



sa l

Tba

     

  



   

     Tbn. 1.2.3

   

 

or e

Ob. 1.2

                       

  

sc

Fl. 1.2

   65                  

 

f energetic



 

    f



 



  

                        

                                      

f energetic

 



 



 

                                        f energetic

pizz. 





f

     

 pizz.

 f



  

 

  

 





 


38

Ob. 1.2

Cl. 1.2

Bsn 1.2

Hn

1.3 2.4

Tpt 1.2.3

Tbn. 1.2.3

Tba

    

               

   

        

            f       



    



    mf

       mf



 



   

      



mf

    mf

    



   



1.3. a 2      mf

       

      

  

mf

   

Pno

 



  

  

  Vln I   

Vln II

   

          



               

  

     f

  

   

 

   

   

 





         



 

               

      



          



               

   



    



      

pe ru

Hp

   



   

sa l

               Perc. 1             Perc. 2                        ff

   

 

mf

   mf

    



mf

     



   

 

mf

  

    

 

f

    

    

  

or e

f



sc

Fl. 1.2

  70         

mf

                                                               p energetic

                                                              p energetic

Vla

                                                              p energetic

Vc.

Db.

         

  f

   

                                                     

arco



 

  

p energetic


39

1.3 2.4

Tpt 1.2.3

Tbn. 1.2.3

Perc. 2



p



 

  

VIB.



         

     

 

mf



  



 

p

    

    

     



        

  

mf

 

 

 



f

  

        

  

   

    

 

       

   

cresc.

    

   

cresc.

  



 

  



 

    

 

      cresc.

    

cresc.

cresc.

     

    f

    

  

 

          



     

 

     f

   

cresc.

cresc.

p

Vc.

                                       p

                     p

cresc.

 

  

  

 

   

  

  

 

    

cresc.

  



         

                                                                       



cresc.

 

p







   

Vla



cresc.

                                                         Vln I    

Vln II



                  

 

 

    

   

cresc.

                              





     

                 

pe ru

           

Pno

1.2.

p

 

             

                    

                        



           

p

            



Hp

p

     



            

                    

   

 

or e

Hn



p

     

             

Cl. 1.2

Bsn 1.2

           

 

20 a2                 

sc



Ob. 1.2

   

sa l

Fl. 1.2

74               

 

      

 


40

Ob. 1.2

Cl. 1.2

Bsn 1.2

Hn 1.2

Hn 3.4

      

         

      

    



      

            

   

  

    

    



 



                  

                 

 

 

   

 

Tba

Timp.

Perc. 1

Perc. 2

 



 

   

 

  

   

      

  



    

     



     



f

         Vln I   

Vln II

Vla

Vc.

Db.

     



  



 

f

 

 

 

 

  



    f





1.

f

mf

 f

 

 

f

     

  



  

    

 





f

       

f

      

               

f

 

 

    

f

  

    

 

 



                                  





        



f

                                     

                 



2.3.

f



 

  



                        

 

      

f

 

      

  

a2

f

f

f

 

    



f



 f

    



f

 

                        

Pno

 

  

pe ru

Hp

 

 

      

a2

sa l

Tbn. 1.2.3



sc

    

1.2.



a2

Tpt 1.2.3

  

 

f

                 

        

        

 

 

21     

               

or e

Fl. 1.2

78           

f

f

  

  

 

  

 

  

 

   

   

 

f

arco

 

f

    

 

    


Ob. 1.2

Cl. 1.2

Bsn 1.2

Hn 1.2

Hn 3.4

 

            

  

    

    

 

 

 

   

         

                        









    

    

    







    











 

                         

     

   



 



                                     

sim.

   

                                       f

         





                                           

   



or e

Fl. 1.2

 82    

41

 1.                                                          

                               f









 

     

Tba

Timp.



f





       

    

     

    



  

  

Perc. 2

 

Pno

  

 Vln I  

Vln II



Vla



Vc.

Db.



               







    

    

    

    

  







   

    





       

     

   

      

   



  



    

   

   

sim.



 



 



        

       

       

       









 









 











 







        

 

      

       

       

       





  

 



       

     

       

   

sim.



       

        

2.3.

f

pe ru

Perc. 1

  

    

sa l

Tbn. 1.2.3



sc

f

Tpt 1.2.3

      

      

sim.

























   

   

   

sim.


42

22    

 

                  

         

  

   

    

            

         

   

   

    

 

 



Ob. 1.2

Cl. 1.2

Bsn 1.2

Hn 1.2

Hn 3.4



      



            

Timp.

Perc. 2

Pno

 

f

    f

   



   

   

         

   



   

     



   







 

 

 

 

 



   

     



   

      

   

   

 



 

   

     



 

 

     



   







 

     

       

     

   

  



      

                                                            





   

  





  







 

2.



   



 

   

   

   

   



     

   



   

 

         



Vla

 

      

  



   

S.D. f

    







 

 













   

   

   

   

   

   

   

   







 

f

      

Vln II

Db.

 

   



 



 Vln I  

Vc.

  

             

pe ru

Perc. 1

   

 

sa l

Tba

 



  Tbn. 1.2.3

                           

 Tpt 1.2.3

   

 

or e

   

 

sc

Fl. 1.2

 

       

87

B.D. f



        

 

   

       

  





      

      

   

 





       

  



      

      









       

       























 





   



















     



   















     

  























     







         

       

       

       

       

       



      

   

 



  

 

 


Bsn 1.2

Hn 1.2

Hn 3.4

                                                    

   



  



  

 

Pno

Vln II

Vla

Vc.

  

  

  

Db.



 

   

   

      

   

   

 



                             

   

   

ff





 

    

   



  

f





  





         



 



       

   

   

    

   



  

         



   

   

        

 

    

   

mf

                             mf

                      

 

2 to Contra.

           mf

 

       

       

      





  





























 

 

                   

                                

                                      

  

 

   

   

   





mf



CLASH CYMB.

   

  

                

   

           

  Vln I   

                

        

pe ru Perc. 2

 



mf





          

  

   

                  

              

Perc. 1

 

  Tba  

Timp.

   



                                      

    Tbn. 1.2.3

 

          

   Tpt 1.2.3

 



or e

Cl. 1.2

  

sc

Ob. 1.2

 92     

sa l

Fl. 1.2

43

 



         



         







 







 



 



 













 





 









       



 







 







 





               

   

   

   

     

   

   





  




44

Cl. 1.2

Bsn 1

Hn

1.3 2.4

f

f

f

f

f

f

                                                                                                                             

a2            

a2 mf



                   

  f



            

 







                     

                     

                 mf

  

   

             

 



sa l

mf



Vln I

Vln II

Vla

  





 



  

mf







f

     

f

pe ru

Timp.

  

 

 

f

Tba



f

Tbn. 1.2.3



                      

mf

1.2.

      f

mf

Tpt 1.2.3

                   

or e

Ob. 1.2

                   

sc

Fl. 1.2

23 98                                                          

                                  f

     f

 

              

f

Vc.



          

 

f

Db.

  

     f




45

Bsn 1

Hn

1.3 2.4

Tpt 1.2.3

                       

            

 

 

      

                     

             

 

 

  

   

   



 

               

 





     

Vla

Vc.

Db.

       

                                      f

                      f

 

 

                    f



 

 

                                 



 

 

                           

                          

             

                           



   

pe ru Vln II

  



Vln I



Tbn. 1.2.3

Timp.

f

ff

 



f

ff

                    

   

Tba

f

or e

Cl. 1.2

ff

sc

Ob. 1.2

                     

sa l

Fl. 1.2

103                       





   



 

 

f


46

108

Fl. 1.2

Ob. 1.2

   



a2

                     f

 

 

ff

Cl. 1.2

      ff

Bsn 1

   



   

 

 



   

 ff

Hn

1.3 2.4

 

 ff

Tpt 1.2.3

Tbn. 1.2.3

 









 

 

      

a2





 1. 2.3.

Tba

 



Perc. 1

Perc. 2



2.3.





TAM TAM

  

B.D. f



  



  



  



  Vln I   



Pno

Vln II

Vla

Vc.

  



  



    ff

Db.

     ff

 



 







 



 



   

 

 

 

 

 

 

 



 



 





   

 

 

 





 



  f

 



 

  

 

 



   

 

 

 



 

 





  

                



 

                     f



 

  

  

ff

 

ff

f

  



        



ff

           



 





                           

                      



            





  





                                

                      



                                 



 



 

pe ru

Hp

 

 

 

sa l

Timp.

1.



ff





 



sc

  

   

ff

      

 

ff

Cbsn

  

                            

or e

24

   

                     f

                     f

                     f

f









ff

              







 

            

                             ff

       

ff

ff



 





 

   

 

 

 

   


47

Bsn 1

Cbsn

Hn

1.3 2.4

Tpt 1.2.3

Tbn. 1.2.3

Tba

Timp.

Perc. 1

Perc. 2

      

 

     



       

 

   

   



 





   

 

      

   

     

    

   



 





  

   

    

  

   

Pno

  

 

    



    



   Vln I    



    



    



Vln II

Vla

Vc.

Db.

  



 





 

 





 



 



  

 

 

 

 

 

 

   

    



  



  



   

 

 

 







 

 



 



 

 

 

                    

ff

         

                                 f

 



 



 

 

                                f

 

  

pe ru

   

   

  

ff

   

 



  

    

Hp

f

or e

Cl. 1.2

    



sc

Ob. 1.2

                                                    

sa l

Fl. 1.2

25 113      

                    

                           







 

ff

         

            

       

                                                     

f

 



 



f

f

 



 







     



                                         

 

ff

                              

ff

                              

ff



  



 



  



 


48

118

Ob. 1.2

Cl. 1.2

Bsn 1

Cbsn

Hn

1.3 2.4

Tpt 1.2.3

Tbn. 1.2.3

   



   

                     f

 

       

 

        







    

 

  

  



   

 

      

 

 



      

 

 



  

 

 Perc. 1 Perc. 2

   

     

         



  

    



     

    

Pno

    

   Vln I    

Vln II

Vla

         

Db.

   

 

 

 

 

p

p

pp





p

to Bsn

p

  



 

 



 

   

1.2.

   



 









f



                    



                         f



                    

   f

 



 







   mf

     





 



   

f

                        





 

 

 

 

 

 

 

 

p

 

   

 

                            

  

f Vc.

 

                        

pe ru

Hp

 

   

p

sa l

Timp.

      

26

 

 



3.

Tba



to Piccs.

 

 

 

 

 

 



sc

Fl. 1.2



or e

     

p

 







 

 

 

 



 



 

 

      





 

 



p

         mf

  

 

  





   

                         

pp

                         

pp

pizz.



p

 

 







 

 





 



     

mf

   

 

 

  

 



XYLO.

pizz.



p

pizz.



p







 







 







 


49 124                         Picc. 1.2   

 

p

pp

Hn 1.2

        

 

                          p

 

 

129

27     

   

   

ff

             

Ob. 1.2

ff

 

 







Tpt 1.2.3

Tbn. 1.2.3

Tba

   

Timp.



Perc. 2





 Vln I  



             



ff

ff

  a2   a2   ff  

   

  

SUSP. CYMB

  

ff

ff

           

  ff 

   

  

  arco  

  

Vla



Vc.

  

ff



fff

fff arco

fff

   arco   fff

 

   



  



TAM TAM

 

   

   

 

  

 

  

 

 

  

      

 

   



   





   

   

 

   

 

  

 

 

 

 

 

 

 



  



 

  



 

f

 



       

   

  

    



 

  

 



 

ff

  TUB. BELLS  





ff

       

  

ff

  

 

                                                            





  

 fff 

Vln II

              

     

Db.







  



             

Pno



Hp

              

   



p



      ff     ff    

pe ru

Perc. 1

pp

               

                                                    



sa l

1.3 2.4

        

sc



Cl. 1.2

Hn

or e

 Picc. 1.2  

 

Bsn 1.2

                                                                                                                                                

Ob. 1.2

Cl. 1.2

 

  

 

 

  

                                           

                                                                  





  



 


50

   Picc. 1.2   133

1.3 2.4

                                                             

      



f

 

  

p

  

  

    



 



   

  

 

 



  

  



  

  

  

                                p

   

mf

mf

    

  

sa l

   



   

p

        

                               

pe ru

Pno

  

     

 Perc. 1  

Hp

   

    

p

p

   

Vc.

Db.

   

     

 



 

 



  

 

 



            



 

 

 

 

 

 

SUSP. CYMB.

 

 

p



 



 



 

 

   

 

 

excited

  

 

  

 

excited

                                                       

Vla

 

 

                                                         

Vln II

 

   

                                                  Vln I    p

 

or e

Hn

 

         p

Cl. 1.2

p

sc

Ob. 1.2

                                         

excited

                                    p

 

 

 

excited

 


51

    Picc. 1.2   138



              



             



             



       



                 



             



             



  

 

ff

Bsn 1.2

         

  

ff

1.3 2.4

     

         ff

Tpt 1.2.3



  



  



   

  

ff

Perc. 2

ff

Timp.

Perc. 1

   

 

ff

   ff

     

Pno

  

ff



 

 



  

   

  



  



 

  

  

 

 

 

 

 

 

 

 

 

 



 

   

  

 

 

 

  





 





   

   

   

 



  



 

  

  







 

   

  

  

 



        

   

  

 

  



 

 

   

ff





  



 

   



f





 



                          



pe ru

Hp

ff

  

  

 

  TUB. BELLS   ff

ff

sa l

Tba



   

      

Tbn. 1.2.3

                                                                                        ff

    

sc

Hn

or e

ff

Cl. 1.2

                                                         

      

ff

Ob. 1.2



 



 





   

   

   

   

 

   

  

 



    Vln I  

         

                                     

      

         

                                   

    

         

fff

Vln II

fff

Vla

fff

   

Vc.

Db.

                                                                                 

fff

     fff

  





  





  








52

3. Dawn Landing h = 72

Bright

         a2

Fl. 1.2

 

   



  



   



    

 



 



  

   

   

f

  

      

  

      

 

 

 

 

     

 

    



    

 

    



          

       

  

Cl. 1.2

Bsn 1.2

1 2

f

  

f

 

a2

f

f

1.2.

f

3.



 

Perc. 1

f

  

 Perc. 2   

Pno

Vln I

 

TUB. BELLS

f

f

Vla

 

 

    

   



     

                   

         

  

   

  

    

 

   



     

     



(Ped>)

f

      

f

Vln II

   

   

 

       

 

 



pe ru

 

 

sa l

Tbn. 1.2.3

 

1.2.

 

 

f

 

  

f

Tpt 1.2.3

 

 

 

    

   

f

Hn 3 4

 

 

    



    



sc

Ob. 1.2

 

or e

  



 

   

 

 

      

 

 

      

  

 

 

    

   

 

   



    

  

 

 

   



  

  



 

 

 

 

 

CROTALES

   

  

    

 

    

 

  



    

 

  



    

 

 

    

 



 



 



   

 f

 



 



   



 



 



 

f

Vc.

     f

 

 

 

 

 


53

28

 

  Perc. 2  



 

   

  

8

Pno

Vln I



   pizz.

Vla

pp

Vc.

1.           pp

pizz.         pp

          pp           VIB.

pp

            pp

29 17     

Ob. 1.2

Cl. 1.2

Bsn 1.

Cbsn

1 2 Hn

Tpt 1.2.3

Perc. 2

Hp

sempre pp

     

       

  

    

   

 Pno    

Vln I

Vln II

Vla

  

Db.

                   pp 1.                 pp  

   pp         pp





pp

          

  

           

           

pizz.                       



    











mp to the fore

 

 

  

  

   

ppp

ppp

 

mp

  





mp

 





  

  

mp





   





              sempre pp                                              

sempre pp

 



ppp

  

mp

 

 



ppp

 

mf

 

ppp

 

   



  

mp



 

                                           

   

                                                                                           sempre pp arco                mp

ppp

pizz.                                                                                 sempre pp arco                  ppp

Vc.

                                                                                                                                   

pe ru

3 4

sa l

Fl. 1.2

pp

Cl. 1.2

Hp

        

or e

Ob. 1.2

sc

Fl. 1.2

 

  

mp



 

  

 





 

  

 

 

arco ppp

ppp

mp

mp


54

Ob. 1.2

    pp

Cl. 1.2

Bsn 1.

 

Hn 3 4

Tpt 1.2.3

 

Vla

  

 

   

 

  

 

 

    

  



   

  



     pp

  

 

  

 



   

 

     





1 and 2 only

pp

 

mp



 

mp

mp



 













   















mp

  

pp

p



                                        

  

    mp

                              

   

















                 

                          

                                     

                                 

                      

  

                

                   

                         

  

 



                       

mp

 

   

 

 

  

  

 

 

 



  

   

 

  

 

 

    

   

        pp





                                   

     

sa l

   

pp

Db.

   

 

pp

Vc.

mp

 

   

pp

Vln II



   

pe ru Vln I

 

 

ppp

Pno

 

 

    Perc. 1   

Hp

 

  

B.D.

Perc. 2

mp

 

 

pp

Timp.



 

mf

mp

pp

Tba

 

   

pp

Tbn. 1.2.3

 



pp

1 2

 

 

  

    pp

Cbsn



                                      

or e

 

                           

sc

Fl. 1.2

30     23                                                      

mp

mp


55

Cl. 1.2

Bsn 1.

Cbsn

1 2 Hn 3 4

Tpt 1.2.3

 

  

  

  

 

 

  

   

  

   



 

 

   

  

   

 

  





  



 



 

   



mf

mf

 

mf

mf

  



    

Perc. 2

Hp

Pno

Vln I

Vln II

Vla

Vc.

Db.



mf























p



  

  

    

   

   











sa l

  





    

pe ru

Perc. 1

 



f



p

Timp.

 

 

p

Tba



 

pp

Tbn. 1.2.3

or e

Ob. 1.2

 

sc

Fl. 1.2

29       31                                                                                                                 



  

  





   pp

 





pp

(B.D.)

                                                                      

                                                                                                      

                                                                      



  mf

 

 



                                                                       

 

  

  

  

 

 



   

  

   



  



   

  

   



mf

mf

mf


56

Ob. 1.2

Bsn 1.

Cbsn

1 2 Hn 3 4

Tbn. 1.2.3

 



 



mp

     

  

 Tba  



 

 

 

p

    

  

 

 

 

p

p

      

   

p





p

Perc. 2

 

TAM-TAM pp

Pno

Vln I

Vln II

Vla

Vc.







 



 





 

 















 

                                                                     

  



    

           





                                                                

 

   









                                                   

     

  

       

   

div.    



 

   



  

 

  

p

 

pp

  

p

p

Db.

                                             

pe ru

Hp

  



sa l

Perc. 1

  p

     

 



or e

 

   to Piccs.          

sc

Fl. 1.2

34                                                                                    





 


57

32

39

Ob. 1.2

Cl. 1.2

 

 

h = 80

Bright

      f      

              

   

f

Bsn 1.

1 2

  

 

 

     

  

 





    

  

 





f

 

Hn

f

Tpt 1.2.3

     

 

f

Perc. 1

Perc. 2

  

 1.2.  f

  T. BELLS     f

     



Pno

  

Vln I

1.  

  

 

 

 

   

  

        

 

         

  

               f      

          

          

 

 

 

    

 

         

fp

fp

 

fp

fp

CROT.

  f

   f

 

        

   

            

   

   

         

 

        

 

 

 

   



       



f

                

 

a2

fp

1.2.3.

   

 

 

          

  

  

 

f

  

 

 

f

Db.

   

  

  

    

f

Vc.

 

    

f

Vla

arco

Vln II

      

  

 

    

              

 

    

  

pe ru

Hp

  

   

    

sa l

Tbn. 1.2.3

       

                f   f

 

      

  

 

3.

      

sc

3 4

   

 

1.

  

f

         

f

    

        

      

       

         

 

 

or e

  Picc. 1.2  

  

 

    

  





f

   



f energetic

  



     

   

pizz. f

pizz.

f

pizz.

f

arco

f energetic


58

Ob. 1.2

Cl. 1.2

Hn 1.2

         

  

    



 



a2

 f

 

           

             





    

 

  

         

 

 



1 2

       

Perc. 1

Perc. 2

       

f



             

 

 

       

 

 

   

 

        f

sa l

Tbn. 1.2.3

1.

1.2.3

      

       

pe ru 

Vln II

Vc.

  

  

 

  

 

1.2.3

f

f



 

         

     



  

f

       

       

    

      

       

   

Vla

 

 

Pno

    

(Crot.)

       

      



     

 

  

f

f

Hp

   Vln I 

   

  

sc

Tpt 1.2.3

 

        

Hn 3 4

1.

 

or e

33     Picc. 1.2     47

  pizz.   f



 


                                       35                                                       p

59

34

  55

Picc. 1.2

         a2

Ob. 1.2

        

  

f

a2

Cl. 1.2

   

 

   



  

   

f

 

mf

 1.2. a 2               

Tpt 1.2.3

f

Perc. 1

Perc. 2

1.2    

 

 



f

 (Tub. Bells)           f

p

 



a2



 

mf





   

mf

     

  

       

mf

  

mf

                 

               



pe ru

Hp

   1.     



sa l

Tbn. 1.2.3

sc

  

Hn 3 4

  

or e

    

     



p

f

1 2



f

Pno

f

                                                                         Vln I      p

f

Vln II

cresc.

                                                                                      p

cresc.

f

Vla

    f



         

                                                                              p

cresc.


60

                 Picc. 1.2  64

Cbsn

1 2

  

3 4

 

  

 

f

          

         

f

Tbn. 1.2.3

 

     

 

   

         

ff

        

            ff          

 

Perc. 1

Perc. 2

  







 

 

 

 



 

ff



 

Pno



ff

   

 

B.D.   ff

 





 

ff

 

arco



ff

Db.

 



  

ff

3

3

ff

3

           ff

     



p







arco

  

ff



(C major)



  

f





 

 

 

 

f

 

  

ff







 

 

  

   

  



 

GLOCK.

3 f 



 



 



       

                                 ff                     ff               

div.



    





ff

 

  

 

  

f

  

f





CROT.

f

                                          Vln I        f                                 Vln II                           f                   Vla                                f Vc.

 

 

         

    

SUSP. CYMB

pe ru

Hp

     

ff

ff

Timp.

sa l

Tba



ff

f

 

ff

ff

         

 3                                                   

        

 3

f

f

f

Tpt 1.2.3

                                    

ff

  

Hn

           3 6

or e

Cl. 1.2



 

ff

sc

Ob. 1.2



36  

 

3

 

3

3

  

 



    3

                         


61

1 2 Hn

Perc. 2







3    











 







3    











      



      





       













a3

 





ff triumphant

a3  





3

 3      

ff triumphant

   

Hp

3







3











 

    

 

  

  

       

       



3





3



pe ru

            3 6

ff triumphant

 

Pno



 

3



Tpt 1.2.3

Perc. 1



  3          

3 4

Tbn. 1.2.3



sa l

Bsn 1.

 3      

Cl. 1.2

            3 6

sc

Ob. 1.2

 

or e

  Picc. 1.2  69

3





  



 

   3

3

  



 

3

  

   3

3

3

  



 

3

   3

                                                       Vln I                                      

Vln II

           

Vla

Vc.

 

 ff triumphant

           

             

         

 

           

           

             


 

   71

Picc. 1.2

Ob. 1.2

Cl. 1.2

Bsn 1.

3

3

 3      











3    











 

 

         3

1 2

            6

 

6                3

  

 













 











 

Perc. 1

 

 

 

 

  

3 

Perc. 2

 

Hp

 



  

        

   

  

  

 

pe ru

 





Pno

  

 

Vla

Vc.











  











3

 

3

    

3

3

   

3

    

3

 

3

 



















 



 



3

    



   

3 

     

3

3







        3 3

                           Vln I               

Vln II

     

3



  

       

sa l

Tbn. 1.2.3

 

Tpt 1.2.3

3

sc

3

       

3

Hn 3 4

6               3

or e

62



   3

  3

 3     

 

3

                                            

                        



                        

                         

 

 

                      

 




 Picc. 1.2  73

Ob. 1.2

Cl. 1.2



ff



 





  ff

 

 

 













 



 





Hn

Tpt 1.2.3

Tbn. 1.2.3

Tba

   

 ff

Perc. 1

Perc. 2

      p





Pno

 Vln I  

Vln II

Vla

Vc.

Db.



  

ff

3







 





 



 

 

 

 

fff

 

 

fff

fff



       

3

 3



3





   



     

3

        







  

ff

ff

  

 



   

ff (C major)

 



 

 

 



B.D.

 l.v.

3





3

ff







  

 



  

pe ru

Hp

 

ff

molto

    





  

f TAM TAM



SUSP. CYMB.

 

 



sa l



 

3 3 3 3  3                              

ff

Timp.



 

 

3

ff

 

ff

ff





ff

 

3 4







sc

1 2





ff

Cbsn



 

ff



        

3

 

 

Bsn 1.



63

or e

37  

 

 

loco





 

 

 





          3





3

3 3                      3 3

3                     

          

       

    

3

3

     

     

     

     

     

     

               

   

3

   

   

   

     

  

 

  

 

fff

fff

3

3

         

 


38 64

Getting heavier

  77

Picc. 1.2

(h = 72)

                                                                         

to Flutes

ff

Ob. 1.2

  

                                                                              

ff

2.

         f

        

                        

Bsn 1.

ff

 

 

ff

Hn 1-4

 

a4

Tbn. 1.2.3



f

 

   

f

Pno

 

3

 

 

 

 

 

 

 



 3   3   3 

f

                                  

f

                              

div.

f

3 3 3              

f

                                                                

ff

 

div.

ff

3

div.

     

 

 3   3   3 

                                            

Db.

3

ff (Ped)

 

mf

f



   

Vc.

 

 

f

Vla

 

                                                    

3

mf

 

 Vln I 

Vln II



   

pe ru

Perc. 2

(B.D.)



sa l

   

 



ff

Timp.

 

   

  ff

Tba

Tpt 1.2.3

 

ff

3

sc

Cbsn

3

or e

Cl. 1.2

   

3 3 3              

f

 

 

 

f


65

  81

mf

1.

      

mf

Bsn 1.

Cbsn

Hn 1-4







 mf

 

a4

 f

a3









p

Perc. 2

 

 

p

  mf

Vln I

 

Vln II

       

                     

                       

unis.

                       

mf

unis.

                       

mf

Vc.





 

  dim.

 

                       

                         

                        

dim.

                          dim.

                                                                           mf

Db.



dim.

pe ru

Pno

   



sa l

    





mf

Timp.

                  

                       

f

Tba

      



                          mf

 

Tbn. 1.2.3

                 

                      

or e

Cl. 1.2

                       

1.

sc

Ob. 1.2

    mf

dim.

  

dim.

 


66

  Cbsn  

rall.

83

                      3

p

  1.2.    pp

 

 

  2.3.  

 

 

pp

Perc. 1

  

3

pp

S.D.      

 

 

 p

Vln I

Vln II

 

3

 

 

  

dim.

   

           

           p

p

      

 

dim.

pe ru

Pno

3

 

ppp

 

Hp

sa l

Tba

3

or e

Tbn. 1.2.3

dim. . . .

sc

Tpt 1.2.3

e

dim.

     

p

dim.

Vla

        p dim.

Vc.

                       p dim.

Db.

                           p

dim.


40

39

87

Bsn 1.

1 2



 

 

3 4

    

     

natural harmonics

p

Hn

q = 90

Spacious

 

p

Tbn. 1.2.3

 Vc.

(2.3.)

 

pp

pp

 

 

 

 

 

   



pp

41 99

Cl. 1.2

A tempo

 

  p cantabile

 

a2





p cantabile

 

Timp.

mf

 pp

mf

 

pp

 



 

Hp

Pno

Vla











 

B.D.        pp

 





p

p

 



       

 

 

 

 

p

Vc.

 





       

 

    



 

 

 



 

 





 

 

 

  

mp espress.



     

 pizz.    p

 

 



















       

 











 

 

 

   

mp to the fore

Db.

 









 



 

   

 



  

 

 



     mp

 

 

 

pp

Perc. 2

 

 

  

(q = 66)

pe ru

Hn 1.2

 

 

1.

p

Bsn 1.

     

 





p espress.

sa l

 



sc

pp

pp

Db.

 

 



 

     

natural harmonics

67

or e

 

Broad (q = 60)



 

 

   

   



 





 







 

 

 

 



 













   



 



 

 





 

  



   

 

 

   

mp

mp










68

                            

42

   105 a2

Fl. 1.2

mp

43

a2

 

mp

6

                              3 3 3 3

3 3 3 3                                                 3

3

3

3

3

p



 

mp

1 2

3

Timp.

   

p 3



 p

3

 

3

3

              

3

Vln I

 

3

 3     

3

3

 3     3

3

3

3

3

 

 

 

3

3



3

   3

 

 

 

 



 



3

3

    

  

3

 



3

 



 

 

3

3

cresc.

mf always to the fore



arco

 

   

  

 







 



cresc.

cresc.

 





3

    6

  

   6

f

 

6

    6



f

 

f



ff

  f

 



6

6

   



3  3   3   3   3   3      

6

6

     3



f

3 3 3 3 3 3                              3

1.2.

pp

f

cresc.

      mplightly, dancing

 

mp lightly, dancing

6

  

mp

3

   



 

3

 



3



mf lightly, dancing

 

6

      

3

 

3

                          

 

3

3

3

Vc.

 

3

Vla

6

f dancing

 

mp

Db.

p

Vln II

6

 6                 

3 3 3                       

3

3

         

pe ru Pno

                

Hp

3

3

p

  3   

3

              

p

Tba

3

Tbn. 1.2.3

6

f

Hn

Tpt 1.2.3

              

f

 

3 4

3

sa l

Cbsn

6

sc

Bsn 1.

     

f dancing

3

Cl. 1.2

6

or e

Ob. 1.2

6

6

f





6

 




Ob. 1.2

 

    6

      

Cl. 1.2

    

6

Bsn 1.

Cbsn

1 2 Hn

Timp.

 6              6

Vln I

  6

   

   

6

3

 

  

3

 

3

 





6

    6

    

 

     



6

6

   

6

  

    







   

 



3



6

3

 

     

6

  

   



    

6

 



6

          6

6

   



  

3

  



 

 

   

 

6

         

    

6

 3

3







 

    6

3

6

6

        

6

6

     

6

          

6



 



 

  



 

6

6

 

   

  







  

   

  



6

3

 

6

  

  

6

  

 



6

6

    

6

   

    

3

 





3

        

  

 

3



 



6    6     6 6             6      6                                6

 

Vln II

6

6

6

  

6

6

       



6

 

 





  

Vc.

    



Vla

Db.

 

 

Pno

    

   



pe ru

Hp

6

6

 



    

   

6

sa l

Tba

 

          6

 

  

Tbn. 1.2.3

   

6

mf lightly, dancing

Tpt 1.2.3

6

6

6



   

3 4

 

6

69

 6                                   

or e

6

 6                                     

sc

Fl. 1.2

    111           





  

 

6

 

    

6

 6

   

 

 



   











      6

6



  

  

 

 

      

  


70

Fl. 1.2

              



                 



             



ff

Cl. 1.2

ff

Bsn 1.

            

    ff

1 2

  

 

  Vln I  

 

           

Vln II

ff

            

ff

Vla

 

ff

  

 

             





p

          

p



p

 

 

 

           

           

           

           

 

 

          p

          

mf

mf

            

 



mf

  

 

   

          

p

p

           

 

p

mf

 

 

 



 

 

p

p



mf

soli

p

 

 

ff

   

   

ff

Db.

ff

Vc.



pe ru

          

               

Pno



p

sa l

 

               

           

  

ff

   

mf

  



   

  



 

f

 

Hp

          

   

mf

Timp.



mf

 

mf

Tba

             

mf

mf

mf

Tbn. 1.2.3





f

Tpt 1.2.3

               

 

Hn 3 4

 

               p

mf

ff

Cbsn



mf

ff

Ob. 1.2

              

or e

114

sc

  

 



p

 



  pp


71

4. Departure                

Fl. 1.2

(Flutes)

Ob. 1.2

   p

Clar. 1.2

  

     

5

            

     

Bsn 1.2

    Hn 1-4





 



a2



Perc. 1

Perc. 2

  

    

6

3.

p

  

    

5

   

f

    

   

p

mf

gliss.



p

          

 

  

Piano

 

p

Viola

5

     

    5

p

  

    

p

  

 Violoncello  

  

 

  

 

 

p

  





f

 

    

p

f

  

  

  

f

 

 

 

 

mf

mf

    



   

f

 



 



 





 

  f



               

               

   ff

       

(Ped) f

     6                   



CROT.

f

f

           

 

 

           

     

a3

  

   

    

   

 

                 f

   

         

 

  

p

f energetic

              



               

f energetic

              

       

       

f energetic

p

unis.



f

f

        6    

  Violin I   

Violin II

              

6



f

f

VIB.

 

f

    



GLOCK. gliss. 5

 

  

f

pe ru

Harp

    5

      

f

5

 

          

sa l

Tbn 1.2.3

   

6

6

 5                         f

5

6

p

   

   

5

f

 

 

    

3.4

p

 

        





Tpt 1.2.3

    

1.2

1.2

f

p

  

f

p

p

    

p

p

  

f

p

  

f

p 5

    6         

or e

Excited h = 88

sc

   

    f

 

pizz.

ff

 

 


72

6

Fl. 1.2

Ob. 1.2

Cl. 1.2

 3

 p

 

 

 

mf

        

mf

       

mf









Tpt 1.2.3

Perc. 1

  

 

    



   

                       

Hp

     6        

  





6           

Vln II

Vla

p

 

      6     

 



  

  

  

f

  

f

  

   



(C§)

ff

         6     

p

(Ped)

  

 



 



 





f

    

   

 6       

  

 

   

 

   

 

mf

 

f

p

 

  

 

 

f

p

                                             

f

 

  

f

p

p



a2

               



f

p

                                           

p

 

arco (div.)

 

                         Vln I 

Vc.



p

                      

Pno



                 

pe ru

Perc. 2



 

sa l

Tbn. 1.2.3



   

f

p

sc

Hn 1-4

  



3

p

Bsn 1.2



    6         

or e

 

 

             

f

 

f


44

73 e

accel.









 



  









 



  



 



 





p

Ob. 1.2

p

Cl. 1.2

 

Hp

Pno

Vln I



 

p

 

       

       

p energetic

Vc.

        

     mp



 



mf to the fore

 

         

  

cresc.



  

  

cresc.

 

cresc.









 

 

 







 

 

 

 



   

    

    

   

mp

   

 

   

   

 

  

TAMB.

  

mp

           

 

 

   

    

   

                

  

 

                    mp energetic                                                  mp energetic                                                                           

  

                   mp energetic

mp energetic

       arco

Db.

         

pe ru Vla

         

unis.

    

Vln II

x With movement q = 120

=

mp

Vln I

cresc.

p energetic

mp

Perc. 2

          

p energetic

23

Timp.



           

p

45

Hn 1-4



mf to the fore

Bsn 1.2





           

div.          

Vc.

Cl. 1.2

mp

 f

 

Vla

Ob. 1.2

a2



p energetic

e

                                                     

Vln II

Db.

a2

sc

Hn 1-4

 

sa l

Bsn 1.2

p

 

mp

             

x

or e

    14

Fl. 1.2

=

   

           


74

46





  

Cl. 1.2

 

                                                        f                                                 f                                   



  

Ob. 1.2

Bsn 1.2







       

   

a2

  

f

    

   

 

 

   

   

 

 

Hn 1-4

   

f

 

più f

 

 

 

 

 

 



 

  

più f

1.

f

Tpt 1.2.3

 

sc

Fl. 1.2

or e

  28

mf



    



  

    

mf

Tbn. 1.2.3

Tba

sa l

 

 

pe ru

Timp.

Perc. 1

Perc. 2



  

                 

Vln II

            

Vla

Vc.

Db.

             

   

                 Vln I 

 

               cresc.

 SUSP. CYMB.

mf

                           

                   f

                              cresc. f                                                        f

cresc.

                      

cresc.

            cresc.

f

f

f

                    

   f

f


Cl. 1.2

Bsn 1.2

Hn 1-4

  

 

  

 

 

 



     

Tbn. 1.2.3

 

 

   

Timp.



     

Perc. 2

Vln I

    

 





  

 

      

 



 



   

 

             

  

           

         

  

 

                                     

 

Vln II

 

Vla

 

Vc.

Db.



 

        



   



   

 

pe ru Perc. 1

 





                       

sa l

 

                  

                      

  

 

 

                           

   

Tpt 1.2.3

Tba



75

or e

Ob. 1.2

 

                                

sc

Fl. 1.2

  33                                                                                                                                                        

            

                                                         

   

           

  

   

                            

  

          


 

Ob. 1.2

                                              

 

Cl. 1.2

Bsn 1.2

                                                     



 

 

 

 

 

  

 

 

 

    

     





    

     



  

  

 

  

 

 

 f

pe ru

Perc. 1

Perc. 2

Vln I

mf

  

 

  

 

1.2.

 

  

  

1.2.

mp

  

 





 

mp

 





 



                                 

 

 

                       

Vla

 

                   

 

                      

Vc.



                                                         f energetic





 

 



                  mf

Vln II

Db.

 

f

Timp.

mf

  

sa l

  

f

Tbn. 1.2.3

mf

mf

Tpt 1.2.3

  

 

                 f

    Hn 1-4

Tba

47  

or e

Fl. 1.2

                37                                                 

sc

76

 

 

mf

                                     f energetic     mf                                        mf f energetic


Fl. 1.2

   

Ob. 1.2

   

Cl. 1.2

Bsn 1.2

Hn 1.2

Tpt 1.2.3

 

  

  

 

  

 

     

              

           

   

 

          

                

                                    Vc.                   Db. 

Fl. 1.2

 

    

Ob. 1.2

     

Bsn 1.2

Hn 1.2

       

 

Tbn. 1.2.3

Perc. 1

  

    

 

   

       



  

 

  

 

  

                  

     

         



 

 mf   mf

 



   



 



                                                          

                                                                                                    

p 1.

                                                                                           

p

  

                                                                                                                    p                                   pp 

     

Tpt 1.2.3

     

 

                                                                                                                           

pe ru Cl. 1.2

 

mf

 

sa l

45

mf

 

  

                

       

   

mf 

  

  

   



  

  

   

          

Vla

 

   

or e

41

sc

 

77



1.      p

GLOCK.      p

 

 

  

1.2.

pp

  



 

    



1.2.

   pp

    

                                                            p                     Vla         

 Hp    

                             Db.    Vc.



  



  


78

48

      

 

     



    

 

49

Fl. 1.2

 

 

 

 

 

 

 

f



f

Cl. 1.2

f

Bsn 1.2

Hn 1-4

    

 

 

ff

   a 4   



    

ff

mf

    

     

mf

Tbn. 1.2.3

    

    Tba  





Perc. 1

Perc. 2

 

     

f



3.



f



CLASH CYMB.

f

  

  

    

f

  

 







 

  

   



   

   

  



   



 





  

f

 

            

  

  

  

  

    

  

  

      

                                                                                       

Vln II

f

                                                                                     

f

    f

                                           

                                      

f

   

Vc.

                               

                                

   

Vla

Db.





f

  

pe ru Vln I



 

                  

mf

  

Pno



   

ff

   

Hp



 

  

sa l

Timp.

   

 

sc

     

 



f

Tpt 1.2.3



or e

Ob. 1.2

f



 




79

49    

Perc. 1

Perc. 2

3

 

       

  

  



3



        

    

sfz

 2 to Contra.    

   

   

         



 



    

sfz

 

   

sfz





 

  

 

 

f

               

              

                      

                        

  

Vla

                

   

Vc.

Db.

                    

 

 

  

                              

Vln II



sfz

 gliss. sul E                                     f

 

sfz

                     

6

6

6

 

sfz

                     

 

sfz

sfz

                              Vln I 

ff

                

      



   

sfz

sfz

    

 

 

pe ru Pno





   

  

sfz

 

  

  

 

Hp

 

 

  

Timp.

to Piccs.

sa l

Tba

    

sfz

         Tbn. 1.2.3

sfz

   

Tpt 1.2.3

    

or e

Broad

 

  

  

Cl. 1.2

Hn 1-4

 

   

Ob. 1.2

Bsn 1.2

3

sc

Fl. 1.2

 

 

53

6


80

  

 

 

57

Fl. 1.2

Ob. 1.2

f

cresc.

 f

 

f

natural harmonics 3

     3

6

  

natural harmonics

 

Perc. 2

 6

6

cresc.



3



TAM TAM

ff 3

    

 

 6

6

   6

cresc.

pp

  

 

  

 gliss. sul E cresc.

 

    3

   

Vln II

Vla

Vc.

Db.

  

    

6

6

6

cresc. 6

6

 

pp

f

 

 

 

   

  

ff





f

6

6

6

6

6

6

cresc.

 

6

cresc.

 

gliss. sul E  3                      3 3 3

6

6

6

   

6

6

  

  

  

ff

                                                                       6                   f

     

ff

gliss. sul E

6

gliss. sul E

    

f

6

ff

ff

SUSP. CYMB.

 

 

 

3      

ff

                                                                                                      Vln I        6

  

3

ff

3



cresc.

pe ru

6

6

  

gliss. sul E 3       6 

mf

Perc. 1



sa l

Tba

 



a3

mf

 

natural harmonics

mf

 

 

3

a3

 

gliss. sul E

  

ff



mf

Tbn. 1.2.3

cresc.

  a4 

Tpt 1.2.3



sc

  

cresc.

 

Bsn 1

  

3

          

f

Hn 1-4

ff

          

Cl. 1.2

Cbsn

f

or e

Picc. 1.2

        

ff

 

ff

 

ff

   6      6    6    6      6      6           6                          cresc.     ff

  

  


50

81

  Picc. 1.2    Hn 1-4

Tba

With movement q = 96

   

Timp.

 

  

  Vln I  

3

 3

p marcato



3 3

3

3

3

3

3

3

3

3

3

3

3



p

3



p



3

3

 

  

3

a4

3

   

  

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

p excited

64

3     3         



 

Timp.

Vln I

Vln II



 

  

3       

3

3

   

mf

3

3

  

3

 3

3

3

3

3

3

3

3

3

3

3

3

3

1.2.

 



 3     



p



3

3

3



  

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

        3

3

      

                    

      

3

 





 

3   

  





 



 



 



 



1.



3

3

3

3

3

3

3

3

3

  

 3

3



3

3

3

3

3

3

3 3 3 3 3 3 3                                3

3

3

3

3

3

3

3

3

3

3

3

3 3 3 3 3 3 3 3                                        3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

  Vla                                       Vc.                                                 Db.         

3



pe ru

3

3

3

sa l

 Picc. 1.2  

Tba

   

                                                                              

Tbn. 1.2.3



sc

         p excited            Vc.                 p excited                  Db.      

Tpt 1.2.3



                                      

 

 

3

3

3

p excited

Hn 1-4

3

3

3

3

3

3

3

                              3

3

 

Vla

       

1.2.



 3

mf 3



p excited

Vln II

   

1.

or e

60

3

3

3

3

3

3

3

3 3 3                                                3

  

3

3

   

3

3

3

3

           

3

3

   

3

3

        


82

           

 Picc. 1.2   68

3

1.

3

           

 3       

1.2.

3

 3

Bsn 1

   

3

Cl. 1.2

1.2.

 

    

3

mf

3



 

 

3  3    

        

 

 

mf

 

  

       3

   

pe ru

3



 

 



 



 

 







3



  

3



       

 



3





 

 

 

3



 

3 3 3 3 3 3 3 3          3  3               3

Vln I



 

Timp.



      

Tbn. 1.2.3

mf

  

Tpt 1.2.3

Tba

sc

Hn 1-4

sa l

Cbsn

or e

mf

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3 3 3 3 3 3 3 3 3 3                    3 3    3      

3 3 3 3 3 3 3 3  3  3 3  3 3      3  3                        

Vc.

                                                                                        

Db.

Vln II

Vla

3

3

  

3

3

3

3

   

3

3

3

3

3

3

           

3

3

   

3

3

3

3

3

           

3

   

3

3

3

3

3

           

3

3

3

   

        


 1.  Picc. 1.2  72

 3

3

1.2.

        3

3

          

Ob. 1.2

 

mf

            

 

6

            

Hn 1-4

  

Perc. 1

Perc. 2

3

 



 

Pno



      3

3

  

  

 









 

 



3

mf

a3

mf

  

 

a3



3



mf

   p

B.D.     p

6

        



           mf





 

Vln II

 

Vla

  

Vc.

Db.

 

     3 3   3 3 3 3 3 3 3  3 3                                        3

3

3

mf

3

3

3 3 3           3

                                 3

6

6

6

6

 



    

6

   

6

6

                  

3      3  3        3

6

6

                 

3 3 3 3  3 3 3 3 3 3        3  3    3           3         Vln I          3

TAM TAM

3

    

  

6



pe ru

Hp

mf

mf

 

  

 

 

Timp.

 



sa l

Tba

 

  

           6

mf

 

 

3.4.

  

 

 

mf

  

        6          

or e

 

1.2.

Tbn. 1.2.3

        

    

Tpt 1.2.3

3

6

sc

       3

 

Bsn 1

Cbsn

6

mf

6

Cl. 1.2

6

mf



83

            

51

3

mf

3

3

3

     

mf

  

3

     

 

3

mf

 

3

     

    mf  3    3   

mf

3

3


 75             Picc. 1.2    

          

6

6

             6

   

Cl. 1.2

Bsn 1

Cbsn

  

Tpt 1.2.3

    

6

 

           

 



            

  

     

    

cresc.

 

 6

  

6

    

cresc.

    

 



 



 

cresc.

        

6

           6

6

            

6

cresc.

  

Tbn. 1.2.3

cresc.

6

6

 6

       

6

           

cresc.

6

6

6

          

             

 

 6

    

6

            6

 

 

6

      

      6

 

6

  

 

 



 



sc

Ob. 1.2

            

or e

84

 



 

cresc.

Perc. 1

Perc. 2





cresc.

 



cresc.

 

   

cresc.

 

Hp

  

     

       

6

  

6

 

6

6

Pno

Vln I



6

              

6

6

6

                 

3 3   3   3          

               3

Vln II

3

3

3

3 3  3              3

Vla

 

cresc.

pe ru

6

     

 

6

    

  

6

cresc.

 



6



 



 

     

 

6

6

6

6

6

              

6



 

                 





sa l

Tba

3

3

     

  

 



6

 6

  



 

 



6

6

                    6

6

6

3 3   3     3       



cresc.

3 3    3                  3

3

3

 

cresc.

3 3 3  3       3            3

3

3

    

cresc.

Db.

 

               

6

cresc.

Vc.

 

  3

cresc.

    3

 

 






            

52        

6

Ob. 1.2

    

Bsn 1

Cbsn

Hn 1-4

      

6

    

 6

  

 

 

 

 

  



     

6



6

    

  

6

ff

 

 

  

3

     f

3

    

 

  

  





2.3.

Tbn. 1.2.3

 

Tba

  

Timp.

Perc. 1

Perc. 2

    



3

  3

  

 

3

    3  3      

  

3

 

 

3





 

3

    



3



3

 

    

3

    

    



 

  

6



6

 

 

6 6                                              f

mf

3



6

ff

f

f

   

 



pe ru Hp

 



 

 

 

f

 

 



sa l

Tpt 1.2.3

         

f



ff

6

ff

  

 

                                

  

1.

ff

sc

Cl. 1.2

85

 

a2

6



6

         

ff a2

        

6

              6



6

          

 

a2

or e

  78    Picc. 1.2  

6



   





mf

6

6



 







6



 

6

6

6 6 6 6 6 6 6 6                                                         Pno 6 6 6 f 6 6 6 6 6 6 6 6                                                                     6 6 6 3  3       3     3                        Vln I             3 3 3

 

Vln II

Vla

Vc.

  

             

  

 3            

  

 Db.   

3

3

3

3

3

3

ff

  ff



6

  

    6

 

ff

3

        3   3      3

3



 



3

6

       

   

  6         

3   

  

6

6

 6

  

  6          

   3

6



  



 

                                

ff

ff

 




86

poco allarg. . . . . . . . . . . . . . . .

   

 

 

    

 

 

    

 

 

 

 

     

  

  

    

  

  

mf

Ob. 1.2

mf

Cl. 1.2

mf

Bsn 1



3

 



 

 

mf

  



3

mf

        p

 

3

 

3

 

cresc. molto

  

3





 

3

 

 



cresc. molto 3

 

cresc. molto

 

Pno

 

 

  

 

mf

3

cresc. molto



   



 

  

 

 

 

3

 

 

3

 



3

 

 

 



 

3

3

  

 

  

3

  



 

 

3

3

                       

mf cresc. molto

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

3

3

3

3

3

 

 3

 

 

ff











                                    

loco                                                                   

 

 

   

 



   

 

 

 

  

 



 

 

 

 

 



mf cresc. molto

mf cresc. molto

   

mf cresc. molto

Vc.

3

 

3

 

Vla

 

 

   Vln I   

Vln II

 

   

pe ru

Perc. 2

  ff

sa l

     mf

Perc. 1

 

ff

sc

     

Hn 1-4

Tbn. 1.2.3

 

ff

   

Tpt 1.2.3

 

ff

      mf

Cbsn

 

. . . . . . .

or e

 81    Picc. 1.2    

 

   Db.    mf cresc. molto



 

ff

ff

ff

                                             mf cresc. molto

 

               



     

ff

ff

 


53 83

          ff

           

Ob. 1.2

87

q. = 72

       

                         

    

f                    

ff

 

ff

    

 





 

mf

 

   mf

 

  

    

  

    

   





 

mf

Tba

                   f

f

mf





 

 

   

ff

     

 

 

 

 

  



  

 





  

  



 

ff

  

    



                   

Vln I

   

     ff

   

 

     

 

 





  







  

 

  





  f

                        f     



 







     

         

















ff sonore











                            f                     







ff sonore





 







   

Vc.

 



ff sonore

   

Vla

  





ff sonore

   

Vln II

Db.

                                  ff                             

Pno



   





pe ru

Hp

              ff

 

f

CLASH CYMB.

Perc. 2

 

   

sa l

   

      



ff

Timp.

          

f

  

Tbn. 1.2.3

ff

   

Tpt 1.2.3

ff

     Hn 1-4

                

   

Bsn 1

Cbsn

   

   

sc

Cl. 1.2

         

         



        



or e

  Picc. 1.2  

Triumphant

  f





   


88

Ob. 1.2

Cl. 1.2

Bsn 1

Cbsn

Hn 1-4

                         

   

                     

 

    

      

dim.

    

 

       

 

  



          mf                   mf        

      



Vln I

Vln II

Vla

Vc.

Db.

 

  

 

 

   

           mf





 

dim.

 

 

  



  

   

  

p



                

             



 



 

  

 

 

 

pp

   







 

  

    

  mf

   

   



 

 

p

    p          



    

p

     



 

dim.



 

 



dim.



 





  p













  



 



              

 



 







 

dim.







                                            



dim.



p

 

                             mf   p                                    





pp





pp

      



 



   

 

   

  

  

                       

                   

pp





p

  

 

 



pe ru

Pno

       



 



    

   

   

sa l

Hp

dim.

 

  

     

mf

Timp.

          

 

p

Tba

dim.

p

 

dim.

Tbn. 1.2.3

   

mf

dim.

Tpt 1.2.3



 

                   



or e

85

sc

  Picc. 1.2  

















 p



 p

 

p

 





  

 





p

 

 






54 88   Picc. 1.2   

 

 

p dolce

    

 

ppp

   1.

Cl. 1.2



p dolce

Bsn 1

     ppp

                

gliss. sul G

 





gliss. sul G

 

 

   

3

   Db.     p













 

3

 

 





 

3



      

 

 

3

 

 

 

 





3





 

 

3

 



 

3

3











3

3

 

 

gliss. sul G

 

 





  

   3

3

p

Vc.



  

 

3

 









   

3

3

3

gliss. sul G

Vla

 

sc

p

 

                                    

p

Vln II

 



gliss. sul G                                   Vln I    

   

  

or e

Ob. 1.2

89

3





 

 





3

 



 

 

sa l

p

    

3

  

pe ru

Ob. 1.2

Bsn 1

  

     

  

 

3

   

 

Cl. 1.2

 

      

90

Picc. 1.2

 

 

   



 



                                                                  Vln I       

Vln II

                            3

3

Vla

Vc.

   

 

  Db.   

3











3





 

 

 

 



 

3

 

3





  

3

3





   

  3



                          3 3

    









3 

  

3

 

 







3





3

3





3



  

 

3



 

 

 

         


sa l

pe ru or e

sc

Dove; Airport Scenes  

Full score2(I+II=Picc).2.2.2(II=Cbsn)-4.3.3.1-Timp-2Perc-Pf-H p-Str Duration: 18 (mins) Date of Comp: 2006 Details: Orchestral Suite from t...

Read more
Read more
Similar to
Popular now
Just for you