SUBDIRECCION ACADEMICA DEPARTAMENTO DE SISTEMAS Y COMPUTACION CARRERA: Ingeniería en Tecnologías de la Información y Comunicaciones. NOMBRE DE LA MATERIA: Calculo Integral. SERIE DE LA MATERIA: 1TI2 TEMA DEL TRABAJO: TRABAJOS NOMBRE DEL ALUMNO: Navarrete Galeana Edgar Alfonso NUMERO DE CONTROL: 11211285 NOMBRE DEL MAESTRO: HUIZAR TEJADA MARIANA FECHA DE ENTREGA: 17/feb/2012

…………………………………………………………………………………………………………………… ……………

EJEMPLO DE APROXIMACION!!!! ENCONTRAR EL AREA BAJO LA FUNCION X^2+4 EN EL INTERVALO [-2,6] (4R) b-a= 0-(-2)=2 Aizq= f(-2)²(2) + f(0)²(2)+ f(2)²(2) + f(4)²(2)=16+8+16+40=80 Adr= f(0)²(2) + f(2)²(2)+ f(4)²(2) + f(6)²(2)=8+16+40+80=144 A=80<A<144

ENCONTRAR EL AREA BAJO LA FUNCION X^2+1 EN EL INTERVALO [-2,4] (6R) b-a= -1–(-2)= -1+2 = 1 Aizq= f(-2)(1)+f(-1)(1)+f(0)(1)+f(1)(1)+f(2)(1)+f(3)(1)= 5 + 2 + 1 + 2 + 5 + 10= 25 Adr= f(-1)(1)+f(0)(1)+f(1)(1)+f(2)(1)+f(3)(1)+f(4)(1)= 2 + 1 + 2 + 5 + 10 + 17= 37 A= 25<A<37

ENCONTRAR EL AREA BAJO LA FUNCION DE X^2+2 EN EL INTERVALO [-4,2] (6R) b-a= -3 – (-4)= -3+4= 1 Aizq= f(-4)(1)+f(-3)(1)+f(-2)(1)+f(-1)(1)+f(0)(1)+f(1)(1)= 18 + 11 + 6 + 3 + 2 + 3 = 43 Adr= f(-3)(1)+f(-2)(1)+f(-1)(1)+f(0)(1)+f(1)(1)+f(2)(1)= 11 + 6 + 3 + 2 + 3 + 6 = 31 A= 31<A<43

…………………………………………………………………………………………………………………… …………… EJEMPLOS DE SUMATORIA(2) 1.∑ S=

= ∑

S= 7*[5(5+1)]/2 - 6(5) S= 7(30/2) – 30 S=7(15) - 30 S= 105-30= 75

2.∑

)=

S= ∑

=∑

+ ∑

S=∑

- ∑

= ∑

S= -7∑

+ 7∑

= -7[10²(10+1)² /4] + 7 [3²(3+1)² /4]

S=-7 [(100*121)/4] + 7[(9*16)/ 4] S=-7(3025) + 7(36) S= -21175 + 252 S=-20923

…………………………………………………………………………………………………………………… …………… EJEMPLOS DE ANTIDERIVADAS (3) X³ 1.-

A: 3x³/3 + 6

/2 - 2 X³/3 – 2x + c

A: X³ + 3x² - 2x³/3 - 2x + c 2.-

A: 8x^4 /4 + ln ।x। + 5x +c A: 2x^4 + ln ।x। + 5x + c

3.-

A: - 4cos x + 9x³/3 + 6x A: -4cosx + 3x³ + 6x +c …………………………………………………………………………………………………………………… …………… EJEMPLOS DE INTEGRALES DEFINIDAS (2) 1.∫ ID= 6x³ / 3 – 4x² / 2 + 5x ID=2x³ - 2x² + 5x ID= 2(4)³ - 2(4)² + 5(4) ID=128 - 32 + 20 = 116 B=116 ID= ID= 2(2)³ - 2(2)² + 5(2) ID=16 - 8 + 20 = 28 A=28 ID= 116-28 = 88

[2,4]

2.∫

=

ID= -cos x [0, π] ID= -COS(π ) - (-COS(0)) ID=1-(-1) ID=1+1 = 2 …………………………………………………………………………………………………………………… ……………

EJEMPLO DE AREAS 1.-Encuentra el área acotada por f(x)= x²+2x y en el eje x de [-2,1] X²+2x=0 x(x+2)=0 x=0 x=-2 A=X³/3 + 2x²/2= x³/3 + x² [-2,0] A=0 - [-2³/3 + 4 ] A= 0-[-8/3 + 4] = 4/3 A= X³/3 + 2x²/2= x³/3 + x² [0,1] A=1/3 + 1 = 4/3 A= l 4/3 l + l 4/3 l = 8/3U²

…………………………………………………………………………………………………………………… …………… EJEMPLO DE INTEGRAL IMPROPIA 1.f(x)= 1/x³ [1,ೲ] I= -1/2x²

[1,B]

I= -1/2(B)² - (-1/2) = 0 - (-1/2) = ½ I= 1/2

CONCLUSION: HICE LO QUE PUDE Y LO QUE LE ENTENDI…

GRACIAS!!!! (LA MAYORIA LOS HICE YO PROFE)

calculo site
calculo site

this is a site for math