Page 1


Cameco Fuel Manufacturing (CFM) is a leading supplier of Fuel Assemblies and Reactor Components for the nuclear industry. Our rigorous commitment to high quality standards combined with more than 50 years of experience and unique capabilities makes Cameco Fuel Manufacturing the Supplier of Choice in the global nuclear industry.

Cameco Fuel Manufacturing Inc. Zirconium, Tubing & Reactor Components 200 Dorset Street East, Port Hope Ontario, Canada L1A 3V4

For more information please contact us:


Contents

4

CONTENTS EDITORIAL STAFF / 编辑团队 EDITORS / 编辑 Arnaud Lefevre-Baril / 百力 Qi Jia / 戚佳 NEWS / 新闻 Veronica/ 张维佳 TECHNICAL ARTICLES / 科技文章

Editorial Six Reasons Foreign Companies Fail in Chinese Market Chapter 3: Accelerating the creation of a local office: which perils will you prevent?

6

Interview

Interview with Dr Song Jiupeng, R & D Department of Xiamen Honglu Tungsten Molybdenum Industry Co.,Ltd.

18

Interview with Craig Irish, Vice President of Sales and Marketing at AZZ-NLI

21

Qi Jia / 戚佳 EVENTS / 展会会议 Veronica/ 张维佳 DESIGNER / 设计师

HAF Regulations

31

FangHua Design Inc/ 芳华设计公司 38

Events Calendar

DYNABOND POWERTECH SERVICE / 代邦核讯 联系方式 Room 1509, Zhongyu Plaza, A6 Gongti North Road, Chaoyang District, Beijing, China PHONE / 电话 +86-10-64681222

Technical Articles Feasibility of a Monte-Carlo-Deterministic Hybrid Method for Fast Reactor Analysis

FAX / 传真

News

+86-10-64654957 EMAIL / 邮箱 info@dynabondpowertech.com WEBSITE / 网站 www.dynabondpowertech.com

Disclaimer

41

55 59 64 70

Nuclear Glossary

All rights reserved. No part of this publication may be reproduced in any form or by any means without the permission of its editors and/or its sources

© Dynatom is a trademark of Dynabond Powertech Service Co., Ltd.

Highlights of the Month Company News International Cooperation NPP News

116


5

Interview of the Month


Six Reasons Foreign Companies Fail in Chinese Market

6

Arnaud Lefevre

Chapter 3: Accelerating the creation of a local office: which perils will you prevent? Opening your office in China is a key commercial strategy, and your approach to open in China may or may not produce specific advantages to your industry: recent examples such as the setbacks of the US e-commerce industry, such as eBay, MSN, Yahoo and Google on the mainland. The pharmaceutical industry recently faced obstacles such as GSK, Novartis, Eli Lilly and Aventis; similar problems happened in the milk industry for Nestlé and Danone. All these companies have something in common with the B2C market; they are blamed by the state owned media regarding their high prices, their legal practice, or their poor relations with their local partners. The common failure between all these companies is the human performance: either with their public relations, their commercial strategies, their sales network, or the legal environment.

List of companies certified for civil engineering and installation • • Zhejiang Thermal Power Construction Co. • • Tianjin Power Construction Corporation • • Third Electric Power Construction • • Company of Jiangsu Province • • Shenzhen Shandong Nuclear Power •

Construction Co., Ltd.

• • Shanxi No.4 Electric Construction Company • • Shanghai Power Construction Co. • • Second Electric Power Construction •

Company of Jiangsu Province

• • Jiangxi Thermal Construction Co. • • Hunan Provincial Thermal Power

This article will catalogue some of the standard mistakes your

company still faces today as regards to your commercial approach in the Chinese nuclear power market when you decide to open your

• • Guangdong Thermal Power Engineering Corporation •

office.

• • First Electric Power Construction Company of

(Note: in some cases, we cannot reveal the names of the companies or individuals involved, we will use only the nationality of the company and scope of business).

Construction Co.

Hebei Province

• • China Nuclear Industry Huaxing Construction •

Co., Ltd.

• • China Nuclear Industry 5th Installation Corporation

The information in this paper will deal with the commercial set up

of your business in China, which means the localization of your

• • China Nuclear Industry 24 Co.

team, your unstable sales and marketing network, the necessary

• • China Nuclear Industry 23rd Construction

intensification of your budget and the confusing labor law.

Phase 1: “By failing to prepare, you are preparing to fail.” Benjamin Franklin The competition is increasing More than three hundred foreign companies sell safety related equipment in the Chinese nuclear power market. This number will

Corporation

• • China Energy Engineering Group Tianjin Electric •

Power Construction Company (extension)

• • China Construction Second Engineering Bureau Ltd. • • Anhui No. 2 Electric Power Engineering & •

Construction Co.

• • First Electric Power Construction Company of •

hardly be increased, since the safety authority occasionally certifies its chosen entrants to the market.

Civil engineering is monopolized by state owned enterprises:

Jiangsu Province


7

Six Reasons Foreign Companies Fail in Chinese Market

The Non-Destructive Testing market is split between two

and the pressure to reach an 85% localization rate, many

segments: some Class 1 equipment for foreigners, and the

foreign entities opened their offices in the country.

major market to four domestic enterprises: NDT Market SOE

Foreign entity

China Nuclear Power Operation Technology

Intellige NDT Systems &

Corporation, Ltd.

Services GmbH

Nuclear Power Institute of China (NPIC)

Intercontrole

CGNPC Inspection Technology Co., Ltd.

Tecnatom S.A.

State Nuclear Power Plant Service Company (SNPSC)

WesDyne International LLC

The education business is already mature, the training market just starting In the education business, the top universities (Tsinghua University, Shanghai Jiaotong University, Xi’an Jiaotong University, Haerbin Engineering University and Harbin Institute

This is particularly the case when a company has more than 90% of its activities in other fields (Oil, Gas, Chemical, Transport and even Pharmaceuticals) and chooses to expand its nuclear business directly from China. The growing competition, the recurrent technical requests from the EPC and utilities since Fukushima motived this new step in the market. That is particularly the case for US companies that a time difference of 12 to 13 hours with the China, and need to catch up with the construction of the AP1000 in Xudapu, Lufeng and the next ten units in 2014 and 2015.

Define your strategic approach:

of Technology) are already affiliated with tens of foreign

The gradual strategy of foreign companies in the country goes

counterparts from more than twenty countries; one specific

through the traditional following steps:

project must be taken into account: the IFCEN (French Chinese Institute of Nuclear Engineering) with Sun YatSen University. In the training business two recent deals were awarded: the Center of Excellence signed between the Department of Energy (USA) and the China Atomic Energy Authority (CAEA), and recently the signing of training in management of nuclear projects between China Nuclear Power Engineering (CNPE) and Areva. The maintenance and operation market is the next segment in

First approach in the country is participation in trade missions with the following authorities: •

Commercial section of the Embassy (ex: Awex/Belgium),

Lobbying groups (ex: PFCE/France)

Chamber of Commerce (ex: ECP Nuclear Power Working Group/USA)

First investment and indication of a mid-term presence: Representative office.

particular with opportunities for the “ten year inspection”. Two

Hiring a delegate without experience in lobbying groups (ex:

examples can be cited:

International Volunteer in Business with the GIIN/France)

Th e i n v e s t m e n t of F re n c h c o m p a n i e s (e x : A p a ve i n

Rent an office in a Chamber of Commerce or group of enterprises (ex: German center).

Guangdong) recently invested in Guangdong province at the request of EDF and China General Nuclear Power Company (CGNPC) for the Daya Bay Nuclear Management Company operations.

First service center to support a sales network and reparation: Either by using a subsidiary: - Ex: Chauvin-Arnoux (Enerd is in Shanghai)

As for China National Nuclear Power Company (CNNP)

- Ex: AZZ-NLI (AZZ trading in Shanghai)

that runs nine nuclear plants and has set up its own base in

Or creating your own premises:

Qinshan, the company just signed two-research programs

- Ex: Velan Valve, Suzhou

with EPRI (Nuclear Maintenance Application Center and Non-

- Ex: Sandvik Material Technology, Shanghai

destructive Evaluation).

Localization is unavoidable Despite the slow localization of key equipment (around 40 foreign companies produce safety related equipment in China)

First plant: Most of the time as a joint venture, with the big three: - Ex: KSB with Shanghai Electric (Shanghai area) - Ex: Daher Vanatome with Haerbin Electric (Haerbin/


8

Six Reasons Foreign Companies Fail in Chinese Market Heilongjiang) - Ex: Areva with Dongfang Electric (DFEM) (Deyang/Sichuan)

Or wholly owned foreign enterprise: - Ex: Valinox Nucleaire (Nansha/Guangdong)

(English and Chinese), the public relation skills (ex: frequent lunches and dinners with a strong local spirit, social events during the weekend, to be helpful to family members and friends of the network) and the steadiness of the locally hired. In both cases, it is at best expected the foreigner will remain in

Each step is basic to assess the market.

China between five and seven years.

The industrial parks close to the NPP will eventually offer tax

Basic Cost of a foreign expat per year:

or land opportunities, however you will never get any support for the local certification (HAF 601) or even a guarantee to sell

Salary: 72,000 USD

your products. A strong sales and marketing team is the only

School for kids (if any): 20,000

way to build your network and take the decision to localize

USD

your production.

Rental of apartment: 40,000

The dilemma of foreign expatriate versus local management If your operations in China require a foreign representative,

USD Bonus (2 months salary): 12,000 USD

various situations often occur:

International Airfares for holidays: 8,000 USD

A sales engineer from the company, expatriate, who

A Chinese sales representative, who has knowledge of

may have some experience with China.

a comparable market (ex: oil and gas, chemical industry) with

Advantages: represents the culture of his company, can

limited understanding of the nuclear industry, or somebody

move fast and influence the strategy according to the market

who has been working inside the EPC but has no sales

needs.

experience.

Weaknesses: Cost of sending the expatriate and his family

Advantages: can be trained overseas, knows the local

(insurance, school for kids, housing‌), often not focused in the nuclear industry, does not speak Chinese, which limits the understanding of the networking, relies too much on the

competition, the bureaucracy and administration requirements, and will not face visas issues.

Chinese staff.

Weaknesses: will not perform as expected, unless the

A foreign sales representative hired locally, who

company is willing to invest for the long-term, if not graduated

has experience of the Chinese environment but limited

from the top schools will need to build a network from scratch,

understanding of the company’s business culture.

and often use back channels including corruption.

Advantages: often speaks Chinese, often looking to settle

A Chinese sales representative hired from a competitor,

in China between five and seven years, accepts the impact of the pollution and the pressure from the business environment.

Weaknesses: Does not have strong knowledge of the corporate culture, limited understanding of the Chinese nuclear industry in China will rely more on his overseas engineering department for meetings and will be perceived as a messenger rather than a decision maker. When the company wants to hire a foreigner, it must take into account the marital status of the representative (many foreigners leave China due to the impact of the pollution in the family), the rising cost of living, the language proficiencies

who is looking for a new challenge.

Advantages: brings his network, understands the sales process, internationally oriented most of the time, wants to stay close to the EPC and benefit from his assets.

Weaknesses: unfaithful, often looking for new challenges, will take a maximum of the company’s information and network within the first 24 months before leaving for a competitor. When you hire a Chinese sales representative, you expect the candidate to have either a strong understanding of your


9 technology and/or a robust network in the Chinese nuclear

Six Reasons Foreign Companies Fail in Chinese Market Location of major research centers and design projects:

industry. The amount of information exchanged in this network exceeds the segment of your market. If the sales person is smart, he will use this knowledge to create a parallel business, often through a trading company. When your sales representative is only focused in your company, this indicates a lack of ambition. China is a country of merchants, and anyone with a minimum of ambition works for his company and creates another business.

Basic Cost of a Chinese representative per year: Salary: 72,000 USD Rental of apartment: 30,000 USD Bonus (2 months of salary): 12,000 USD

If you provide services to Chinese civil engineering companies focus on Jiangsu, Guangdong, Shanghai, Hebei and Hunan.

Where are your clients located? China has a land area of 9,6 millions square kilometers, and the nuclear power plants are dispersed over 4,500 kilometers (from Changjiang in Hainan, to Hongyanhe in Liaoning). The nuclear power industry is dispersed in 26 provinces and municipalities (see Index 1) The business is segmented between the NPP (PWR/Candu/Fast Reactor/SMR), fuel cycle and waste management, operation and maintenance, training and education, supply to Chinese manufacturers and forgings, and most importantly, sales to the engineering and design companies. The location of your sales department should be(in order of importance): 1. Beijing (close to CNNC and SNPTC headquarters and CNPE), 2. Shenzhen (close to CGNPC), 3. Shanghai (close to the SNERDI), 4. Chengdu (close to NPIC). If you supply equipment to: 1. French based technology (M310/CPR1000/ACP1000), you should focus on Shenzhen and Beijing, 2. AP1000/ CAP1400, you should set up in Shanghai and Beijing, 3. SMR (ACP100/HTR) and reactor engineering, you should remain in Chengdu and Beijing.

If you provide nuclear safety expertise, the main cities (Beijing, Shanghai, Chengdu, Shenzhen and Suzhou) will be your playground. Other area, such as the supply of components to Chinese manufacturers is more complicated, as the industry is dispersed. Location of Chinese Manufacturers for safety related equipment:


10

Six Reasons Foreign Companies Fail in Chinese Market Location of Chinese Manufacturers that have design capabilities for safety related equipment:

Example: The valve industry. A company provides components, castings, design service, maintenance and reparation to valve manufacturers. This industry is split between nine provinces, with 34 companies manufacturing safety related valves. This market

Basic Cost for sales development per year:

Your sales department should be located in Shanghai to

Airfare tickets: 18,000 USD Hotel: 10,000 USD Entertainment (lunches and dinners with clients): 8,000-9,000

cover 73% of your market. The location in Shanghai would

USD

also let you offer positions to foreigners, or hire a Chinese

Office rent (100 sqm): 57,000 USD

sales representative with a strong background of engineering

Office supplies and other costs: 7,000 USD

covers more than 3,250 km.

(Shanghai Jiaotong University). Below: location of valve companies

Phase 2: “Action is the real measure of intelligence.� Napoleon Hill Organizing meetings in this industry is not complicated. The local manufacturers want to acquire your technology to become your competitors, the EPC wants your expertise to grow and support the domestic industry, and the utility wants a direct contact with you to reduce the price of your product and service. The time of Daya Bay, when the French companies even sold the fence outside the nuclear power plant at a very high price is over. The local procurement departments have strong experience in the assessment of the equipment value, and the competition between foreign companies is growing, in particular between European and US companies. Your advantage needs to be elsewhere: your brand and your network.

Prior to any action: Know when your client will buy In your action plan, it is essential to know when your client


11 prepares its budget. The design and engineering companies must get their budget

Six Reasons Foreign Companies Fail in Chinese Market tenders as more than half of the points are based on technical aspects.

approved from the government.

Your marketing intelligence on the ground

That means any type of expertise will require one year of

Your sales people have different ways to gather information

communication to get approved the year after. The budget is

on the competition (exhibition), the market (seminars) and the

prepared before the Chinese new-year (January-February).

buyers project (in their office).

The international tenders will determine how your sales team

The exhibitions are the best way to hunt. Not only can your

will work: if your company has HAF 604, you may need to

representative start hiring new employees on spot, but also

be listed by the procurement department of the EPC (CNPE/

gather information about the competition’s presence and their

SNPEC/CNPEC), which takes six months from the time you

actual projects. The marketing and sales departments of your

are accepted by the department.

competitors love to talk about their success: let them confess!

If your company does not have the HAF 604 certification, you

Two types of exhibition must be attended:

must create a dedicated team or externalize this obligation. The sales representative will focus on his relations with the procurement departments.

The first type is: China International Exhibition on the Nuclear Power Industry (last April in Shanghai), and the Nuclear Industry China (next April 2014 at the China National

Your relation with the procurement department

Convention Center in Beijing).

The procurement department of CNPE is the largest and most

The second type is: events organized by the China Council for

powerful units in the company. The relations you will develop

the Promotion of International Trade and the China Chamber

with the engineers that will evaluate your technology will help

of International Commerce (CCOIC), such as the China

you to convince the management to buy.

International Exhibition Center Group Corporation (CIEC).

Many companies focus either on the top management rather

The seminars split in two different categories:

than the “small hands” that assess the service and equipment.

The option for new comers: the events are organized by

A few years ago, a German company met with a large

marketing companies and show mostly each company trying

engineering company in Beijing to sell its expertise. The

to please some utilities. EPC is invited for the occasion.

meetings seemed to go well, and the vice-presidency level

The cost is around 2,500 USD and experienced sales

was opened to acquire the technology. One deputy director in

representatives will learn a little. This type of venue is

charge of the evaluation of this technology decided not to go

interesting for new entrants.

on for one reason: he was trained over the years by a French competitor, and did not trust the new comer. The procurement department did not give any bad message; it just did not follow up and played the game to ask more and more questions and was never satisfied by the answers. If your sales representative has acquired a strong support from the buyer you will have the opportunity to “help” the procurement department to define the specifications for the tenders.

The second category: events organized by the China Nuclear Energy Association (www.china-nea.cn) and the Chinese nuclear society (http://www.ns.org.cn). These seminars are focused on specific topics and many experts from the industry will remain with your sales during two days, which is enough time to expand your network. Finally the most important aspect is to have the information directly in the office of your client -he likes to play the competition and will educate your sales managers on his

For example, a company based in Shanghai, involved in

projects and needs. Most of the meetings are informal, on the

instrumentation and automation for the AP1000, used the

desk of your contact, during lunchtime, nothing different than

specifications of a company based in the mid-Atlantic region

what you already do in your country.

in the US (specialized in simulation solutions) for the tenders in the next AP1000. This company was guaranteed to win the

The technical meetings will be formal and indicate the


12

Six Reasons Foreign Companies Fail in Chinese Market expected results your company has to provide.

The labor law is a joke for any company that wants to apply a non-competition agreement or fire an employee for immoral violation of the company rules.

The corruption culture is permanent: you will face the dilemma of “Guanxi” versus integrity.

The diploma does not match your criteria When you want to hire a local salesperson, you expect to have someone who speaks fluent English, understands your technology and the sales process. Unless you hire somebody from your competitor, most of the resources from the industry that you will find useful come from the non-nuclear segment. The young sales people that seem cheap and hard working will lose your company a lot of time in training, communication and business negotiation. The main reason is the lack of interaction between three majors: Language/Engineering/Management and Business. All of these are compartmented. Language is the easiest aspect and can be integrated over the first year of work.

Phase 3: “We cannot solve our problems with the same level of thinking that created them.” Albert Einstein This phase is actually the most important to manage your sales, and must be taken into account first before you decide to open a sales office in China. We discussed above the general cost of hiring a manager, foreigner or Chinese, and the cost of business development. As a matter of fact, this cost is way below the reality but gives you an indication of the cost in this market. The hidden cost is the quality of the management. Recent surveys done by the American Chamber in China indicate that a poor labor force is the main problem above any other aspect, and that is the reality: compared to the quality and the integrity in western market, China offers the worst-case scenario: •

The academic system does not prepare to the market and you will expect too much even with a low standard.

Human resources is a real issue and the hiring process is a tragedy.

• •

However, when you hire an engineer, he understands your product, but will often remain focused on the technical aspect of the deal rather than the human relationship and the understanding of the needs of your prospect. This lack of emotional intelligence needs a long education and supervision from a foreigner or a returning Chinese who has work experience overseas. Another aspect is the lack of use of modern tools: the universities do not teach how to use Microsoft Office tools and modern marketing technology. Often the salesperson does not have any presentation skills and will mostly discuss your product rather than presenting the problems in the market and showing how your company can find solutions: “Market data crushes product data.” Chet Holmes. The marketing intelligence which is taught in Europe and North America, is not applied in China. Your sales team will meet face to face, and try to match a requirement. The analysis of the market trends, competition and macroeconomics is not used nor understood by individuals that are only focused on selling a product, whatever it is.

An amateurish hiring process

The market is moving fast, and opportunities occur all the time, the turnover is around two years.

The hiring process remains poor due to the lack of experienced

The reporting process faces the problem of “information is power” and your sales people do not like to share their network and report their meetings in detail.

experts in negotiation and sales skills. Therefore, when you find

professionals. This market does not offer many solid and reliable somebody that matches your basic requirements, you just jump.


13

Six Reasons Foreign Companies Fail in Chinese Market

The websites such as Zhaoping, 51job, ChinaHR are just a pool

will just leave, because smart business oriented persons in

of fresh graduates, you will lose your time, and time is the most

China are rare and they know it, and between the pressure

precious asset you need in this fast growing market.

from the family and being faithful to a company that cannot

The headhunters are just here to save your time during one year, they will hire back your guys, avoid them unless you need somebody for a short mission of 24 months. The resume is often exaggerated: Ask the candidate to give you the name of the dean of the school. As for the candidate’s previous experience, the HR department of the head of your company in China, almost never calls the previous employers, or the candidate will give the name of a friend.

match new demands, the salesperson will look after his own interests. A Chinese engineer from a major EPC company joined a German valve company. At first, the company was impressed by his knowledge of the procurement process and network but soon discovered this person did not want to sell to his former procurement department. The company decided to give him the chance to sell to other EPC’s in China. This person was traveling often, maybe too much, and his reports had a lack

You will give your technology to be sold in the most competing

of substance and contacts. This engineer left for another

market and your company does not call the previous employers

valve company after two years of “presence” for the German

and get a full assessment of the candidate? That seems

manufacturer. He joined a French competitor that belonged to

nonsense but that is the case.

a US group, and left that company after a few months to join

A few years ago, a company based in Beijing hired a returning Chinese specialized in instrumentation solutions. This company

another Swedish company specializing in heat exchangers. He left that the company after two years.

represented multinationals but failed to deliver any contract. The

Despite being a nice person, this engineer illustrates what you

company lost the representative contract and soon the sales

can see in the human resource market: people move fast, and they move fast with their network and your knowledge. You may benefit for a while from their “guanxi”, but if there is no reporting process and “pig-headed discipline” is implemented, you will lose your network in this market.

person left the party. He is now working for a major European multinational, and acts as a director of the procurement department. The manager of the previous company never received any call, email or letter to assess the value of the candidate.

Information is king but you won’t benefit from it

This happens all the time: managers do not check the past of the employees enough.

Chinese are not team players. The one child policy has clearly shaped in each family a little emperor who collects rather than shares. Information and “Guanxi” are rather personal and the reporting process does not follow the same rules as in western countries.

Pressure on the family = impact on your turnover Take into account the following elements: •

70% of Chinese women will marry a man who owns an apartment.

The cost of real estate never stops climbing, in particular in the cities where business and industry are booming (Beijing, Shanghai, Shenzhen, Dalian, Nanjing, Suzhou, Chongqing etc).

Cost of health due to pollution is rising; kids must take care of their parents lives. Social welfare is not adapted to the real cost of healthcare. China pushes GDP growth and middle class consumption.

Your sales team is only looking for one outcome: make more money to face the above fundamentals. Within two years, the employee will assess the market, his value, and the opportunities in your company, the openings for new entrants, and how much money he can get to move forward. If the pressure from management increases, the salesperson

If your operation manager is not a foreigner or a returning Chinese with strong commitment to your business, you will catch 80% of the meetings between your salesperson and the prospect. The 20% remaining are related to other business, which may not impact your own market, but the wealth of your employee. Your company must designate an independent employee who checks that every computer and information from the meeting is properly sent using a secured server to your headquarters. Information in China is not safe and “proprietary information” has no meaning here. If your sales team does apply the reporting with discipline, just “kill one to warn a hundred” as we say here. Recently a Belgian company fired a sales manager due to his poor results. A Chinese agent contacted this sales person. What were learned from the discussion are the sales person


Six Reasons Foreign Companies Fail in Chinese Market

14

would come back to his previous company with his expanded network and data from the company. This case leads to the lack of enforcement of the non-competing agreement.

In front of the court, you will have to compensate for firing the employee anyway; you must anticipate the damage and how much money you are ready to pay.

Non-Disclosure and Non-Competing Agreements: get them signed anyway.

Any shortcut in this market has its price tag

With a rising labor cost that matches what you pay in the US and Europe, the Chinese employees are expected to fulfill the same obligations as your national staff and to acknowledge the same enforcement of the labor law. On the first working day, your salesperson must sign these agreements, in Chinese and English. According to the Chinese labor law and the interpretation of the Supreme People’s Court, you are protected. In fact, your employee will leave, this will be to “go back to school”, take care of a “sick parent”, or whatever lame excuse he will find. In fact, the non-competing agreement cannot last more than two years and you will have to pay around 30% of your exemployee monthly salary during that period. Is this non-competing agreement respected? Rarely, because the nuclear field is wide: you can have sales person that works for a piping company and decides to join a valve factory. A major European engineering company based in Wuhan sees his staff leaving to work in the aerospace business. We have tens of cases in mind and one of them needs to be cited as this is typical example of the market: A few years ago, a European company hired an engineer who had a specific expertise in thermo-hydraulics. He left his previous US company and competitor for a while and was looking for a job. After two years, he left this European company to work for another business, still in the nuclear field, but not in the same area.

The violation of a company’s handbook and regulations has no effect. Even if your company asks the salesperson and any other employee to read, acknowledge and sign the company’s handbook and other regulations, this will not have any effect in the court of justice or arbitration. The way a judge will see the infringement is based on hard proof: if a fake invoice is given to the company, the employee must sign and admit it. If the employee has stolen company’s name cards and documentation, the company must prove it. If the employee is using the premises during holidays, weekends and the manager is not informed, the labor law will not accept this type of violation as sufficient matter to fire the employee

With tens of nuclear power plants in construction and the pressure to localize, foreign companies expand their presence and hope to export as much as possible before the transfer of technology to a Chinese partner. This pressure on your salesperson and the dreams from your shareholders to conquer the Chinese market may increase the risk of corruption, which can take any form. Transparency International has already done its job on the ranking. China is well known as a bad student despite government campaigns. The nuclear market is strategic and Kang Rixin was a famous example of how corruption can impact a major SOE. You have to keep in mind the salesperson is the frontline, takes your prospect for dinner, goes to expensive karaoke with officials and often promises more than expected to secure the business. The integrity of your salesperson is constantly challenged by the need to succeed fast. This happens often if your technology does not offer specific advantages. If your company is not recognized as a global top 3, you will be competing with the local industry that has no regard for business etiquette and global standards. A major South Korean company lost its sales in the AP1000 tenders for the last twelve months because the local competitors invested ten times the amount of “entertainment” to keep their market share. Despite the localization of the factory in the eastern part of China, this company is losing ground to competitors that do not have the same reliability in the market. What can you learn from this? Any market has its advantages and weaknesses, but only China has THE market of the century. Any company that works in the nuclear industry must take into account the Chinese business environment: first on the mainland, and soon overseas, such as Pakistan, Argentina, UK, Brazil, and South Africa to cite only a few. Your investment in China can be done either directly and you may face some of the issues raised above, or you can externalize through an agent who will have to deal with the same problems -for a much lower fee. Your company has to prepare a durable strategy, then act fast locally with a local and international team, and use a wellmanaged operation unit to protect your information, network and labor issue.


Index1 M310/ EPR/ ACP600/ AP1000 /

Waste ACP100 HTR VVER

CPR1000/ x

x

CAP1400 x x

x

x

x

x x x

CANDU

Fast Reactor

Fuel Cycle Forging x

x x

x

x

x

x

/ Operation

x

x

x x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x

x

x x x x

x x x x x x

x x x x x

x x x

x

x x

x x

x x x x

x x

x x

x

x

x

x

x

x

x x x

x

x

x x

x

x x x

x x x x

x x x x x x x x x x x

x

x

x

x

x

x

x

x

x

x

Six Reasons Foreign Companies Fail in Chinese Market

x x x

x

Manufacturers Maintenance Education EPC Management

15

Anhui Beijing Chongqing Fujian Gansu Guangdong Guangxi Guizhou Hainan Hebei Heilongjiang Henan Hubei Hunan Inner Mongolia Jiangsu Jiangxi Jilin Liaoning Shaanxi Shandong Shanghai Shanxi Sichuan Tianjin Zhejiang

1000

Training/


17

Interview of the Month

INTERVIEW Interview with Dr Song Jiupeng, R & D Department of Xiamen Honglu Tungsten Molybdenum Industry Co.,Ltd.

Interview with Craig Irish, Vice President of Sales and Marketing at AZZ-NLI


Interview of the Month

18

Interview with Dr

Song Jiupeng,

R & D Department of Xiamen Honglu Tungsten Molybdenum Industry Co.,Ltd.

Email:song.jiupeng@cxtc.com

DPS: Could you briefly introduce yourself? When did you join Xiamen Honglu Tungsten Molybdenum Industry Co.,Ltd and what are your responsibilities?

no efforts on the basic R&D of Tungsten (W) and molybdenum

Song Jiupeng: I am Song Jiupeng and I graduated from the

processing". We adhere to market-oriented quality, technological

University of Franche-ComtĂŠ in France. I received my Ph.D degree

progress and innovation as means to standardize enterprise

in engineering science in 2007 then worked at University of Twente

management and improve enterprise systems. We take "unity,

in the Netherlands as a postdoctoral researcher. In May 2009 I

struggle, innovation and efficiency" as our spirit of enterprise to

joined Xiamen Honglu Tungsten Molybdenum Industry Co., Ltd,

become an "international, leading and professional supplier of W,

where I served successively as R&D engineer, group leader and

Mo and other metallurgical products."

(Mo) materials, development of new products and exploration of new applications. We take advantage of the complete tungsten processing industry chain of "tungsten mines - melting - deep

R&D department manager. My R&D interest mainly focuses on innovative tungsten and molybdenum materials.

DPS: Could you give us a brief introduction to your company? Song Jiupeng:

DPS: What motivates your company to enter the nuclear power market? Song Jiupeng: Firstly, the lead-free shielding material for nuclear-use is the future development trend. Many European

Xiamen Honglu Tungsten Molybdenum

and American countries have begun to use tungsten shielding

Industry Co., Ltd was established in 1992 with registered capital

materials; Secondly, after Japan's Fukushima nuclear accident,

of RMB 209 million. It is a core member of public-listed company

the Japanese government has clearly abandoned using lead as

and one of the key high-tech enterprises of the National Torch

shielding for radioactive nuclear waste and contaminated materials.

Plan. We specialize in the production of high-quality tungsten/

Relevant institutions in China are seeking cooperation and mergers

molybdenum metallurgical products and downstream components.

to develop tungsten-based shielding materials and components,

We are mainly engaged in R & D and production of bars, rods, wire

and we are the only partner that they can choose; In addition, we

and deep-processing products that are related to refractory metals

have established cooperation relationships with domestic well-

such as tungsten and molybdenum. Our tungsten production scale

known institutes of the nuclear industry and French Atomic Energy

ranks the first in the world, with annual production capacity: 1500

Commission (CEA).

tons of crude tungsten wire, 12 billion meters of fine tungsten wire, 1,000 tons of coarse molybdenum wire,1 billion meters of fine molybdenum wire,65 million of magnetic control coil and 200 tons of deep processing products of tungsten and molybdenum. Our products are widely used in the applications of lighting,electric vacuum, semiconductors, high temperature furnaces, machining &welding, aerospace &automobile, 3C &medical, etc. We spare

DPS: Which projects will enter the nuclear power market and what are their applications in NPPs? Song Jiupeng: Products and applications that can enter the nuclear market are:


19

Tungsten powder filled polymer: Flexible shield pieces (planar and tubular) used for NPP plant maintenance and RCOH, protection clothing, etc.

Interview of the Month

DPS: Does your company have its own factory to produce this material? What’s your expected annual production?

Tungsten heavy alloy: used for shielding parts of the reactor core

Song Jiupeng: Yes, Xiamen Honglu is one member company

and shipping containers for radioactive substances. It possesses

of Xiamen Tungsten Co. Ltd, which is the world’s only company

certain mechanical properties so can replace the existing stainless

that possesses the whole industry chain from the tungsten mines to

steel and concrete sandwich structure.

the downstream products. We have a medium-sized experimental production line which can expand capacity according to market demand.

DPS: Compared to other companies, what’s your product innovation? Song Jiupeng: At

present, there is no such product in

China. Compared with foreign companies, we have the absolute advantage of processing tungsten powder and its sources. According to the demand of tungsten powder filled polymer, we develop a kind of tungsten powder that is especially suitable for this kind of material which allows a wide range of material Pure Tungsten Tube

DPS: Could you introduce tungsten powder filled polymer to us? Song Jiupeng: Tungsten powder filled polymer is a kind

density. In addition, the company has a special powder dispersion technology which can evenly distribute the tungsten powder in the polymer. The homogeneity of our product is better than that of a foreign company product, which is very important for the shielding performance of this kind of material.

of composite material made by dispersing tungsten powder into polymer matrix. According to the different loading of tungsten powder, its density can vary between 2.0 g/cm3and 14.0g/cm3or even higher. By selecting different polymer materials, such as rubber, thermoplastic elastomer, polyethylene and nylon, it can be manufactured into composite material capable of flexibility and certain mechanical properties. This kind of composite material can be formed into various shapes via extrusion or injection processes. It is mainly used to replace lead while being more environmentally friendly.

DPS: Can this kind of composite material be used to manufacturer addition-proof clothes? Song Jiupeng: Absolutely, large quantities of it have been used abroad.

Tungsten Polymer


Interview of the Month

20

DPS: How much is your company’s research and development spending?

promote it to the nuclear power industry.

Song Jiupeng: It accounts for more than 3% of sales (sales have been stable at 700-800 million RMB in recent years.) DPS: What’s the maximum radiation that can be withstood by your nuclear shielding material and the radiation cycle? Song Jiupeng: After being examined by the Ray Protective Equipment Protection Quality Monitoring Center of the Ministry of Health regarding the X-Ray shielding performance, that is to say the lead equivalent: Lead equivalent of tungsten filled polymer (TFP) sheet for X-ray (The density of TFP measured is 11.6 g/cm3) Thickness 0.25 (mm) Lead 0.26 equivalent (mm Pb)

0.35

0.5

1

2

3

0.36

0.48

1.15

2.43

3.31

Tungsten alloy container

TA research institute has performed Gamma ray shielding performance tests for our tungsten polymer materials with a density of 11.3g/cm3and thickness of 3mm. The test adopted two kinds of radiation source, the Cs137 and Co60. The results showed that the reduction of dose date is 23% and 18.5% for Cs 137 and Co 60 respectively. Further tests are not yet completed.

DPS: It’s known that tungsten molybdenum and its alloys are used as electrodes and welding electrodesused in electrical discharge machining and welding, and have been widely applied in all kinds of precision machinery manufacturing and welding technology. So are these products also considered for promoting in the nuclear power industry? What are their advantages? Song Jiupeng: The electrodes used for electrical discharge machining and welding are tungsten copper alloy, rather than

copper alloy; it possesses the advantages of high precision and long service life. Because this kind of product is highly matured and not supplied directly to nuclear power, there is no plan to

DPS: Have these nuclear power products been applied in South Korea? If not, why have you chosen to enter the Chinese nuclear power market first? Song Jiupeng: There is no product being promoted in Korea at present. What we are currently developing is the domestic, Japanese, European and US markets. DPS: Do you need to obtain any certificate or qualification for the nuclear power market? Would you please give some examples? Song Jiupeng: Yes, we do. At present, we are cooperating with professional domestic organizations for this. DPS: What kind of company are your nuclear power products aimed at? Song Jiupeng:The nuclear power operators at home and abroad and the nuclear power equipment manufacturers, etc. Currently, there is no cooperation order in the nuclear power industry. DPS: What’s your future development strategy in China? Song Jiupeng: This needs further negotiation but now we are planning how to enter the nuclear power industry.


21

Interview with Craig

Interview of the Month

Irish,

Vice President ďźŒ Sales and Marketing

at AZZ-NLI

Email:craig.irish@nuclearlogistics.com

DPS: AZZ-NLI is well known for the upgrade of commercial product to nuclear grade product. Can you tell me how the company started the business?

in countries such as Germany. At the time of the acquisition the

Craig Irish: The company started in early 1991, we have

DPS: Where did the need came from, the operators, the engineering companies or the manufacturers?

always been based in Fort Worth, Texas, and that is because the core group of people that started the company came from a company called Impel Engineering. It was an engineering company that did a lot of work in the nuclear industry back in the seventies, eighties and early nineties. The core group of people who finished working at the nuclear power plant called ComanchePeak, and when the ComanchePeak was being started, this group of people left and started NLI, Nuclear Logistics Incorporated. The goal at that time was to become a small engineering company and to start doing some equipment testing and supply as well.

nuclear industry was in the early stages of engineering analysis of any required equipment or operational changes.

Craig Irish: if you look from a high level, the need came from what happened at Three Mile Island in March 1979. The accident at TMI completely changed the nuclear industry in the United States. Many manufacturers left the nuclear industry after the Three Mile Island accident. It looked like at that time that the nuclear industry was going to die. In the United States, there were a hundred construction permits that were canceled, three or four power plants

DPS: Is NLI a private company? Craig Irish: Yes, from 1991 to June 1st, in 2012, it was a privately owned corporation; and on June 1st, 2012, AZZ purchased NLI. So now we are part of the AZZ affiliated companies.

that were completed but never started and several plants that took several extra years to complete in order to incorporate required modifications. So back in the early eighties, the nuclear industry in the United States looked like that it was going to fade away. Many of the equipment suppliers to the industry didn’t want to maintain

DPS: What was the main reason AZZ purchased NLI? Craig Irish: The main reason was that AZZ wanted to break

their nuclear quality assurance program, their nuclear engineering department and did not want to continue to freeze their product lines. They did not want to do all those nuclear industry specific

into the nuclear industry. AZZ is very well known in galvanization

activities because they did not have the business to support it. This

and customized electrical equipment, but they did not do much

forced many of the equipment manufacturers to leave the nuclear

work in the nuclear industry. They wanted to purchase NLI to get

industry. The nuclear industry was very concerned about how and

product offerings in the nuclear power industry.

where to get their safety-related equipment. As a result, companies

DPS: Was the acquisition discussed before Fukushima? Craig Irish: Things started in late 2011. At that time, the effects

of Fukushima had not really been felt in the nuclear industry, except

like NLI were formed to support the nuclear industry with specific types of equipment, qualification testing, and quality assurance requirements. NLI was really trying to fill the need in the industry for the supply of nuclear specific safety-related equipment.


Interview of the Month

22

us. They did not want to have a specific nuclear battery product line. GNB asked if we wanted to take it over and if we wanted to be responsible for the quality assurance, the qualification, the engineering, documentation, and the nuclear specific sales. It was a great opportunity and we jumped at it. That’s really a turning point in the history of this company because when we started our relationship with GNB, we became very focused on the supply of equipment unique to the nuclear industry. And every relationship we ever formed since has either been accompany that used to supply equipment to the nuclear industry directly or we feel they offer a very good product for the nuclear industry. As a result, some of our relationships come from companies where they used to be in the nuclear industry and then didn’t think their business will be maintained. Or we saw there were some companies or some products out there that we thought would be very good for the nuclear industry. Approximately one third of our relationships are from companies that used to deal with the industry and then decided they didn’t want to do directly any more, and close to two thirds of our relationships are from companies that we feel have a Battery Cell

really good product or service that could be used for the nuclear industry.

DPS: When was NLI created? Craig Irish: In April 1991,one comment, many companies

DPS: How many nuclear power plants do you serve in the US?

launched their business in the beginning of spring, such as

Craig Irish: We serve all 100 nuclear power plants in the US.

that became extremely successful were created in winter and

Microsoft on April 1975, or Apple in April 1976, Warner Bros in April 1923, or FedEx in April 1973. In winter the ideas come, in spring the ideas burgeon.

DPS: Does AZZ-NLI focus its activities only in Nuclear?

DPS: How do you manage your production line when you need to deal with 100 nuclear power plants? Craig Irish: It’s a reasonable and manageable flow of work.

Our volume of work increases 60 – 90 days before the outage

Craig Irish: Yes, we only do business in the commercial nuclear power industry and the nuclear department of energy (DOE) sites.

season. The plants have outages in the spring and fall each year.

AZZ in general is not a nuclear company but the NLI portion is

before the spring outage seasons. Other than that, the workflow is

nuclear.

pretty consistent. As we are only working in the nuclear industry, we

We are usually very busy sixty to ninety days before the fall and

have no problem to maintain the workflow.

DPS: Can you tell me how did you start your cooperation between your engineers and your vendors, what was your original business model? Craig Irish: Our Business model was really started from our first teaming relationship with the company called GNB Industrial

DPS: During the peak seasons in Spring and Fall, how to adapt your workflow? Craig Irish: Typically we extend our hours, we work two shifts, and or we work weekends, but with the same workforce. We have a workforce of about 210 people, we do not fluctuate according to

Battery. When the company started in 1991, the people at GNB

the outage season, and we just work extra shifts as a result of the

who no longer wanted to have nuclear specific battery approached

outage season.


23

DPS: Do you have a low turnover in AZZNLI? Craig Irish: We do have a low turnover; we grow 3 - 5% every year in our headcount.

DPS: You supply many equipment types. How do you define the type of employees you hire? Craig Irish: We always try to have previous nuclear industry experience and that is getting harder and harder to find. We have a good mix of seasoned nuclear industry professionals with new engineers fresh from college. That model seems to be working very well.

Interview of the Month

wanted to do this process first on non-safety related systems so that they can get the process refined to make sure there were no problems before they moved to safety related systems.

DPS: A recent article in 2012 written by H.M. Hasemian in Nuclear Engineering International, explains the concerns of the upgrade in the US for a market evaluated at 5,4 Billion USD. There are few suppliers and the cost is extremely high, what solutions could be brought in the US to balance the need of safety and cost control? Craig Irish: I think we do need to invest in digital equipment

wherever possible, because there are a lot of really good benefits to digital equipment. It has a longer life and it’s more accurate. In

DPS: Do you have an in-house training program? Craig-Irish: Almost everything is done internally, engineering

training, quality assurance training, production training. Once in a while, there will be an external consultant coming in to provide training, but that would be mostly for project management.

DPS: Let’s start with an example: According to David Howell, senior vice president, Nuclear Automation, Westinghouse, in the past recent years the I&C upgrade was mostly focused on non-safety system. So in your opinion, what was the major reason? Craig Irish:

In the United States, there’s a little bit of a difference than the nuclear industry in Europe or Asia. There is a nuclear specific quality assurance program that some of the other countries don’t have and the engineering associated with the design changes are very costly. So the quality, engineering and qualification will be quite different in United States. So when the industry first started looking at using digital equipment in the nuclear industry, it made sense to figure out that process in the non-safety equipment first. Doing design changes on safety-related equipment is very expensive in the United States. Just doing the

many cases it is better for seismic applications. Digital equipment is not good for radiation or high temperature applications. But in most cases, the digital equipment is a benefit and an improvement. The nuclear industry in the United States is very conservative. The industry does not like to move away from what they are used to. The existing fleet of plants in the United States is pretty much analog-based equipment or very early digital equipment. They are used to that and understand the failure modes, they understand how to maintain, how to refurbish and repair. As a result the industry is slow to introduce digital equipment. The industry has a tendency to stay with the devil they know even though the analog equipment they use is becoming obsolete. It’s hard to maintain and it’s not accurate as the digital counterpart. Analog equipment normally requires lot maintenance. The industry also hesitates to do the design change since they do not understand what new failure modes could be introduced by the digital equipment. As a result, the US nuclear industry has been very slow to migrate to digital equipment.

DPS: But moving to the digital upgrade could be mandatory, you cannot escape from this step… Craig Irish: Correct.

design change paperwork, the regulatory impact, the training, the technical specifications and all other paper work is very expensive. The typical rule of thumb in the industry is that about half million USD of investment is needed to do a design change on safetyrelated equipment. Doing the digital upgrade or putting the digital equipment into the safety related application where they were once analog equipment could be very expensive. So the nuclear industry

DPS: In your opinion does the increased cost of the digital upgrade help the safety and reliability of the plant? Craig Irish: Yes, The existing equipment if you look at the US fleet, most of it was built in the late Seventies and a couple in the


Interview of the Month

24

early of eighties, so they have very old equipment, even though you have a power plant that started operation, for example in 1975, it would be built with late sixties early seventies nuclear safety equipment. So it’s very difficult to maintain the reliability of the equipment that is thirty plus years old. I think the US nuclear industry and the nuclear industry globally need to use digital equipment. There are a lot of really good benefits when using digital equipment. Obviously the upgrade needs to be done carefully and you need to control things such as

DPS: Regarding the assessment of the cost, have you been involved in some cases to advise the nuclear power plant about what to be the best for them? Craig Irish: Yes, we’ve been involved with helping with costbenefit analysis on equipment like reversed engineered power supply and electronic modules. We have also helped with cost analysis to

cyber security and you need to consider new failure modes. All of

put in digital equipment, and while taking into account the design

the upgrade actions need to be done correctly but the benefits far

change and additional qualifications such as software Verification and

outweigh the negatives of not doing it.

Validation, and electro-magnetic interference and radio frequency interference (EMI/RFI), so we have to consider both sides of the coin.

DPS: So you would not recommend reverse engineering the old analog and supply upgraded analog system? Craig Irish: Well we do focus a lot on reverse engineering.

We also do a lot on refurbishment of electronic equipment and we also supply the replacement for electronic equipment using digital technology. We cover all three angles: reverse engineering

DPS: When you look at companies such as Invensys or Areva, their main goal is to sell their latest product and the upgrade. Would you consider NLI as the alternative solution to the mandatory upgrade?

refurbishment and replacement. I think the nuclear industry has

Craig Irish: Yes, as a company, when we meet with our clients,

done a pretty good job in reverse engineering various equipment

we say to them we can help you with reverse engineering, the existing

types so far. They’ve reversed engineering simple things like power

electronic analog equipment or we can help you with the digital

supplies, electronic modules and have even reverse engineered

upgrade, we sit with them and look at the pros and cons, with the

more complex things like parts of the reactor protection system, nuclear instrumentation and so on. I believe the industry did a really good job and will continue to do reverse engineering, but that gets expensive and can take a long time. It comes to the point of:”what is

cost associated of both options and help them select the best for their specific situation. We help them for either solution or sometimes the client just decides to continue to refurbish the equipment, we would

cost-effective? to do the reverse engineering or to upgrade to digital

then offer the refurbishment or repair. Every plant has a different need;

equipment. A lot plants started to look at that cost-benefit analysis; and

we have not seen a particular trend yet.

some of them decided to go with digital equipment and some of them will decide to stay with reverse engineering old equipment.

DPS: During the operational lifetime of a nuclear power plant, do you know what is the share or percentage of the maintenance cost dedicated to I& C? Craig Irish: I don’t have the exact numbers, but I know that the plants have spent a lot of money on refurbishing the original I & C equipment and the original electronic models. Some plants have put in pretty good in-house refurbishment and repair capabilities. They can do the refurbishment themselves. Other plants rely heavily on original equipment manufacturers such as GE, Westinghouse or Areva and then other plants work with companies like NLI. Everybody is a little

Impeller

bit different. I would guess the instrumentation maintenance cost $70 million USD per year.


25

Interview of the Month

DPS: Besides the I&C, the mechanical market represents a third of the upgrade business in a NPP. Let's take as example the pump market. A few companies are able to invest in mechanical design, material science and hydraulic engineering. Is the North American market in the hand of a few companies or do you see more competition going into this segment?

industry is the age of the original equipment, so when you go to do

Craig Irish: There are only a few companies in the US nuclear

very beginning. You try to repair a pump but don’t know the exact

repairs or refurbishment of the equipment you don’t often have all the technical information you would like to have. So when you try to refurbish the pump you don’t have the original drawing, or the original performance data we would like to have in order to perform the repair correctly. So during the repair, the specific reverse engineering of everything in the nuclear industry, pumps included, you have to rely on the typical information you should know at the

industry that will offer complete repair and refurbishment of pumps.

dimension of the impeller, now you have to reverse engineer the

There are two or three of the original equipment manufacturers

impeller and have some engineering expertise to know what other

(OEM) that offer pump repair services, and there are two or three

dimensions should be machined to have the correct performance.

of the non-original equipment manufacturers that offer repair service. For the longest time, power plants either would not do any repair by themselves for their pumps or they would go back to the original manufacturer. Early on the nuclear industry did not have good experiences with upgrading some pumps as part of the refurbishment. Companies were making changes to the original impeller, changes to the metallurgy and they did not have the best results. But now companies are better at looking at everything involved, such as the water chemistry, the pressure-involved the head involved, and the flow rate required. Now companies do a much better job when they do upgrading as part of the refurbishment of the pumps.

DPS: Since the Fukushima accident, many equipment types face more stringent qualification. Can you tell me what changed in the following requirements: seismic testing, thermal aging, Electro-Magnetic and Radio-Frequency Interference (EMI / RFI) qualification testing, Loss of Coolant Accident testing, radiation testing and Software Verification & Validation (V&V)? Craig Irish: There has been a lot lessons learned from the accident at Fukushima. Fukushima forced the industry to consider what would happen if a beyond design-basis event happen. What happened at the Fukushima Plant was the seismic earthquake

DPS: The repair and maintenance business in the United States is significant for NLI…. Craig Irish:

Yes, it’s growing all the time because like we have discussed, probably, four to five years ago, most people would either just do very simple repairs like changing bearings or changing an impeller. Now companies will take care of the erosion issue and are willing to do much more so the market is growing all the time.

for. This forced the nuclear plants in the United States to look at how they could handle a beyond design-basis event. This has forced nuclear suppliers to qualify equipment to much higher seismic levels. We will be doing much more seismic testing, and more seismic testing at higher levels. Also new harsh environment qualifications, high temperature and radiation, specific incontainment type radiation and high temperature. We are doing more and more harsh environment qualification programs. And

DPS: Regarding the repair of pump, what are the main problems, for example, some issues related to the understanding the aging of material? Do you have to take into account the radiation issue when you do with the repairing? What makes the maintenance preparation a specific business? Craig Irish:

and the resultant tsunami was much higher than it was designed

The biggest problem of anything in nuclear

then probably the biggest thing is flooding. There are a lot more equipment that now proposed to be submerged, there are certain valves, actuators and other pieces of equipment that have to now operate submerged under thirty to forty feet of water (9-12 meters) for a long duration. We now do a lot more testing to make sure the equipment will work correctly when it’s submerged.


Interview of the Month

26

considered as a passive design. The early fleet of reactors was not considered passive. They required active cooling, forced cooling. So you need diesels in order to keep your core cool whereas the AP1000 is a passive design so it does not require forced cooling in order to keep the core cool. Therefore the diesels on theAP1000 were not considered as safety related, it is a significantly different approach than the existing fleet of reactors. The AP1000 is a passive design that will probably be the only plant built in United States for the foreseeable future because they don’t require forced cooling, they don’t require safety diesels but they still require very large battery banks, they still require large DC power, don’t get me wrong, but it is a much different situation than the existing fleet of reactors that requires forced cooling. Digital Meter

DPS: The utility or the NRC required all those changes? Craig Irish: They are required by the licensee but enforced by

the NRC.

DPS: The Fukushima accident showed clearly the lack of standby power. What were the measures taken in the US since 2011, and globally have you see any change regarding the construction of house electrical infrastructure such as switchgear and even station blackout (SBO) diesel generators? Craig Irish: The biggest lesson learned from Fukushima was

the diesels were not hardened, for example the fuel delivery system was exposed. So all the nuclear power plants in United States had to check to make sure not only the diesel engines and generators were in the secure location above flood plain and seismic qualified buildings, but also where the fuel was, where the fuel tank were located in the ground or outside . Then the fuel delivery system was it hardened, were they able to handle seismic event, were they be able to handle flooding, submerging or tsunami. The nuclear plants have to go back and look at that in addition to make sure the existing engine and generator were acceptable. Did they need to add a station blackout diesel (SBO) to make sure that the existing generator can handle the loads and also handle the lighting for buildings and office space, non-critical equipment that still needs to have power? A lot of plants are still considering putting station blackout diesels; some of them have already done that.

DPS: If you look at the Chinese nuclear market, 50% of the nuclear power plants are using the AP1000 in which there are no requirements for the emergency diesel generator. So would you say that the Chinese NPP’s should have SBO for all AP1000s? What’s your advice for them? Craig Irish:

The AP1000 is a different situation since they are

DPS: So you are telling us the AP1000 design has upgraded the nuclear power plant safety, and can be considered as a third generation technology nuclear power plant. Craig Irish: Yes, without a doubt, the AP1000 is a passive design; it has much less reliance on safety related equipment; there are still safety related equipment, such as DC switchgear, Battery banks, DC motor control centers, pumps, valves, but less than the previous version of reactors. DPS: From your point, do you see any specific advantage to the EPR? Craig Irish: Well, the Areva EPR is just a very large version of Westinghouse PWR. But that’s a generation before the AP1000, so it still requires forced cooling, still requires large diesels and there are much more active components. So the EPR of Areva, or US EPR and the GEABWR are all examples of the plants that will need to make equipment changes as a result of the lessons learned from Fukushima. Otherwise, I find it hard to believe that the US government and public will be very anxious to have that type of reactors installed in United States when one is considered as passive. So I think the Areva design, GE ABWR design, the Mitsubishi design will need to make changes in their style of reactor that can make them passive, and less reliant on active cooling.

DPS: Up to now most of the actual NPPs in China are based on French nuclear power plants, which raise the question of product qualification and supply from companies that either lost their know-how, or just vanished over time. Commercial Grade Dedication became an essential process of the nuclear industry, have you seen such process being implemented in China? Craig Irish: I think China will have to. In the United States, like I said previously there was a quality assurance program that was unique to the nuclear industry. The quality program is called


27

Interview of the Month

10 CFR50 Appendix B, Part 21and ASME NQA-1. It is a quality

different types of technologies; they all have different quality assurance

assurance program that is unique to the nuclear industry in the United

program requirements. They probably have a slightly different supply

States and other countries that adopted this program. In Europe,

chain base. Now China has the French reactor, Canadian reactor,

Germany, France and Switzerland, they allow quality programs like

Russian reactor and now US reactor and China is going to build its

ISO 9001orother quality programs that were not necessarily nuclear specific. In the United States, that is not allowed in the nuclear industry for safety-related equipment. So in the United States, we absolutely needed to use a process that is called “Dedication” in order to take

own reactors. I think the real difficulty in China is not the distance between provinces, but the biggest issue is that the different types of technologies that have already been in China. They have different

commercial grade equipment and upgrade to safety-related use. I

types of technologies, supplier bases, quality requirements, and

think that same issue is going to happen in China and other locations

standard qualifications. I think that will be the much bigger challenge

where the quality isn’t good enough. So dedication is a way to assure

for the Chinese nuclear fleet as it gets bigger.

the quality of the equipment is suitable for safety-related applications. Given the supply base for China, and given it is buying from many countries as possible, I think dedication will probably be employed in China as well.

DPS: Were the requirements from the 10 CFR50 Appendix B Part 21 more stringent after the Three Mile Island accident? Craig Irish: Those requirements were actually prior to Three

Mile Island (TMI) and obviously they become stronger, and the NRC became stronger after TMI. The requirements have been there for a long time and became stronger over the years as the industry learned lessons over various situations.

DPS: In the US, you have GE, Babcock and Wilcox, and Westinghouse, but they are all using the same quality assurance program? Craig Irish: in the United States they all required to have the same

quality assurance and all the same regulatory agency. Basically, you have two different types of reactors: GE Boiled Water Reactor (BWR) and the Pressurized Water Reactor (PWR) built by Combustion Engineering, Westinghouse and Babcock & Wilcox. They are all under the same quality requirements, and use similar equipment, so they have a very similar supply chain. Don’t get me wrong, that was difficult enough for the US regulatory agency, and clients and engineering firms. China will also have to face differences in language, culture, technology and quality requirements.

DPS: CGNPC and CNNC had nuclear power plants, now both of them have a fleet, extended from Guangdong to Liaoning. What major impacts both will face for the operation and maintenance in such distance?

DPS: Can you let us know which type of equipment you supplied to the AP1000 in China?

Craig Irish: I believe that the supply chain in the nuclear industry

Craig

is very important. So knowing your suppliers, knowing what kind of

pressure transmitter and differential pressure transmitter, harsh

quality assurance program they use, controlling your suppliers is

environmentally qualified, safety-related for in-containment for

extremely important. I believe China would absolutely have to do the

one of the projects. For the other project it was safety-related level

same thing when they have a fleet as large as China is hoping to have.

DPS: Let me take a specific example: the distance from South Texas Project (Texas) to Seabrook NPP (New Hampshire) is more or less the same between Changjiang (Hainan) to Hongyanhe (Liaoning). Do you foresee management issue due to large distance? Craig Irish: I don’t think distance will be an issue in China. I think the issue is that several countries built reactors in China. They all have

Irish: It was specialized instrumentation, in-containment

instrumentation for in containment flood up and the third project was for safety related and ASME Section III level instrumentation for the core markup tank.NLI supplied specialized safety-related custom manufactured instrumentation.

DPS: Have you been in contact with the engineering companies and with their procurement departments to expand your activities for the new AP1000? Craig Irish: Yes, we are helping them with electrical distribution,


Interview of the Month

28

with batteries, with specialized instrumentation, with valves and more equipment than for the first AP1000.

DPS: You are also a specialist for flooding barriers. Are there any new barriers in the AP1000 built in Sanmen and Haiyang NPP? Craig Irish: Not exactly, there’s been discussion on what type of doors and discussions on flood zones, but a lot of new plant

construction learned from the existing fleet and they don’t put critical equipment in low elevations, they don’t even put buildings themselves in certain flood zones. So most of the flood barriers that we are helping the industry with are to upgrade the existing plants that did not pay attention very well to flood zones or over the years the flood zones have changed and now they have a flood issue that they didn’t have before.

DPS: China acquired the AP1000 technology and works actively on the new generation known as the CAP1400 to be able to export overseas. This technology will also require a high level of localization. Despite the localization rate for the AP1000 and the CAP1400 is still low for safety related equipment, there is a growing trend. Do you have any advice to balance the need of cost control, self-reliance, and control of the supply chain? Craig Irish: My advice for the Chinese Regulatory Authority is to learn from what happened in United States, for example, Dedication. The Dedication activity was originally developed to help plants to get their spare parts since most of the manufactures had left the nuclear industry. Dedication allowed us to use commercial grade equipment upgraded for use in safety-related applications. China should learn from that and China should learn from recent counterfeit and fraudulent parts issue that South Korea went through. This will help China to avoid such similar traps and problems. DPS: What type of equipment change have you seen as a result of the Fukushima accident?

Power Supply

DPS: Most of the new nuclear power plants were started being built in 2007 and 2008, have they taken into account this flooding impacts from Fukushima. Have you done any assessment on the Chinese sites, which have been chosen from 2007 to 2011? Do you foresee problems for these sites or the flooding impact was already taken into account? Craig Irish: Much like the United States, the China plants have to look at beyond design-basis issues, so all the reactors and plants that are on the coast line, or near a lake or a large river need to look at the fifty or one hundred year flood requirements. They have to look at different scenarios. They are all supposed to be looking at that and putting together coping studies that either they say they have a high enough wall, or they are elevated enough above the flood plain or they have to start making equipment modifications. Most of the plants are doing that analysis now, over the next six to twelve months will learn which ones need, flood barriers, move equipment, buildings, or put in a secondary building. That information is being looked at now by the engineering companies and the plants and will not become available for another six months.   

Craig Irish: So far, The United States has had very little mandatory plant permanent equipment changes required to date. The first one was continuous level monitoring of spent fuel pool. Now there are requirements for harden vent valves and filtering those are the two main mandatory permanent plant equipment upgrades required to date. Most of the other changes were engineering related. There has been much other equipment called FLEX equipment which was also lessons learned from Fukushima. Beside these categories, there has been very little mandatory equipment upgrades to date. The plants have looked at other things such as putting Station Blackout Diesels, portable generators and things like that, but the NRC has not mandated that yet.  DPS: Did you have the feeling in China that these requirements were taken into consideration in the design and procurement process? Craig Irish: Yes and as far as I know, they have been implemented in the global nuclear industry, specifically on the GE BWR’s.  

Oconee Switchgear 1920


Hamon Thermal

www.hamon.com Natural draft cooling towers: more than 300 references worldwide.

Hamon, World Leader in Engineering and Contracting, active since 1904. The Group has an unrivalled experience in development and implementation of cooling technologies for the power sector and other energy intensive industries. With numerous references in each cooling tower type, it has been confronted to any type of application. Hamon active R&D gives you the assurance of a state-of-the-art product.

Hamon, the reliable choice. HAMON THERMAL EUROPE (FR) Perspective Seine, B창timent C 84, rue Charles Michels 93284 Saint-Denis, France Tel. +33 1 55 87 78 78 info.htef@hamon.com HAMON THERMAL AND ENVIRONMENTAL TECHNOLOGY (JIAXING) COMPANY LTD. 1st Floor of Building No.7, No.1369, South City Road 314000 Jiaxing, Zhejiang, China Tel. +86 573 8261 1908,1918 info@hamonjiaxing.com

Integrated solutions for a clean environment


HAF Regulations

30

HAF 401 Regulations


31

HAF Regulations

HAF 401 Code on Safety Supervision and ControlFor Radioactive Wastes (Promulgated by NNSA on November 5, 1997)

Introduction 1.1. Purpose This Code defines the objectives and principles of the control of radioactive wastes, and safety supervision responsibility of control of radioactive wastes.

1.2. Scope This Code is applicable to the safety management and control of the whole process from the production to their disposal of

( 3 ) T h e p r o t e c t i o n b e y o n d n a t i o n a l b o u n d a r y. T h e management of radioactive wastes must take into consideration of impacts on human health and environment beyond national boundary; (4) The protection for the future generations. The management of radioactive wastes must ensure that the predicted health effects on future generations will not exceed the present acceptable levels; (5) The burden on the future generations. The management of radioactive wastes must ensure that no undue burden will be caused to the future generations;

radioactive wastes, which mainly concerns the solid, liquid

(6) Adherence to the national laws, codes and regulations.

and gaseous radioactive wastes generated during nuclear

The management of radioactive wastes must adhere to the

fuel cycle. This code can also be referenced for the safety

national laws, codes and criteria, including clear division

management of radioactive wastes generated from the

of responsibility and defined independent supervision

production and application of radioisotopes.

management functions;

The Objectives and Principles for Control Of Radioactive Wastes 2.1. Management Objectives The objective of radioactive waste management is to protect human health and the environment now and in future, and not to cause undue burden for future generations.

2.2. Management Principles In order to realize the above-mentioned objectives, the control and management of radioactive wastes should adhere to the following principles: (l) To protect the environment. The management of radioactive wastes must ensure that effects on human health will not exceed acceptable level; (2) To protect the environment. The management of radioactive wastes must ensure that effects on the environment will not exceed acceptable level;

(7) To control the production of radioactive wastes. The production of radioactive wastes must be kept as minimal as practically achievable; (8) The interdependent relationship between the production and control of radioactive wastes. The dependent relationships among various steps of production and control of radioactive wastes must be appropriately considered; (9) Facility safety. The safety of facilities for radioactive waste management must be maintained throughout their life time.

Safety Supervision Management Responsibility Of Radioactive Wastes 3.1. Responsibility of National Nuclear Safety Authority (1) Stipulation of radioactive waste management codes, guides and technical documents for relevant nuclear facilities (including radwaste repository, same for provisions below);


HAF Regulations

32

(2) The assessment of safety analysis report, related documents and operation plans, etc. Submitted by operating organizations according to the requirement of this Code;

support the need of operation. 3.2.3. The operating units must keep as low as practically achievable the production of radioactive wastes by adopting

(3) The assessment of compliance condition to the related

the appropriate design, operation, maintenance and

codes and criteria of radioactive waste treatment and disposal

decommissioning of nuclear facilities, and must appropriately

facilities through reviews of design, construction, operation as well as personnel qualification and records;

take into consideration of interdependent relationships among various steps of the production and management of

(4) To require remedial and corrective measures for items not

radioactive wastes. The operating units must also ensure

compliance with codes and criteria.

that treatment and conditioning of radioactive wastes will

3.2. Responsibility of Nuclear Facility Operating Organizations 3.2.1. The operating units of nuclear facilities must abide by the national laws, codes and regulations. 3.2.2. The operating units should take the safety responsibility of radioactive waste management activities, it must: (1) Timely finish pre-stage work prior to the radioactive waste disposal; (2) Perform safety and environment impact assessment; (3) Ensure adequate protection of working personnel, general public and the environment; (4) Ensure that appropriate personnel, equipments, facilities, training and operating procedures will be assigned to every step of safety management of radioactive wastes; (5) Establish and implement the quality assurance programs for the production, pr-treatment, treatment, handling and conditioning, storage and disposal of radioactive wastes; (6) Establish and maintain records concerning the production, pre-treatment, treatment, conditioning, storage and disposal of radioactive wastes, including information related to the inventory of radioactive wastes; (7) Provide supervision and control as required by the relevant departments; (8) Collect, analyze and apply operating experiences to ensure the continuous improvement of safety; (9) Carry out appropriate research and development work to

be consistent with the planned storage manner and enable radwastes to be finally disposed of when they are retrieved from storage within defined storage duration. 3.2.4. The operating unit is responsible for determining the destination of its radioactive wastes within appropriate time frame according to the requirements of laws and codes of regulations, with the approval of the national nuclear safety authority. The operating unit can, on its own treat, condition and store radioactive wastes in an approved manner or transfer to another operating unit for treatment, conditioning and storage. The effluents can be discharged into the environment only upon approval.

Important Aspects of Safety Management Of Radioactive Wastes 4.1. The Production & Management of Radioactive Wastes 4.1.1. There exist interdependent relationships among all steps of the production and management of radioactive wastes, therefore, the working out of the plan for radioactive waste management activities should consider the following: (1) the amount of radioactivity (activity and Volume) should be kept as Iow as reasonably achievable (ALARA); (2) the safety requirements for various steps of radioactive waste management. 4.1.2. The preparation of radioactive waste management plan should take into consideration of the needs and all safety issues. For certain specific steps of radioactive waste management, decisions should not be made in an isolated manner, which otherwise could hamper the selection of


33

schemes or affect the other steps of radwaste management. 4.1.3. The exchanges and dialogues should be carried out as the radioactive waste management plan is being formulated.

4.2. Safety Analysis and Environmental Impact Assessment 4.2.1. The operating unit should perform assessments for the new radioactive waste management facilities or' practices and the major modification to existing facilities or practices in accordance with the codes and criteria, prepare safety analysis report and environment impact assessment report

HAF Regulations

performed only with the pre-defined model that should be established on the basis of experiment data.

4.3. Safety Culture 4.3.1. The safety culture requires that the persons or organizations engaging radwaste management should have the dedication spirit ancl the sense of responsibility. The leaders and organizations in charge of radioactive waste management activities should establish and implement systems and procedures favorable for the promotion of safety culture.

and then submits to the National Nuclear Safety Administration

4 . 3 . 2 . T h e h i g h l e v e l m a n a g e m e n t s t a ff o f v a r i o u s

and Environment Protection Administration respectively.

organizations should take the responsibility of enhancing

4.2.2. The reports should analyze and assess the radiation safety and non-radiation safety during normal operation, as well as the potential effects of events and accidents. Such assessment should demonstrate the long-term safety based on the principle defined in provision 2.2 if necessary.

safety awareness. AIl organizations engaging radioactive waste management should stipulate and implement safetyrelated regulations and reviewing procedures so as to ensure the establishment and use of correct methods, formation and maintenance of safety awareness. They should also stipulate and implement the personnel training programs

4.2.3. The assessment for normal operation condition should

that emphasize the importance of safety and requirement of

analyze and evaluate the radiation safety effects and non-

individual behaviors.

radiation safety effects of various steps of radioactive waste management on personnel, general public and the environment. Such assessment should be conducted while taking the facility design and process as the basis. 4.2.4. The non-radiation effects that radwaste management facilities may potentially cause to human health and the environment (soil, water, air and non-human living groups)

4.4. Quality Assurance 4.4.1. The quality assurance should provide necessary confidence for the protection of human health and environment by taking adequate measures. 4.4.2. The operating units should provide adequate independence to the quality assurance functionary; clearly

and natural resources should be assessed addressed and

specify the responsibility and authorization of concerned

analyzed.

personnel and organizations. The quality assurance is

4.2.5. The reports should evaluate the potential consequences of internal and external events (such events may lead to accidents) and the effects of such events on working personnel, general public and the environment. Such assessment should utilize suitable assessment model and the experiment data available. 4.2.6. The reports should evaluate the long-term performance of the disposal facilities, and pay due consideration to the concentration, physical and chemical nature of radionuclides

applicable to all radioactive waste management activities, especially the segments important to safety. The quality assurance program should in particular ensure that the package of radioactive wastes satisfy the acceptance requirements. 4.4.3. The quality assurance National Nuclear Safety Authority, under supervision and inspection.

4.5. Research and Development

from radwaste that may be segregated as well as the

4.5.1. The research and development work should be carried

effectiveness of the barrier provided by disposal facilities.

out based on the scale and requirements of radioactive waste

The effectiveness of the natural barrier should be determined

management plan.

through on-site investigations. Such assessment can be


HAF Regulations

34

4.5.2. In case that the long-term performance of one systm

The operating personnel should acquire the necessary specific

(e.g. disposal system) can not be demonstrated through direct

technical knowledge. The appropriate personnel training plan

observation, the research and development work should

should be worked out to ensure that personnel acquire the

be conducted to obtain necessary information or obtain these information through the participation of international cooperation. 4.5.3. The operating units and relevant departments should pay due consideration to the experiences and lessons learned from the domestic or foreign practices in an effort to determine whether it is necessary to upgrade equipments, processes and personnel training and change the safety requirements.

4.6 Documents and Records 4.6.1. The operating units should keep in good condition its documents and records according to the requirements of codes

necessary competence and foster the quality emphasizing the quality and safety, and make personnel are adapted to changes of relevant technologies and regulations. This includes the trainings provided by the equipment suppliers. The personnel should be examined and given qualification certificate after the training.

4.8. Emerging Planning In radioactive waste management activities, the emergency plan should be provided and necessary provisions for coping with accidents should be prepared if potential accidents which pose dangers to human health and environment exist.

4.9. The Organized Control

and its own needs. The filing and saving of these documents

4.9.1. The radioactive wastes should be timely treated,

and records should facilitate the look up and understanding

conditioned, handled and prepared so that its safety will not

of persons who are not directly involved in this activity, and facilitate computer-based management.

4.6.2. The documents and records should include: (1)The storage inventory, origin, storage place, physical and chemical nature of radioactive wastes. A sheet that records the transfer of radioactive wastes out of facility should be provided if necessary; (2) The site plans map, engineering drawings, technical specifications and process descriptions; (3) Quality assurance and quality control activity data; (4) Safety analysis and environment impact assessment methods and computer codes;

be dependent on the arrangement of long-term management as far as possible. However, the organized control with appropriate duration is needed after repository is closed, so as to: (1) prevent people from entering the repository; (2) prevent the removal and disturbance of radwastes; (3) monitor the effectiveness and performance of repository as per design criteria; (4) implement necessary remedial actions. Such control may either be active (e.g. continuous monitoring, period sections, maintenance, control of person's access, etc.) or passive (e.g. permanent symbol, land utilization limitation). 4.9.2. The maximum duration of the organized control should be determined by the national regulatory bodies.

(5) Safety analysis results and environment assessment results; (6) Effluents and environment monitoring results; (7) Radioactive waste package identification tag; (8) Data related with the closure of disposal facilities.

4.7. Personnel Training and Qualification

Definitions Accident Any unexpected accidental incidents including operation errors, equipment failures or other unexpected events, whose consequences or potential consequences should not be ignored from the prevention or safety viewpoints.


35

Authorization The written permissions which the regulatory organization grants to one operating unit or one batch of operating units for carrying out particular activities.

Closure (permanent) This is the activity on disposal facilities at the end of service life of such facilities. Generally the near surface disposal facilities are covered when disposal of radwastes is completed; while the access tunnel of geological repository would be refilled and/or confined, terminating all activities of related auxiliary facilities and permanently closing the repository.

Decommissioning Decommissioning is the activity carried out after the nuclear facilities service life expires, with adequate consideration being paid to the protection of health of working personnel and public, and the environment. The ultimate objective of decommissioning is the unrestricted opening or use. The timeframe for realizing this goal may be several years or hundreds of year. According to the national laws and regulatory requirements, while this nuclear facility is merged into a new or existing facility, or even if the site in which it is located is still under the control of regulatory organization or administrative

HAF Regulations

Nuclear-Fuel Cycle This is a related industrial process for nuclear power generation, which includes the mining of uranium and thorium, water Ieaching, fabrication and enrichment; fuel element fabrication, reactor operation; nuclear fuel reprocessing; decommissioning as well as all radwaste management activities associated with the above activities, and research &development work.

Incident The incidents or abnormal phenomena are those that do not directly orimmediately affect safety but may lead to the later reevaluation of safetymeasures.

Institutional Control The institutional control refers to the authorized agency or organization designated according to the national law exercises control over the radwastesite (e.g. disposal site). This control may either be active (surveillance, monitoring, repairing, etc.) or passive (to limit land uses). This is also one off actors to be considered in the design of nuclear facilities (e.g. near surface disposal facilities).

License

organization, this nuclear facility can still be regarded as

The license is the official legal effective document issued

decommissioned facility. This definition is not applicable to the

by regulatory body, which allows the site selection, design,

closure of uranium mine; water leaching plant and radwaste

construction, commissioning, operation, decommissioning and

disposal site.

closure of nuclear facilities.

Exempted Waste

Monitoring

As far as the radwaste management is concerned, this

The monitoring are the measurements of radioactive or non-

kind of radwasteis exempted from regulatory control by

radioactive parameters to be used for assessing or control

regulatory body, since its radioactive hazard is very minimal.

irradiation, and the interpretation of such measurements. The

The exemption level should be determined based on the

monitoring can be either continuous or non-continuous.

concentration of and/or gross activity of radioactivity, the types, chemical/physical properties, inventory or volume of radwaste that may be included.

Geological Disposal The engineered barriers and natural barriers are combined together toform an isolation system which confines radwastes in geologically stable rock stratum at a depth up to several hundred meters. The typical application of geological disposal is the disposal of long-lived and high level radwastes.

Operator (or operating organization) In waste management, the organizations (and contractors) engaging the selection and investigation of suitability of one nuclear facility site, and/or undertaking the design, construction, commissioning, operation and decommissioning.

Predisposal This is referred to various steps prior to the disposal of


HAF Regulations

36

radioactive wastes, including pretreatment, treatment and

management, provides common terms and knowledge for

conditioning, etc. of the radwastes.

relevant personnel engaging radioactive waste management. These considerations are applicable to the management of

Repository

radioactive wastes arising from the nuclear fuel cycle (including

This is the nuclear facility used for radwaste disposal (e.g. geological repository), there is no intent to retrieve radwastes from such facility in thefuture.

Radioactive Waste Management Radioactive waste management includes all such

nuclear power production), the application of radioactive materials in medical science and other industries, and also applicable to the management of radioactive wastes arising from the operation and decommissioning of nuclear facilities. The differences in the application of these steps depend on the categories of radioactive wastes.

administrative andtechnical activities as handling, pretreatment,

The characteristics of radioactive wastes should be identified

treatment, conditioning, transport, storage and disposal of

to determine the physical/chemical and radiochemistry

radwastes.

natures, which is helpful for record keeping and change

Radioactive Waste (Radwaste) For the legal and regulatory purposes, the radioactive waste can be defined as the waste material containing radionuclides or is contaminated with radionuclides, and whose radionuclide concentration or specific activity is higher than the exemption

over from one step to another. For example, separation of exempted or reused wastes, carrying out different disposal for different wastes, or ensuring that radioactive wastes satisfy the requirement of storage and disposal, the selection of suitable packaging, etc., all these can apply this identification data.

level specified by regulatory body, and which will no longer

The pretreatment of radioactive wastes is the initial step

be reused expectedly (this definition is purely from regulatory

of waste management after the generation of wastes,

viewpoint, since the materials whose radioactivity concentration

including, e.g. collection, screening, chemical conditioning

is equal or below the exemption level are still regarded as

and decontamination and temporary storage for a period. This

radioactive materials from physics viewpoint, although the

initial step is very important since it in many cases provides

radioactive hazards can be ignored).

good chances for classified treatment of wastes, for example, recycling within process, or determining the disposal as non-

Waste Generator

radioactive wastes based on the inventory of radioactive

The Waste Generator is the operating organization (operating

material, or determining for near-surface disposal or geological

unit)thatproduces waste materials.

repository disposal of radwastes.

Appendix The Basic Steps of Radioactive Waste Management The effective management of radioactive wastes is to regard the basic steps of management process (illustrated in Figure l) as various constituent part of whole system from the generation to disposal of wastes. Since the decision made for one step may hamper the option selection of another step, it is emphasized that due consideration should be given to the inter-relationships among various steps of planning, design, construction, operation and decommissioning of radioactive waste management facilities. This Appendix describes the various steps of radioactive waste

The treatment of radioactive wastes includes those operations designed to improve safety or economics by changing the characteristics of radwastes. The basic treatment concept includes volume reduction, removal of radionuclides and composition changes. For example, the combustion of combustible wastes, compression of dry solid wastes (volume reduction),evaporation of liquid wastes, filtering or ion exchange (removal of radionuclides), flocculation and precipitation (composition change). The liquid wastes are then purified after several treatment steps, which however may produce secondary radioactive wastes that need to be controlled (e.g. contaminated filters, spent resin and mud, etc.) The conditioning of radioactive wastes include operations


37

designed to make radioactive wastes suitable for handling, transport, storage and disposal, these operations may include the solidification of radwastes, putting radwasteinto containers and packaging. The normal solidification methods include concrete solidification, bituminous solidification and plastic solidification of low and medium level liquid wastes, and the verification of high level liquid wastes. Generally the solidified radwastes will be loaded into steel casks and sealed based on

HAF Regulations

alternative and the nature of radioactive wastes contained. Although it is planned to dispose radioactive wastes of most categories by concentration and segregation, the disposal also includes releasing liquid and gaseous radioactive wastes into the environment within permitted limits. In fact this is an irreversible action; therefore it is believed that it is applicable only for limited amount of radioactive wastes.

the nature and activity of radionuclides (normally, 200-litersteel

The characteristics qualification, storage and transport of

cask), or into the specially designed thick wall containers. In

radwastes and materials may be performed within the basic

many cases, the treatment and conditioning are closely related

steps of radioactive waste management. The suitability of

and performed parallelly.

these steps depends on the categories of radioactive wastes.

The disposal is the ultimate step of radioactive waste

The storage of radioactive wastes should, for example: (1)

management system. The disposal is mainly to place

provide segregation, environmental protection and monitoring;

radioactive wastes into the safety-ensured disposal facility,

(2) facilitate such activities as treatment, conditioning and

which does not intend to retrieve disposed wastes and does

disposal, etc. In some cases, the storage may be selected

not depend on long-term monitoring. The safety of disposalis

from technical viewpoint. For example, the purpose of storage

achieved mainly through the concentration and segregation.

of short-lived radioactive waste is to let them to decay and

The segregation is to confine appropriately conditioned

then discharge within permitted limits, or to remove heat as

radwastes inside the disposal facilities. The barriers will

in the example of the storage of high-level radioactive wastes

be set up around radioactive wastes to limit the release of

before geological disposal. In other cases, the storage is due

radionuclide into the environment. The barriers can be natural

to the economic and policy etc. reasons.

ones or engineered ones. The segregation system may consist of more barriers, with multi-barrier system being better in achieving segregation, which ensures that any release of radionuclides into the environment is undergoing at an acceptable rate. The barriers may provide forthe absolute segregation in certain time period (e.g. metal container) or delay the release of radioactive wastes into the environment (e.g. backfill or hostrock with high absorption capacity). The radionuclides in radwastes will undergo decay during the period when radwastes are segregated by barrier system. The barrier system is designed based on the selected disposal

The transport may be a necessary step in radioactive waste management. The effective radioactive waste management should pay due consideration to problems associated with the transport of rad wastes.


Events Calendar

38

Events Calendar

Beijing JiNan YangZhou ShangHai NingBo YiWu GuangZhou

November 2013 China (Shanghai) International Evaporation and Crystallization Technology & Equipment Expo Date: 2013-11-18---2013-11-20 Add: Shanghai Guang Da Exhibition Center Contact: Hu Yan Tel: 13701897673 Website: http://www.shecexpo.icoc.cc

2013 China Electronics Fair Date: 2013-11-13---2013-11-15 Add: Shanghai New International Expo Center Contact: Hou Xuhai Tel: 13810788214 Website: http://www.elexcon.com/ceffall/

2013 China (Shanghai) International Testing Machine Exhibition Date: 2013-11-18---2013-11-20 Add: Shanghai World Expo Exhibition and Convention Center Contact: Wang Jun Tel: 15821309643 Website:http://www.18show.cn/exhibition/132129/default.html

2013 China Sheet Industry (Ningbo) Exhibition Date: 2013-11-21---2013-11-23 Add: Ningbo International Exhibition Center Contact: Jiang Tao Tel: 0574-55127120 Website: http://www.cismie.com/

2013 China International Gas, Hot Technology and Equipment Exhibition Date: 2013/11/13-2013/11/15 Add: Jinan International Convention Center Contact: Nie Song Tel: 010-66206773 Website: www.gaschina2013.com

The 13th Beijing International Food Processing and Package Machine Exhibition 2013 Date: 2013/11/13-2013/11/15 Add: Beijing International Convention Center Contact: Li Na


39

Tel: 15026940388 Website: http://www.chinafoodtech.com.cn/

China Yiwu International Manufacturing Equipment Expo 2013 Date: 2013/11/19-2013/11/22 Add: Yiwu International Expo Center Contact: Sun Ting Tel: 86-10-58280741 Website: http://www.ywmeexpo.com/www/

2013 China Yangzhou International Machine Tool and Die Manufacturing Equipment Exhibition Date: 2013/11/21-2013/11/23 Add: Yangzhou International Expo Center Contact: Mr. Yang Tel: 13914008762 Website: http://www.ly-expo.com/

The 16th Beijing International Thermal Treatment Exhibition 2013 Date: 2013/11/25-2013/11/27 Add: Beijing National Convention Center Contact: Shao Zhoujun Tel: 010-62914108 Website: http://www.chts.org.cn/

The 5th (2013) Shanghai International Forge Products Exhibition Date: 2013/11/28-2013/11/30 Add: Shanghai International Exhibition Center Contact: Shanghai Aoya Exhibition Co., Ltd Tel: 021-33518138 Website: http://www.forging-expo.cn

Events Calendar

December 2013 China Water Exposition with China International Membrane and Water Treatment Technology and Equipment Exhibition Date: 2013/12/2-2013/12/4 Add: Beijing National Convention Center Contact: Xue Ge, Zhou Qing, Meng Huilin Tel: 86-10-64426130 /64450741 Website: http://www.membranes.com.cn

2013 China Water Exposition Date: 2013/12/2-2013/12/4 Add: Beijing National Convention Center Contact: Zhao Song Tel: 010-63203480 Website: www.waterexpo.cn/

The 12th International Bag House Technology and Equipment Exhibition 2013 Date:2013/12/04-2013/12/06 Add:Shanghai Mart Contact:Ren Peng Tel:+86 21 6587 6481 Website:www.bagfilter.net

2013 China Guangzhou International Green Building and Energy Exhibition Date:2013/12/11-2013/12/13 Add:Guangzhou Poly World Trade ExpositionPavilion Contact: Huang Bing Tel:15018783021 Website:www.igbchina.com


Technical Articles 40

Technical Articles Feasibility of a Monte Carlo-Deterministic Hybrid Method for Fast Reactor Analysis


41

Technical Articles

Feasibility of a Monte Carlo-Deterministic Hybrid Method FEASIBILITY OF A MONTE CARLO-DETERMINISTIC HYBRID METHOD FOR FAST REACTOR ANALYSIS for Fast Reactor Analysis Woong Heo, Woosong Kim, Yonghee Kim* Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea, 305-701 goodh7284@kaist.ac.kr; *yongheekim@kaist.ac.kr Sunghwan Yun Korea Atomic Energy Research Institute (KAERI) 989-111 Daedeok-daero, Yuseong-gu, Daejeon, Korea, 305-353 syun@kaeri.re.kr 1.

INTRODUCTION

The sodium-cooled fast reactor (SFR) is a Generation IV reactor design which promises to have advantages in terms of uranium resource utilization coupled with a low production of radioactive waste. The design and analysis of a fast reactor such as the SFR should be done differently than that of a light water reactor (LWR) due to the softer neutron in LWRs. In typical LWR analyses, the cross sections are usually generated using a single fuel assembly calculation. However, because of their fast neutron spectrums, the neutron mean free path is longer in a fast reactor, resulting in neutron streaming becoming a dominant factor. This then requires a different method with which to generate cross sectional data for fast reactor analysis. The current method is based on a deterministic methodology that considers many neutron groups, the heterogeneity of the core, and takes into account the different resonance cross sections. Typically, the few-group cross sections for fast reactor analysis are usually generated using a combination of the TRANSX and TWODANT codes. TRANSX produces 150-group cross sections which are then passed on to TWODANT. It then solves the transport equation and determines the local flux spectrum in the R-Z model of the core. These flux spectrums are then inserted into TRANSX where they are used to generate the condensed cross sections. However, there are limitation to the deterministic methodology for the cross section generation. These limitations arise from the use of multi-group neutron energies and the geometric approximations used in TRANSX and TWODANT. These limitations make the analysis of high-order scattering events by the purely deterministic method difficult. To overcome these limitations, the Monte Carlo method can be used to generate the multigroup cross section data for the fast reactor analysis. In the Monte Carlo method, a continuous energy spectrum is used to reduce the resulting error from the discrete multi-group neutron energies and can implement a model without any geometric approximation. The implementation of the Monte Carlo method is possible because fast reactor analysis does not typically need many time consuming burn-up calculations in the lattice analysis to determine the effective cross sections. This is because the microscopic cross sections of the various nuclides in conventional fast reactor designs are only lightly affected by the burn-up. Therefore, it is expected that the Monte Carlo method can be used to generate cross sections for fast reactor cores with only a reasonable increase in the computing timerelative to the deterministic method. This would then allow the replacement of the approximate and delicate deterministic methodology usually implemented in conjunction with the traditional diffusion codes. A recent study by Fridman and Shwagerhaus verified this by combing the Monte Carlo code Serpent with DYN3D. According to their study, the Serpent/DYN3D combination gave results that were in good agreement with their reference solution. In the current work, MCNP5 is used instead of Serpent.


Technical Articles 42

In a previous study, the cross sections generated by TRANSX/TWODANT and MCNP5 were compared using a 300 MWe SFR TRU In a previous study, the cross sections generated by TRANSX/TWODANT and MCNP5 were compared using a 300 MWe In a previous study, the sections generated TRANSX/TWODANT and MCNP5 were compared using a 300for MWe SFR TRU burner core model. In cross this comparison, the highbyorder Legendre scattering cross section generation module MCNP5 was SFR TRU burner core model. In this comparison, the high order Legendre scattering cross section generation module for In a previous study, the cross sections generated byorder TRANSX/TWODANT and MCNP5 were compared using a 300for MWe SFR TRU burner core model. In this comparison, the high Legendre scattering cross section generation module MCNP5 the implemented. In the current study, both cross sections are then applied in DIF3D where the keff and core power distribution fromwas MCNP5core wasmodel. implemented. In the current study, cross are thencross applied in kDIF3D where the keff andMCNP5 core power burner In this study, comparison, the high both order Legendre scattering section module for was and is core power distribution the implemented. In the of current sections are thensections applied in DIF3D where the effgeneration homogenous model each methodboth andcross compared to the reference solution. The reference solution a heterogeneous corefrom model. distribution from thecurrent model of sections each to method andapplied compared to the reference reference solution is and core power distribution thea implemented. In the both arereference then in DIF3D where the solution keffsolution. homogenous model ofhomogenous each study, method andcross compared the solution. The reference is a The heterogeneous corefrom model. homogenous model of each method and compared to the reference solution. The reference solution is a heterogeneous core model. heterogeneous core 2. model. METHOD OF MULTI-GROUP SCATTERING CROSS SECTION GENERATION OF MCNP5 2.

METHOD OF MULTI-GROUP SCATTERING CROSS SECTION GENERATION OF MCNP5

2. METHOD OF MULTI-GROUP SCATTERING CROSS SECTION GENERATION OF MCNP5 2.1. Framework of Multi-group Scattering Cross Section Generation based on Continuous Energy 2.1. Framework Multi-group Scatteringcross Crosssections Sectionbased Generation based onenergy Continuous Energy The basis for theof generation of multi-group on a continuous spectrum is the continuous energy steady 2.1. Framework of Multi-group Scatteringcross Crosssections Sectionbased Generation based onenergy Continuous Energy The basis for the generation of multi-group on a continuous spectrum is the continuous energy steady state transport equation. The famous form of the equation is: The for the generation multi-group cross sections is: based on a continuous energy spectrum is the continuous energy steady statebasis transport equation. The of famous form  of the equation   

  2l  1    d  dE  E E P E   )  24l  1  ( r ,  ) (  ) (r , ,     r , E ,    ( r , E, )   d  dE   ( r , E   E ) P (  ) (r , E ,  )        2l4 1       r , E ,    ( r , E, )   d  (r,),E ,  ) ,  r, EE))P ((r, E)  dE((EE)) 4d dE(r,E (  

r , E,  E,    state transport equation. The famous form ther ,equation  of   is: )  t ( t

t

4

0

4

0

4

l 0  l 0

sl

l

0

sl

l

0

l

0

 sl 0

0

f

 0 4 d  dE  f (r , E ) (r , E ,  ),  4kleff    4(kEeff) 4  0 d    dE  f (r , E ) (r , E ,  ),  0 4k eff 4

(1) (1) (1)

where  0      ,  is the angular flux,  t is the total cross section,  f is the fission cross section,  is the fission spectrum, where  0     ,  is the angular flux,  t is the total cross section,  f is the fission cross section,  is the fission spectrum,   keff is the eigenvalue of the system, and  sl is the scattering moment.  where t is the total cross section,  f is the fission cross section,  is the fission spectrum, 0     ,  is the angular flux,  keff is the eigenvalue of the system, and  sl is the scattering moment.

keff is the eigenvalue of the system, and  sl is the scattering moment.

In Eq. (1), after using the spherical harmonics addition theorem and some mathematical processes for group-condensation and In Eq. (1), after using the spherical harmonics addition theoremscattering and somecross mathematical processes homogenization, the collision estimator is found for the high-order sections equation [3]: for group-condensation and

In Eq. (1), after using the spherical harmonics addition theorem scattering and somecross mathematical processes homogenization, the collision estimator is found for the high-order sections equation [3]:for group-condensation and homogenization, the collision estimator is found for the high-order scattering cross sections equation [3]:

 sl , g  g  sl , g  g  sl , g  g

E,     ) ( r , E )  dE  dd PP (( )) ((rr,, EE    dE E , ) ( r , E )           ( r , E )     dE  dP (  )dE (r ,dEr    E ,   ) ( r , E )  dE dr (r , E)      r , E( r), E   E ,   ( r , E )  dEddE  Pd(r )(   )  P (  ) ( r , E   E ,     )   ( r , E )  dE  d       )   E ,    ) dr)( r(,rE, E   ( r , E )  dE ddEP(   dE  dr (r , E )   dE  dr ( r , E ) Eg

4

Eg

4

Eg

0 0

0

4

l

0

s

l

l

0

s

l

0 Eg s

V

Eg

V

Eg

E4g

Vl

0l

s

Eg

4

l

0

s

Eg

4E g  Eg

lV

0 0 s 0

Eg

V

l

l

l

(2) (2)

l

V

(2)

, , ,

0

   d where   EdE  Vd r . The scattering cross section tally is assumed in the same way as in Ref [9] and Ref [10].In Eq. (2), the 4 g  d dE  d r . The scattering cross section tally is assumed in the same way as in Ref [9] and Ref [10].In Eq. (2), the where 4  E g  V  d r . The scattering cross section tally is assumed in the same way as in Ref [9] and Ref [10].In Eq. (2), the   dE  d where denominator d E d r  ( r , E ) is the conventional scalar flux tally in MCNP5. Furthermore, the numerator in Eq. (2) can be 4E EgV  V0  denominator  dg E  d r0 ( r , E ) is the conventional scalar flux tally in MCNP5. Furthermore, the numerator in Eq. (2) can be Eg  V   expressed as: dE  d r0 ( r , E ) is the conventional scalar flux tally in MCNP5. Furthermore, the numerator in Eq. (2) can be denominator  

  

expressed as:

     

Eg 

V

expressed as:

I

 0 ( r , E )  dE  d I  Pl (  0 ) s ( r , E   E ,    )   Eg 4 i 1    0 ( r , E )  dE d  P (  )  ( r , E  E ,    )  l 0 s  I Eg 4      i 1  0 ( r , E )  dE  dPl (  0 ) s ( r , E   E ,    )   Eg

4

where ( wgt) i is the Monte Carlo particle weight of the

i

  P ( )  (wgt )   P ( )  (wgt )   P ( )  (wgt )

  l for all  for all    l for all  for all    l for all  for all 

, ,  EE g , E E g  , rV ,

0

 i EE g , E E g  , rV  i EE g , E E g  , rV

0

i

0

(3) (3) (3)

   scattering event from ( E , ) phase space to ( E , ) phase space at r [3]. i 1

For this cross section estimator, several subroutines were added and modified in MCNP5 [3].The flow for these processes is shown in Fig. 1.


section estimator, several subroutines were added and modified in MCNP5 [3].The flow for these proces ncross estimator, several subroutines were added and modified in MCNP5 [3].The flow for these p

.

43

where ( wgt) i is the Monte Carlo particle weight of the

i

Technical Articles

scattering event from ( E , ) phase space to ( E , ) phase space at r [3].

For this cross section estimator, several subroutines were added and modified in MCNP5 [3].The flow for these processes is shown in Fig. 1.

Figure 1. Collision estimator implemented in the MCNP5 code [3]

t Reactor Core Analysis Using MCNP5/DIF3D Figure 1. Collision estimator implemented in the MCNP5 code [3]

Figure 1. Collision estimator implemented in the MCNP5 code [3]

2.2.typical Fast Reactor Core Analysis Using MCNP5/DIF3D hows the calculation procedure for the TRANSX/TWODANT/DIF3D/REBUS deterministic analysis of fas

ventional method, TRANSX uses a 150-group cross section library to produce effective cross sections, which a

Fig. 2 showsUsing the typicalMCNP5/DIF3D calculation procedure for the TRANSX/TWODANT/DIF3D/REBUS deterministic analysis of fast reactors. In ore Analysis

DANT the to solve a discrete () transport for thetoR-Z model andcross produce the regional conventional method, ordinate TRANSX uses a 150-group equation cross section library produce effective sections, which are thenflux usedspectru

by from TWODANT to solve a discrete ordinate () transport equation for the R-Z model the and produce regionalgroups flux spectrum. local spectra TWODANT are then inserted into TRANSX where cross the section are The then collapse

neutron spectra from TWODANT are then inserted into TRANSX where the cross section groups are then collapsed into fewer cal procedure forproducts the TRANSX/TWODANT/DIF3D/REBUS deterministic The calculation collapsed group and fission cross sections are then combined. These combined cross analysis sections a groups. The collapsed group and fission products cross sections are then combined. These combined cross sections are utilized by

3D/REBUS code for multi-dimensional core analysis and burn-up calculations. hod, TRANSX uses cross section library to produce effective cross sections, wh the DIF3D/REBUS codea for150-group multi-dimensional core analysis and burn-up calculations.

ve a discrete ordinate () transport equation for the R-Z model and produce the regional flux s

m TWODANT are then inserted into TRANSX where the cross section groups are then co

d group and fission products cross sections are then combined. These combined cross secti

ode for multi-dimensional core analysis and burn-up calculations.

Figure 2. Work flow chart

Figure 2. Work flow chart


Technical Articles 44

FigureFigure 3. Modified flowchart chart 3. Modifiedwork work flow

In the new hybrid approach, all the necessary multi-group cross sections are generated by MCNP5 and the results are directly fed hybrid approach, all the necessary multi-group cross sections are generated by MCNP5 and the results are direct into DIF3D/REBUS for the core analysis. This is shown in Fig3. In typical thermal reactor analysis, single lattice analysis can be

REBUS for the core analysis. This is shown in Fig3. In typical thermal reactor analysis, single lattice analysis can used for multi-group cross section generation. However, a simplified RZ model is used in the current work since it is generally known

ulti-group generation. However, a simplified RZ model is section used for in athe work since it is generall thatcross the localsection neutron spectrum is important in the determination of few-group cross fastcurrent reactor diffusion analysis.

In the current work, the DIF3D analysis is performed using the diffusion theory method. The necessary diffusion coefficient is simply al neutron spectrum is important in the determination of few-group cross section for a fast reactor diffusion analys determined by using the transport cross sections, which are determined by Eq. (4). The diffusion coefficients are then calculated

ent work, the DIF3D analysis is performed using the diffusion theory method. The necessary diffusion coefficient i using Eq. (5).

by using the transport cross sections, which are determined by Eq. (4). The diffusion coefficients are then ca

5).

1) Transport cross sections:

   tr r , E    t r , E 

0

ansport cross sections:

2) Diffusion coefficient:

0

(4-a)

  . dE 'g' s1s1gE'g  E J i r , E ' , t ,  Ji r, E',t

 tr , g  t , g 

   tr r , E    t r , E 

 

 dE '  s1 E '  E J i r , E ' , t ,  Ji r, E',t

Dg 

1 . 3 tr ,g

 tr , g   t , g 

 

'

 g'

s1 g '  g

(4-b)

.

(5)

ffusion2.3. coefficient: Transport Approximation

1 3 tr ,g

D gTRANSX  Transport cross sections are important values for diffusion analysis. uses. 5 transport approximations to generate transport cross sections. This paper uses both Consistent-P and Bell-Hansen-Sandmeier approximations for comparison with the MCNP5 generated cross sections. The Transport approximations start with the SN transport equation:

port Approximation

N   g (  , x)   gSN ( x) (  , x)   Pl (  )  lgSN g ' ( x) lg'  S g (  , x), x l 0

(6)

ross sections are important values for diffusion analysis. TRANSX uses 5 transport approximations to generate tr

ons. This paper uses both Consistent-P and Bell-Hansen-Sandmeier approximations for comparison with the MCN


Technical Articles

45

where  the scattering cosine, x is position, Legendre polynomial, and

 (  , x) is the angular flux for group g, lg is the Legendre flux for group g, Pl (  ) is a

S g (  , x) is the external and fission source into group g. This multi-group equation can be written in the

PN form:

N N   (  , x)   Pl (  ) ltgPN ( x) lg   Pl (  )  lgPN g ' ( x) lg'  S g (  , x), x l 0 l 0

(7)

where the PN cross sections are given by the following group averages:

PN ltg

  ( E )W ( E )dE ,    W ( E )dE g

t

g

l

 dE  dE ( E  E )W ( E ) .   dE W ( E ) '

PN lg  g '

l

'

l

g'

'

g'

l

l

'

'

(8)

In Eq. 8,  t (E) and  l ( E '  E ) are the basic energy dependent total and scattering cross sections, and Wl (E ) is a weighting flux that should be chosen to be as close to  as possible. When Eq. 6 is compared with Eq. 7, the SN equations require

 lgSNg'  lgPN g ' for g '  g , and  lgSN g   lgPN g   ltgPN   gSN , SN

where  g is undetermined. The choice of

(9)

 gSN gives various transport approximations.

SN

The second equation in Eq. 9,  g can be written as: PN  gSN   otg  Ng , N

where  g can be chosen to minimize the effects of truncating the Legendre expansion at

(10)

lN.

Consistent-P approximation is shown as:

Ng  0,

(11)

And the Bell-Hansen-Sandmeier or extended transport approximation is PN Ng   otg   NPN1,tg 

 g'

PN N 1, g ' g

.

(12)

The consistent-P approximation is most appropriate when the scattering orders above N are small. B-H-S makes an attempt to correct for anisotropy in the scattering matrix and is especially effective for forward-peaked scattering. This form is the most commonly used.

In this paper, theMCNP5/DIF3D results are compared with those from the conventional deterministic TRANSX/TWODANT/DIF3D with the consistent-P and B-H-S options.


Technical Articles 46

3.NUMERICAL RESULTS The reference core used for comparison is a 300 MWe SFR TRU burner core. In this paper, the TRANSX/TWODANT/DIF3D calculations with consistent-P and Bell-Hansen-Sandmeier transport approximation options are done and then compared with the homogeneous MCNP5/DIF3D target results. The multi-group cross sections and the high-order scattering cross sections are generated using MCNP5 with both homogenous and heterogeneous models. The heterogeneous MCNP5 model, which is used as the reference solution, is performed by using 3,000cycleswith 100,000 neutrons per cycle. In order to make a correct comparison, the heterogeneous model cross sections were generated using only the 0th order scattering flux approximation. The generation of the 9-group cross section data using MCNP5 is done using a continuous energy spectrum and a homogenous model. The reference core is shown in Fig. 4.

Figure 4. Heterogeneous and homogeneous 300MWe core models

scattering cross section data of the inner core region. At the high energy region

NSX/TWODANT results increased. The maximum relative error was -38.53% (g


47

Technical Articles

In order to generate the cross section data using TRANSZ/TWODANT, a simplified homogenous model (RZ-model) of the 300 MWe SFR core was used. The same RZ-model was also used to generate the high-order scattering and cross section data using MCNP5 for the hybrid method. In the case of the TRANSX/TWODANT method (shown in Fig. 2), a 150-group library was used which was then later condensed into 9-group cross section library. This calculation was characterized by both geometric and multi-group approximations. The MCNP5 cross section generation is shown in Fig. 3.To perform the DIF3D calculation, each assembly in the heterogeneous model was considered as a homogenized assembly. The generated cross section data from TRANSX/TWODANT and MCNP5 was then inserted region-wise into each assembly. In this process, the P0 scattering cross section was used as the scattering cross section for MCNP5. Finally, the calculated keff and power distributions from each code were then compared with each other and the reference solution. The output format of both generated cross sections data was ISOTXS, allowing it to be inserted into DIF3D. The ENDF/B-VII.0 library was used for both MCNP5 and TRANSX/ Figure 4. Heterogeneous and homogeneous 300MWe core models TWODANT calculations. Table I shows 9-group scattering cross section data of the inner core region. At the high energy region, the difference between MCNP5 results and TRANSX/TWODANT results increased. The maximum relative error was -38.53% (group 1 self-scattering) for the TRANSX/TWODANT with B-H-S. TRANSX/TWODANT with B-H-S had a large relative error for self-scattering cross section from 1 to 4 –group while the self-scattering error decreased as group energy decreased. Down scattering of G6⟶8 of TRANSX/TWODANT with B-H-S and consistent-P had a 42.55% relative error and G3⟶9 down scattering had a 31.53% relative error. The others had an error below 5% except for nine scattering cross sections which had 5~10% relative error. Table I. Homogeneous model scattering cross-sections (P0) of inner core GROU P

1

2

1

2

3

4

5

6

7

8

9

9.0381E-

3.7424E-

1.6875E-

6.7104E-

1.7823E-

4.0040E-

8.3307E-

2.0554E-

7.7739E-

02a

02

02

03

03

04

05

05

06

9.0411E-

3.7413E-

1.6925E-

6.7401E-

1.7923E-

4.0131E-

8.2173E-

2.0455E-

8.1588E-

02b

02

02

03

03

04

05

05

06

9.0518E-

3.7372E-

1.6902E-

6.7416E-

1.8028E-

4.0886E-

8.6228E-

2.1201E-

8.6622E-

02c

02

02

03

03

04

05

05

06

5.5555E-

3.7372E-

1.6902E-

6.7415E-

1.8028E-

4.0886E-

8.6228E-

2.1201E-

8.6622E-

02d

02

02

03

03

04

05

05

06

1.2472E-

2.8025E-

8.9212E-

1.9786E-

3.6534E-

6.7484E-

1.3526E-

4.1662E-

01

02

03

03

04

05

05

06

1.2633E-

2.7506E-

8.9651E-

1.9914E-

3.6291E-

6.6664E-

1.3553E-

4.1714E-

01

02

03

03

04

05

05

06

1.2618E-

2.7464E-

9.0088E-

2.0070E-

3.6183E-

6.6789E-

1.3580E-

4.3877E-

01

02

03

03

04

05

05

06

1.0940E-

2.7464E-

9.0088E-

2.0070E-

3.6183E-

6.6789E-

1.3580E-

4.3876E-

01

02

03

03

04

05

05

06


Technical Articles 48 1.6473E-

3

4

3.6165E-

4.8708E-

02

03

04

04

05

06

1.9962E-

3.6294E-

1.0912E-

3.7395E-

5.0345E-

01

02

03

04

04

05

06

1.6586E-

1.5495E-

1.9986E-

3.7203E-

1.0894E-

3.9794E-

6.4068E-

01

02

03

04

04

05

06

1.5992E-

1.5495E-

1.9986E-

3.7203E-

1.0894E-

3.9794E-

6.4068E-

01

02

03

04

04

05

06

3.0973E-

2.0107E-

9.5306E-

5.4339E-

8.0498E-

1.1642E-

1.9909E-

10

01

03

05

06

06

07

3.5021E-

2.0406E-

9.3836E-

5.4463E-

8.1135E-

1.1270E-

1.9940E-

10

01

03

05

06

06

07

2.0557E-

9.2325E-

5.4360E-

7.8677E-

1.0903E-

1.9804E-

01

03

05

06

06

07

1.9781E-

9.2327E-

5.4360E-

7.8676E-

1.0903E-

1.9804E-

01

03

05

06

06

07

2.9584E-

2.2790E-

7.8705E-

1.0265E-

1.7103E-

2.2226E-

10

01

03

04

06

07

3.4108E-

2.3089E-

7.7076E-

1.0321E-

1.6821E-

2.2631E-

10

01

03

04

06

07

2.3445E-

7.7556E-

9.5054E-

1.6238E-

2.2637E-

01

03

05

06

07

2.2308E-

7.7558E-

9.5056E-

1.6238E-

2.2637E-

01

03

05

06

07

0.0000E+

3.0305E-

9.6842E-

6.2232E-

1.8729E-

00

01

03

05

05

2.9931E-

3.0452E-

9.3711E-

6.1126E-

1.8814E-

10

01

03

05

05

3.0896E-

9.6476E-

8.8712E-

1.7001E-

01

03

05

05

2.9233E-

9.6486E-

8.8711E-

1.7000E-

01

03

05

05

2.5260E-

6.6872E-

5.5389E-

01

03

05

2.5114E-

6.2290E-

5.5230E-

01

03

05

2.5156E-

6.4184E-

5.6680E-

01

03

05

2.4523E-

6.4183E-

5.6680E-

01

03

05

4.9325E-

1.5650E-

01

02

4.9964E-

1.5235E-

01

02

_

_ _

8

1.0677E-

1.5634E-

_

7

3.5899E-

01

_

6

1.9751E-

1.6608E-

_

5

1.5956E-


49

Technical Articles

4.9937E-

1.5328E-

01

02

4.8955E-

1.5328E-

01

02 4.5294E01 4.5419E01

9

4.5453E01 4.3405E01 a: MCNP5 reference model b: MCNP5 results of homogeneous model c: TRANSX/TWODANT with consistent P transport approximation option results of homogeneous model

d: TRANSX/TWODANT with Bell-Hansen-Sandmeier transport approximation option results of homogeneous model Table II shows major cross sectional data (transport cross section, capture cross section, fission cross section multiplied by neutron fission yield) for the inner core region. Reference data for this comparison was the heterogeneous 3D core MCNP5 calculation. Eq. (4, 5) were used to calculate the transport cross section for the reference solution. In the case of the transport cross section, the MCNP5 data has the smallest relative error in the high energy ranges. The hybrid has about 1% error in all groups and the deterministic has about 2~3% error in the 5-group to 7-group cross sections. The maximum error of the transport cross sections is about 5% in the 9-group for the deterministic method. From Eq.5, it is clear that the diffusion coefficient has the same trend with that of the transport cross section. The other relative errors aregenerally below 3%. The capture cross section error is about 0~2%, making it in good agreement with the reference data. In the case of the fission cross section multiplied by neutron fission yield, the codes have below 1% error in the 1-group to 8-group. However, there is a sudden increase of errorin the 9-group, up to about 3%. Table II. Major cross section data of inner core region GROU

Ʃ_transpo

Rel.Error(

P

rt

%)

8.9258E02a 8.9290E1

02b 8.7842E02c 8.7842E02d 1.1218E01

2

1.1253E01 1.1371E-

_ 0.04 -1.59 -1.59 _ 0.31 1.36

Ʃ_γ 2.6721E05 2.6724E05 2.6716E05 2.6716E05 4.0111E04 4.0285E04 4.0278E-

Rel.Error(

νƩ_fissio

Rel.Error(

Diffusion

Rel.Error(

%)

n

%)

Coeff.

%)

_

3.7345E+00

_

0.01

3.7332E+00

-0.04

0.05

3.7947E+00

1.61

0.05

3.7947E+00

1.61

_

2.9714E+00

_

-0.13

2.9622E+00

-0.31

-0.14

2.9314E+00

-1.35

_ 0.01 -0.02 -0.02 _ 0.43 0.42

3.6023E02 3.6026E02 3.6040E02 3.6040E02 1.9173E02 1.9149E02 1.9146E-


Technical Articles 50 01 1.1372E01 1.3626E01 1.3716E3

01 1.3584E01 1.3584E01 1.8150E01 1.8399E-

4

01 1.7918E01 1.7918E01 2.2203E01 2.2491E-

5

01 2.1734E01 2.1734E01 3.0419E01 3.0539E-

6

01 2.9528E01 2.9528E01 2.6172E01 2.5989E-

7

01 2.5391E01 2.5391E01

8

5.0936E-

04 1.37 _ 0.66 -0.31 -0.31 _ 1.37 -1.28 -1.28 _ 1.30 -2.11 -2.11 _ 0.39 -2.93 -2.93 _ -0.70 -2.98 -2.98 _

4.0281E04 1.1048E03 1.1066E03 1.1068E03 1.1068E03 1.3281E03 1.3344E03 1.3364E03 1.3364E03 2.0036E03 2.0152E03 2.0385E03 2.0385E03 3.7694E03 3.7935E03 3.8216E03 3.8216E03 5.6648E03 5.7012E03 5.6983E03 5.6983E03 8.8187E-

02 0.42 _ 0.16 0.18 0.18 _ 0.47 0.62 0.62 _ 0.58 1.74 1.74 _ 0.64 1.38 1.38 _ 0.64 0.59 0.59 _

1.9145E02 7.6593E03 7.6561E03 7.6473E03 7.6473E03 5.3803E03 5.3805E03 5.3776E03 5.3776E03 5.3137E03 5.3141E03 5.3178E03 5.3178E03 5.6457E03 5.6468E03 5.6486E03 5.6486E03 6.4235E03 6.4265E03 6.4469E03 6.4469E03 8.6998E-

-0.14

2.9312E+00

-1.35

_

2.4463E+00

_

-0.04

2.4303E+00

-0.66

-0.16

2.4539E+00

0.31

-0.16

2.4539E+00

0.31

_

1.8365E+00

_

0.00

1.8117E+00

-1.35

-0.05

1.8603E+00

1.29

-0.05

1.8603E+00

1.29

_

1.5013E+00

_

0.01

1.4821E+00

-1.28

0.08

1.5337E+00

2.16

0.08

1.5337E+00

2.16

_

1.0958E+00

_

0.02

1.0915E+00

-0.39

0.05

1.1289E+00

3.02

0.05

1.1289E+00

3.02

_

1.2736E+00

_

0.05

1.2826E+00

0.70

0.36

1.3128E+00

3.08

0.36

1.3128E+00

3.08

_

6.5442E-01

_


51 01

03

5.1534E01 01 5.1534E5.0827E01 01 5.0827E5.0827E01 01 5.0827E4.7706E01 01 4.7706E4.7806E01 01 4.7806E4.5303E01 01 4.5303E4.5302E01 01 4.5302E-

Technical Articles

03

8.9987E8.7042E2.04 0.05 6.4682E-01 -1.16 03 03 03 03 8.9987E8.7042E8.9921E8.7096E1.17 2.04 0.05 6.4682E-01 -1.16 -0.21 1.97 0.11 6.5582E-01 0.21 03 03 03 03 8.9921E8.7096E8.9921E8.7096E-0.21 1.97 0.11 6.5582E-01 0.21 -0.21 1.97 0.11 6.5582E-01 0.21 03 03 03 03 8.9921E8.7096E1.7951E2.3214E-0.21 1.97 0.11 6.5582E-01 0.21 _ _ _ 6.9872E-01 _ 03 03 02 02 1.7951E2.3214E1.8207E2.2438E_ _ _ 6.9872E-01 _ 0.21 1.43 -3.34 6.9726E-01 -0.21 02 02 02 02 9 1.8207E2.2438E1.7849E2.2544E0.21 1.43 -3.34 6.9726E-01 -0.21 -5.04 -0.57 -2.89 7.3579E-01 5.30 02 02 02 02 9 1.7849E2.2544E1.7850E2.2544E-5.04 -0.57 -2.89 7.3579E-01 5.30 -5.04 -0.56 -2.88 7.3580E-01 5.31 02 02 02 02 1.7850E2.2544Ea: MCNP5 reference model -5.04 -0.56 -2.88 7.3580E-01 5.31 01 02 02 b: MCNP5 results of homogeneous model a: MCNP5 reference model c: TRANSX/TWODANT with consistent P transport approximation option results of homogeneous model b: MCNP5 results of homogeneous model d: TRANSX/TWODANT with Bell-Hansen-Sandmeier transport approximation option results of homogeneous model c: TRANSX/TWODANT with consistent P transport approximation option results of homogeneous model 1.17

d: TRANSX/TWODANT with Bell-Hansen-Sandmeier transport approximation option results of homogeneous model Table III shows the keff values for the various methods. Of interest is that the conventional 25-group model has the highest error while the MCNP5/DIF3D models provide much better accuracy. The MCNP5/DIF3D 9-group model provides the smallest error for Table III III shows shows the the keff k values for the various methods. Of Of interest interest is that that the the conventional conventional25-group 25-groupmodel modelhas hasthe thehighest highesterror error the k-eff prediction. Ineffthe 25-group models, MCNP5/DIF3D also hasisthe smallest error, but the error increased by about 200 pcm in

while MCNP5/DIF3D models models provide provide much much better better accuracy. accuracy. The TheMCNP5/DIF3D MCNP5/DIF3D9-group 9-groupmodel modelprovides providesthe thesmallest smallesterror errorfor for while the the MCNP5/DIF3D comparison with the 9-group calculation. the the k-eff k-eff prediction. prediction. In In the the 25-group 25-group models, models, MCNP5/DIF3D MCNP5/DIF3D also also has has the thesmallest smallesterror, error,but butthe theerror errorincreased increasedby byabout about200 200pcm pcmin comparison with the 9-group calculation. in comparison with the 9-group calculation.

Table III. Comparison of keff value Table III. Comparison of keff value Table III. Comparison of keff value Code

Geometry

Energy group

keff

CX generation code(option)

Code MCNP5

Geometry Heterogeneous

Energy group Continuous

CX generation code(option) --

MCNP5 DIF3D*

Heterogeneous Homogeneous

Continuous 9

1.07479±0. keff 00003 1.07479±0. 1.06409 00003

DIF3D* DIF3D*

Homogeneous Homogeneous

9 9

1.06409 1.06409

DIF3D* DIF3D*

Homogeneous Homogeneous

9 9

1.07325 1.06409

DIF3D* DIF3D*

Homogeneous Homogeneous

25 9

1.06202 1.07325

DIF3D* DIF3D*

Homogeneous Homogeneous

25 25

1.06202 1.06202

DIF3D* DIF3D*

Homogeneous Homogeneous

25 25

1.06202 1.07122

TRANSX(BHS**)/TWODANT in -RZ model TRANSX(BHS**)/TWODANT in TRANSX(consistentRZ model P**)/TWODANT in RZ model TRANSX(consistentMCNP5 in RZ model P**)/TWODANT in RZ model TRANSX(BHS**)/TWODANT in MCNP5 in RZ model RZ model TRANSX(BHS**)/TWODANT in TRANSX(consistentRZ model P**)/TWODANT in RZ model TRANSX(consistentMCNP5 in RZ P**)/TWODANT in model RZ model

DIF3D* Homogeneous 25 1.07122 MCNP5 in RZ model *Fine-mesh FDM (54 triangles/hexagon), **transport approximation in TRANSX

Error(pc m) Error(pc _ m) _ -1070 -1070 -1070 -154 -1070 -1277 -154 -1277 -1277 -1277 -357 -357

Fig. 5 shows the relative power distribution of the inner and outer core for 9-group MCNP5 (homogenous and heterogeneous) and


-mesh FDM (54 triangles/hexagon), **transport approximation in TRANSX Technical Articles 52

*Fine-mesh FDM (54 triangles/hexagon), **transport approximation in TRANSX

ows the relative power distribution of the inner and outer core for 9-group MCNP5 (homogenous and heterogen Fig. 5 shows the relative power distribution of the inner and outer core for 9-group MCNP5 (homogenous and heterogeneous) and

TRANSX/TWODANT (Consistent-P, B-H-S approximation). It was found that the maximum relative 9-group TRANSX/TWODANT (Consistent-P, B-H-S approximation). It was found that the maximum relative error of

X/TWODANT (Consistent-P & B-H-S) waswas -3.14% themaximum maximum for MCNP5 about 1%. The TRANSX/TWODANT (Consistent-P & B-H-S) -3.14%and and the error error for MCNP5 was about was 1%. The core model has core m

60 degree symmetry geometry. e symmetry geometry.

*Fine-mesh FDM (54 triangles/hexagon), **transport approximation in TRANSX

Fig. 5 shows the relative power distribution of the inner and outer core for 9-group MCNP5 (homogenous and heterogeneous) and 9-group TRANSX/TWODANT (Consistent-P, B-H-S approximation). It was found that the maximum relative error of TRANSX/TWODANT (Consistent-P & B-H-S) was -3.14% and the maximum error for MCNP5 was about 1%. The core model has 60 degree symmetry geometry.

Figure 5. Relative power distribution of inner and outer core

4.

CONCLUSIONS

The objective of this paper was to examine the feasibility of the replacement of cross section generation using TRANSX/TWODANT code with MCNP5 for a fast reactor analysis, specifically for a SFR. In this paper the deterministic methodology codes (TRANSX/TWODANT) were replaced with a stochastic methodology code (MCNP5) while retaining the diffusion nodal analysis. The results of this study wereFigure then compared with a reference 300ofMWe SFRand TRU outer burner MCNP5 5. Relative powerheterogeneous distribution inner core model to verify their

validity. The cross sections were generated a homogenous R-Z model. Figure 5. using Relative power distribution of inner and outer core

In a SFR diffusion analysis, the transport cross sections should be carefully considered. In the case of transport cross sections, all 4.4. CONCLUSIONS CONCLUSIONS code systems had a relatively good agreement with the reference data. MCNP5 showed a smaller error than the deterministic methods in the high energy region. It is observed that the conventional methods are relatively inaccurate for the low energy groups, The objective of this paper was to examine the feasibility of the replacement of cross section generation using TRANSX/TWODANT

ctive ofalthough this paper was to examine of case the replacement of crossallsection generation using TRANSX/T its impact is rather limited in the fast feasibility reactors. In the of capture cross sections, the methods have a good agreement code with MCNP5 for a fast reactor analysis, specifically for a SFR. In this paper the deterministic methodology codes

with less than 2% error. Except for the 9-group, all the codes had an error below 1% for the fission cross section multiplied by th MCNP5 for a fast reactor analysis, specifically for code a SFR. In while thisretaining paperthethe deterministic (TRANSX/TWODANT) were replaced with a stochastic methodology (MCNP5) diffusion nodal analysis.methodolo The

results of this study were thenwith compared with a reference heterogeneous 300(MCNP5) MWe SFR TRU burner MCNP5 the model to verify their X/TWODANT) were replaced a stochastic methodology code while retaining diffusion nodal ana

validity. The cross sections were generated using a homogenous R-Z model. f this study were then compared with a reference heterogeneous 300 MWe SFR TRU burner MCNP5 model to v

The cross sections were generated using a homogenous R-Z model. In a SFR diffusion analysis, the transport cross sections should be carefully considered. In the case of transport cross sections, all code systems had a relatively good agreement with the reference data. MCNP5 showed a smaller error than the deterministic


53

Technical Articles

In a SFR diffusion analysis, the transport cross sections should be carefully considered. In the case of transport cross sections, all code systems had a relatively good agreement with the reference data. MCNP5 showed a smaller error than the deterministic methods in the high energy region. It is observed that the conventional methods are relatively inaccurate for the low energy groups, although its impact is rather limited in fast reactors. In the case of capture cross sections, all the methods have a good agreement with less than 2% error. Except for the 9-group, all the codes had an error below 1% for the fission cross section multiplied by neutron fission yield comparison. For the power distribution comparison, each code is in good agreement with the reference results with a relative error below 1% for MCNP5 and about 3% for the deterministic methodology code system. In the keff comparison, MCNP5/DIF3D had -154.3pcm error, making it the closest to the reference for 9-group calculation. TRANSX/ TWODANT with the consistent-P and B-H-S options had a similar error of about -1070pcm. This was due to the relatively large error of the transport cross section in the high energy region. In the 25-group calculation, MCNP5/DIF3D had the smallest error, but had a 200pcm increase compared to that of the 9-group calculation. To find the reason for this error increase, the number of neutron histories in the MCNP5 calculation was increased, but with no obvious effect. This is a possible area for future research. In summary, a hybrid analysis method (which couples the stochastic approach to generate cross section data and the deterministic approach to analyze reactor core) can be an effective methodology for the analysis of fast reactors. For an improved performance, the hybrid method will be refined for a better determination of the diffusion coefficient and more efficient calculations in future studies.

Courtoy™ Global market leader in compression technology for nuclear fuel pellets

• Purpose-designed compression machines for uranium oxide and MOX • Machine design adapted for integration into glove box • Unique air compensator technology for high-precision pellet density control • New “constant density” control algorithm for fast machine set-up and highly accurate process control • Automated in-line pellet density measuring with feedback to the press

• New high-performance powder feeding system • Hold-up / hold-down system for smooth ejection and avoiding cracks in pellets • Proven reliability, with presses in operation in a nuclear environment for over 40 years • Service teams based in Europe, USA and China

GEA Process Engineering nv . Bergensesteenweg 186, 1500 Halle, Belgium . Tel. +32 2 363 83 00 . Fax +32 2 356 05 16 . courtoy@gea.com GEA Process Engineering China Ltd . Hexian Road 99, 201109 Shanghai, PR China . Tel. +86 21 2408 2288 . Fax +86 21 2408 2222 . courtoychina@gea.com

engineering for a better world

gea-ps.com/Courtoy


News

54

NEWS Highlights of the Month Company News International Cooperation NPP News


55

Highlights

News

agrowth rate of ten units peryear and the order form increased by 100 billionRMB per year. Additionally,there are 17 units under operation at present. Domestic nuclear power projects have been accelerating since

DFEM manufactures generator for Taishan, China China-based power generating equipment producer Dongfang Electric Machinery (DFEM) has manufactured a 1,750MW nuclear generator for the Taishan nuclear project in southern China.

last October. At the exhibition JianJingwen, Deputy Director of Equipment Department of the Sate Nuclear Power Technology Company (SNPTC), saidthat nearly 200 units would be in demand according to the nuclear power installed capacity in the year of 2030 planned by the national nuclear power development scheme. He estimates an increase of 4-6 units per year will be needed during the 12thFive-Year Plan period and 6-8 units during the 13th Five-Year Plan Period(2016-2020)and

DFEM said the generator has highest installed capacity per-

will steadily increase at a rate of 10 units each year after 2020.

unit among the nuclear generators in the world. The Taishan

As anacademician of the Chinese Academy of Engineering,

nuclear power project, located in Guangdong province, is

Ye Qizhen also agreed that the development of nuclear power

being developed by China Guangdong Nuclear Power Holding

would accelerate sharply, and the nuclear power which has

Company (CGNPC) and ÉlectricitÊde France (EDF).

been put into production in China would reach about 60 million

So far, DFEM has produced 14 nuclear generators with a total installed capacity of 15,790MW.CGNPC said the total

kilowatts, which is four times that of present.17 units would have capacity of 15 million kilowatts.

investment for Phase 1 of Taishan nuclear power project stood

The development of third generation technology has become

at CNY50.2bn and may include the construction of two units

the mainstream of international and domestic nuclear power

using the Electron Paramagnetic Resonance (EPR) technology,

construction, and now the third generation pressurized water

with each unit having a capacity up to 1,750MW.

reactors (PWRs) which are under construction aroundthe

According to CGNPC, Units 1 and 2 are scheduled to be put into operation in 2013 and 2014, respectively.After the two units are built, together they will add about 26 billion kWh of electricity to the grid annually. Source: http://nuclear.energy-business-review.com

world mainly focus on the following two types: AP1000 and ERP. The modified version of AP1000 is divided into two main technical routes, which are CAP1400 dominated by SNPTC, and ACPR1000 represented by CGN. On the basis of the introduction of foreign technology, the localization rates of both types are improved, for example, the localization rate of CGN located in Yangjiang reaches up to 85%, and would be

Chinese power units to be three times the scale

completely researched by the end of this year and then put into

News released at the2013 China International Nuclear

In addition, JianJingwen said that in the ongoing AP1000

Equipment Exhibition inSeptember saidthat the national

project, the localization of the unit located in Haiyang has

nuclear power units would probably expand to three times of

reached 70% localization, and its equipment such as vapor

their current scale in the next seven years. The development

generator, shielding motor main pump, reactor pressure vessel,

of nuclear power would peak at around the year of 2020 with

reactor internals and driving mechanism are under way, these

operation at the beginning of next year.


News

56

are expected to be delivered at the end of this year or early next year. At present, the voltage stabilizer, accumulator, integration of components and hooks has been supplied. He also revealed that the listed companies which have won the bidding of the project on AP1000 and automation CAP1400 are CFHI, CNEG, Dongfang Electric, and Shanghai Electric. Consider, for example,the vapor generator project bidden by Dongfang Electric - two units of a power station areabout 800 million RMB, and the bidding amount of the whole company is about 2 billion RMB. He said that the latest batch of bidding results of the major national demonstration project of CAP1400 would be announced at the end of October. “A project fornuclear power would take the investment of 20 billion, half of which would be spent on the equipment. Only these leading companies

China independent third-generation NPP technology CAP1400 passed panel argument The preliminary design of CAP1400, China’s third-generation nuclear power technology with independent intellectual property rights, has passed the expert demonstration organized by the National Energy Administration. The demonstration project is scheduled to start construction in 2014 in Weihai, Shandong province, and to be connected to the grid by the end of 2018. Deputy General Manager of State Nuclear Power Technology Corporation, Wei Suo, indicated thatCAP1400 technology has digested and absorbed the advanced nuclear power technology of AP1000 introduced from the United States and has adopted the construction experience and innovative results of the first batch of AP1000 units.

in China could do this for the moment.” The R & D of CAP1400 technology is in accordance with Source: http://www.china-nea.cn

NPP demonstration project on HTGR completed plant capping

China’s latest requirements for nuclear safety after the accident in Fukushima and with reference to the latest international standards. It has taken a series of measures that can strengthen nuclear safety against earthquakes, flooding and other extreme

China North Nuclear Fuel Co., Ltd (CNNFC) has finished its

external forces and natural disasters. The passive safety system

plant capping of NPP the demonstration project on HTGR. It is

is capable of 72-hours water feeding ability to ensure nuclear

estimated to complete civil construction, interior decoration and

safety.

auxiliary equipment installation and to equip process equipment installation conditions by October 2015 and be put into operation in 2016.

Source: http://www.china-nea.cn

technological projects during the 11th Five-Year Plan (2006-

Zirconium alloy with China's proprietary intellectual property rights achieved phased results

2010), which was invested with a total of RMB 275 million

A new zirconium alloy CZ1 and CZ2 of the project on “high-

by CNNFC. Aiming to meet thefirst charging and refueling

performance zirconium alloy with China’s proprietary intellectual

requirements of high-temperature nuclear reactor fuel elements,

property rights (Phase I)” has passed domestic expert

CNNFC plans to build a production line with an annual output

assessment of the process optimization and performance test

of 300,000 spherical fuel elements to provide fuel elements for

outside heap, which was performed by the nuclear fuel research

HTGR NPP demonstration project of 200,000 kilowatts modular

and design center of China Guangdong Nuclear Power Group

and to accumulate technical experiencefor the production of

(National Energy R & D Centers of Advanced Nuclear Fuel

commercial HTGR nuclear fuel elements in the future.

Elements, referred to as "Fuel Centers"). This signifies that the

The project is one of the national major scientific and

Source: http://news.bjx.com.cn

zirconium alloy developed by CGN has yielded good results and has laid the foundation for the localization and autonomy of


57

China’s zirconium alloy fuel assembly. After discussion and review, evaluation experts agreed: the Fuel Center under the support of SNPTC State Nuclear Baoti Zirconium Industry Company finished research on the industrialscale processof two brands of zirconium alloy tubes. Source: http://www.cnnc.com.cn

First China domestic AP1000 fuel handling machine manufactured

News

Roderick, Westinghouse president and CEO. That includes two units each at two new sites, Xudabao in Liaoning province and Lufeng in Guangdong province, and two additional units each on the existing Sanmen and Haiyang sites (in other words, they are Sanmen 3&4 and Haiyang 3&4). The AP1000 reactors are being built by SNPTC in a technologytransfer agreement with Westinghouse. As part of the agreement, the Chinese supply chain gradually takes an increasingly large share of reactor construction. However, the eight new units would still have some Westinghouse critical

On September 9, manufacturing of the fuel handling machine

components, according to Jeffrey Benjamin, Westinghouse

of Haiyang NPP unit 1 was successfully completed and has

senior vice president, nuclear power plants, including digital

passed its factory acceptance testing, which was undertaken

control systems, fuel, and reactor internals. Westinghouse

by Dalian Huarui Heavy Industry Group Co., Ltd. It marks that

would also help with operational readiness, startup and supplier

manufacturing work of the first factory-made fuel handling

training.

machine of AP1000 relying project has been completed. The fuel handling machine was installed above the auxiliary building fuel storage poolsin the nuclear island. Its main function is responsible for the transportation work of fuel assemblies within the auxiliary plant.

CAP1400 Wang of SNPTC said that R&D work continues on a larger, indigenous version of the AP1000, the CAP1400 reactor. Conceptual design work began in 2008, preliminary design was

Fuel handling machines are one of the most important pieces of

carried out in 2011-12, and large-scale tests are currently under

equipment in an NPP operating system. Itis key equipment that

way. He said that first concrete was due to be poured for the

restricts capping at Haiyang NPP Unit 1 auxiliary plant.As thisis

demonstration unit at Shidaowan, Shandong province in April

the first domestic fuel handling equipment in China, the workers

2014, with grid connection planned for 2018. By then, 75% of

encountered many difficulties during the manufacturing process. Source: http://news.bjx.com.cn

Grid connection for first AP1000s planned for late 2014 Sanmen 1 and Haiyang 1 are due to be connected to the Chinese electrical grid in December 2014, said Wang Binhua, chairman, SNPTC, in a presentation at the World Nuclear Association's annual symposium in London in mid-September. He said that 28 reactors are currently in construction in China, and 16 are in preliminary preparation (which means that they

design drawings are expected to be complete (as of mid-August they were 43% complete). As the 1400MW reactor design promises to generate 20% more power than the AP1000, its components are correspondingly bigger, Wang said. For example, the steam generator tube sheet is just over 5m in diameter, compared with 4.5m for the AP1000. Wang said that key components for the reactor, including reactor pressure vessel, steam generators, pressurizer, accumulator, passive heat removal system, control rod drive mechanisms,

have passed the central government's preliminary approval).

reactor vessel internals and turbines, have been ordered.

In addition, safety-related concrete was due to be poured for

Regulatory review of the CAP 1400 began in March 2013. The

eight more AP1000s in China within the next year, said Danny

Chinese National Nuclear Safety Administration began its review


News

58

of the preliminary safety analysis report in April 2013. The National Environmental Protection Agency (NEPA) had meetings to review the site evaluation report and environmental impact

China Autonomy Starts Constructionat the End of theYear

report in June 2013. Review of the preliminary design began in

China Autonomy, the 3rd Generation Nuclear Power ACP1000

December 2012. Currently, the site is being excavated.

technology has made its international debut. On October 14th,

Wang said that SNPTC is also doing preliminary R&D on a larger CAP 1700, and a demonstration reactor is also planned for the Shidaowan site.

staff from CNNC attending the China Science Fair said that the ACP1000 has been prepared for construction at the end of 2013, meanwhile, multiple safeguards defend against a nuclear

Source: http://www.neimagazine.com

accident like at Fukushima.

China Would Probably Replace Reactor Type of Tianwan NPP

The ACP1000 is a Chinese-developed advanced PWR NPP

Chen Hua, General Manager of CNNP, said to journalists that the company was considering the possibility of replacing the reactor of AES-91 having installed the reactor of VVER-2006

designed by CNNC according to its30-year technological experience in the field of nuclear power. In April, 2013 the preliminary design was decidedby the National Nuclear Authority,

on the former two units, units 3&4, during the third phase of

and at the end of September, as the 3rd generation of Chinese-

Tianwan nuclear power station.

developed nuclear brand, the ACP1000 made its international

The first concrete is due to be poured into unit 4 and the unit is planned to be put into service in December 2018. Unit 3 would be put into service in February 2018, having started construction at the end of 2012. Chen Hua said:“We are considering another possibility on reactor construction. I will go to Russia in November, negotiating with Серге́йКирие́нко, the general manager of Rosatom, and will discuss VVER-2006, and make final decision.”

debut at the 57th IAEA Conference. ACP1000 attached a passive accident treatment to the design, which could ensure its security iffaced with an earthquake or tsunami together with a power failure. Staff of CNNC explained, “Passive means that using natural driving forces such as gravity, temperature or density difference to implement functions of heat or fluid transfer, instead of using a

VVER-2006 is developed by Atomenergoproekt and is equipped

power supply. There would be appropriate measures to respond

with a passive heat removal system in order to improve safety.

to different kinds of potential accidents such as hydrogen

Chen said, “The first phase of Tianwan NPP shows cooperation

blasting, containment overpressure, containment melt through,

achievement with Russia. Today, concrete is poured forunit 4

and power failure.”

of the second phase of the project, and we are looking forward to further cooperation on nuclear power between China and

According to reports, the ACP1000 has acquired export

Russia.”

contracts with complete independent intellectual property, and

Tianwan NPP is constructed according to Atomenergoproekt’s

has now been prepared for construction at the end of 2013.

design, and was put into industrial service in 2007. China signed

The localization of the first reactor target project is above 85%,

a project contract with Russia on the second phase of Tianwan NPP in September 2010. source: http://news.bjx.com.cn

helping to speed up promoting the manufacture standard inland and drive down the project’s cost. source: http://www.china-nea.cn/htm


59

News

technological projects. The third-generation nuclear power

Company News

demonstration project refers to two units, one of which was manufactured by Dongfang Heavy Machinery and the other by SEC Nuclear Power Equipment. Dongfang Heavy Machinery corresponds to Baoyin Steel and SEC Nuclear Power Equipment to Jiuli Hi-tech Metals. It is expected that Jiuli Hi-Tech Metals

CGN makes achievements in developing self-owned Zircaloy CGN has conducted the first phase of R&D for Zircaloyprocessing optimization and performance testing outside of a reactor for the new type of Zircaloy, CZ1 and CZ2. It has both independent intellectual property rights and high performance in China. This test was approved by domestic experts on 20th Aug, 2013, which means CGN has made some stage achievements in its development of Zircaloy. Most importantly, it has laid a foundation for localization and independence of structural material of Zircaloy. After discussion and review, experts agreed that the R&D of two types of Zircaloy tubes with self-owned brands have been completed under the support of the State Nuclear Bao Ti Zirconium Industry Company and more than a thousand tubes have been manufactured. Proven by its excellent performance, processing technology of two kinds of alloy cladding pipes is feasible. Thanks to the technical parameters and superior performance of these tubes, this provides a good basis for follow-up processing optimization and curing. Source: http://www.cgnpc.com.cn

Baosteel signs supply contract of over 200 million RMB for690U-tube for nuclear use On August 29th, Baoyin Special Steel signed a supply contract with Dongfang Heavy Machinery Co., Ltd on a thirdgeneration nuclear power demonstration project of 690U-tube for evaporator use, with a total contract amount of 200 million RMB. The cost is one million RMB/ton, which is higher than the originally anticipated 700,000 RMB/ton. Currently, only Baoyin Steel and Zhejiang Jiuli Hi-tech Metals Co. have passed the assessment for 690 U-tube. This project has been taken as one of the national key scientific and

will soon also sign the supply contract, in which the supply quantity and contract amount will equal Baoyin Special Steel’s. Beginning the official supply of 690U-tube will significantly affect the result of Jiuli Hi-tech Metals in the next two years. Source: http://news.bjx.com.cn

RINPO develops the second full-scope simulator for Fuqing NPP The second full-scope simulator system of Fuqing NPP developed by the Research Institute of Nuclear Power Operation (hereinafter referred to as RINPO) successfully passed the factory acceptance on August 29thto September 3rd. After conducting the tests for the full-scope simulator, the inspection teams from Fuqing Nuclear Power Company announced that the performance and function of it met the basic requirements of factory acceptance outline. RINPO said it will redouble its efforts to complete the on-site installation and commissioning work, and continue to make greater contributions to the later smooth installation service of the second full scope simulator project. Source: http://www.cnnc.com.cn

Cable Orders Cannot Meet the Demands Recently, a team was researching medium and small wire enterprises of all types in Yixing, and found there were six or seven enterprises that had gone bankrupt, including Chao Neng Cable, the Golden Tower Cable, and the FAR Cable, while the rest were small companies. They failed because of money: firstly, the difficulty and low rate of cash return; secondly, loan interest rates increased as the result of banks having cut off lending; thirdly, some enterprises blind investing futures led to fund loss. As one of the cable industry bases in China, Wuxi cable enterprises is in a bad running condition, which is reflected the


News

60

current situation of cable industry in China. Firstly, the fall in

comparatively ordinary bid project, but this year there turns out

copper prices gave rise to downstream orders being delayed.

to be 70 enterprises. Recently, the projects have decreased year

The starts of cable enterprises is between 60% and 70%;

to year, big projects are fewer, and annual larger projects have

secondly, payment was delayed heavily with a low rate of return

almost come to an end.

at 70% for most, and the remaining 30% having payment upon acceptance which would cause a delay of 6 months. Some SMEs' return rates are below 50%; thirdly, cable enterprises basically produce to order, and very few would stock goods for the order cycle; Fourthly, as orders were gradually gathered by large enterprises, small SMEs would become weak in antirisk ability due to fewer orders and limited funds. As for three major cable camps, compared to Hebei and Anhui, a large cable factory in Wuxi has an advantage in cable orders with better quality and better starts. China is a large manufacturer of wire and cable, thus wire and cable is regarded as a blood vessel and nerve of the national economy. However, there are three problems in the cable industry: 1. low ratio in concentration. Compared to China's low market shares of 7%-10% of the top ten cable enterprises, even the largest cable enterprises share 1%-2.5% of the market, the concentration ratio of cable enterprises in Europe and America has reached over 80%; 2. Low profit margins. There are more than 7,000 cable enterprises intensifying competition, labor costs increases have added to production costs, and the copper price has fluctuated drastically, encroaching on process cost, thus leading profits of less than 4%; 3. Low technical content. Some special cables are mainly monopolized by foreign countries, China has a serious shortage in technology, and produces normal cables with low technical content, and the situation of fake products still exists. Data shows that China's economic speedup has reduced and in a transition stage, there is little possibility for government to release stimulus measures.

As China’s wire and cable industry is evolving its selection process, it's unsurprising to see some bankruptcies. Ding Aina, a research analyst thinks that only by depending on brand, technology and improvement of management methods can the enterprise occupy a position in the fierce and fatigued market. Processing charges would put enterprises on the path to ruin. source: http://www.fe-cable.com

Dalian DV Valve Company Sign Contract for Blast Valves worth 200 million RMB Recently, Dalian DV Valve Company held a ceremony at SNPEC to sign the contract for the development and procurement of the blast valve forCAP1000 Haiyang NPP Units 3&4 and CAP1400 Shidaowan Project Unit 1. This June, in the bidding process for CAP1000/CAP1400 for the state nuclear projects - Sanmen NPP Units 3&4, Haiyang NPP Units 3&4, Lufeng NPP Units 1&2 and the national demonstration Units 1&2, Dalian DV Valve Company won first prize for bid evaluation, and got two contracts each from both Haiyang NPP Unit 3&4 and the national demonstration Units 1&2. The contracts are worth 200 million RMB in total. SNPTC, SNPEC, Shanghai Nuclear Engineering Research Institute, SPERI, Sichuan Science City Haitian Industry, Dalian Municipal Government, Dalian DV Valve Company and some relevant departments attended this contract signing ceremony. A blast valve is key equipment of the third generation NPP of CAP1000 and CAP1400. All the components of blast valves is imported, and Dalian DV Valve Company signed the technology transfer agreement on the explosion valve of the AP1000 with SNPTC. By assimilating Westinghouse’s technology, Dalian DV Valve Company teamed up with Shanghai Nuclear Engineering

In terms of cable demand, electricity grids, real estate and

Research Institute, the Institute of Chemical Materials of CAEP,

infrastructure have shown nothing exceptional, and the total

and the Material Institute of DLUT to solve the key manufacturing

demand is stable with a slight decline. Now the cable industry is

technology problems with independence and innovation for

embarrassed with more demands but fewer orders, for example,

manufacturing the blast valve. At the same time, Dalian DV Valve

previously there were about 38 enterprises competing for a

Company also got national support from a special fund.


61

source: http://www.zgbfw.com

News

in Ruijin for nuclear construction in support of promoting the development of the previous central Soviet area.Under the positive

China's Nuclear Fuel Co.Investing in Western

introduction by Jiangxi Nuclear Industry Geological Bureau, on October 9th, the Nuclear Construction Clean Energy Co., Ltd, affiliated to CNEC, signed a strategic cooperation framework agreement with Ruijin Government, and set up Jiangxi Ruijin Nuclear Power Preparatory Office. According to the agreement, Nuclear Construction Clean Company would explore a site for constructing a high temperature gas cooled reactor NPP with completely independent intellectual property rights in China, together with fourth generation nuclear power technology. Besides, an industry base and a construction home base are also in the plan. An expert of China Nuclear Industry Construction Group Co., Ltd introduced that the high temperature gas cooled reactor belongs to the fourth generation nuclear power project with good

XinGao Push Zirconium Development On September 27th, China's Nuclear Fuel Co., Ltd owned by

safety performance, high thermal efficiency and good prospects for development.

CNNC formally signed an agreement on capital increment with Northwest Institute for Non-Ferrous Metal Research and other units, joint investing in, and incorporating Western XinGao Nuclear Material Technology Ltd. Yang Changli, Party Member and Vice President of CNNC, attended the signing ceremony together with officials of China's Nuclear Fuel Co., Ltd.

In addition, in the areas of construction with urban infrastructure

Nuclear grade Zirconium is a key raw material in nuclear fuel component manufacturing. As nuclear power has developed in China, the demands of nuclear grade zirconium have gradually increased. CNNC investing in Western XinGao would strengthen R&D on zirconium alloy, complete the R&D production system, and accelerate independent R&D on zirconium alloy materials and nuclear fuel components in China.

an industrial park.

In the field of nuclear grade zirconium, CNNC has advantages in basic research, industrialized applications and marketing, while Northwest Institute for Non-Ferrous Metal Research in technology, equipment, industrialization and personnel. Cooperation of both sides has complementary advantages and important strategic significance on improving R&D systems of zirconium alloy and the continuous development of nuclear power on a larger scale in China.

On September 25th, CNNC Inner Mongolia Mining Industry LLC

source: http://www.cnnc.com.cn

CNEC Prepares to Build Nuclear Project in Rui jin, China According to Jiangxi Nuclear Industry Geological Bureau, China Nuclear Engineering Group Co., Ltd (CNEC) is to explore a site

as well as transportation, CNNC would make full use of its advantages in resources and draw on its previous experience, via comprehensive development, take an active part in the construction of city integration, and the development of Red tourism as well as

Source: http://www.china-nea.cn

CNNC First Uranium Mine Entity Starts Running inaugurated its establishment in Baotou, which is a sign that CNNC’s first intra-field natural uranium development entity and market competition subject has started to officially launch as a new important growth point by the Mining Business Division which forges natural uranium. CNNC Inner Mongolia Mining Industry LLC is responsible for overseeing natural uranium geological prospecting, scientific research and project management in the middle and western parts of Inner Mongolia, and building into a diversified mining industry with rich resources, huge production capacity, scientific and standard management and strong profitability. Currently, Mining Business


News

62

Division is working at full-speed on all the work mainly focusing on

ability. Now the company takes an active part in developing new

the projects of Nalinggou and Bayanwula, ensuring completion by

marketing, such as petrifaction, nuclear power and marine projects.

the end of 2015. Since Mining Business Division was set up, based on the construction of a uranium base, it has innovated industry development, optimized the arrangement structure, and pushed industry promotion, speeding up the arrangement core transferred to North Sandstone Region with rich newly discovered resources. To thoroughly apply the group-base strategy and accelerate the improvement of natural uranium capacity, Mining Business Division focuses on setting up a development management system in conformity with resource distribution and capacity layout

He said that compared to the rapid development of manufacturing in China, high-end manufacturing is relatively worse because of backward materials. There is a large gap compared with advanced foreign standards. A person from Bond Department said that some materials were mainly supplied by foreign companies, thus there is alternative space for the company. The product direction is still towards new materials and the company is busy exploring new markets.

according to the principles of exploration integrated with exploiting, optimizing the industrial layout, conformity of interior resources and

The Security Group focuses on the R&D of advanced metal

intensifying region cooperation, actively promoting the coordination

materials together with production and sales. The main products

of geological surveying, technology tests, mining management and

are high-speed tool steel, welding materials, non-crystalline

project construction on the grand bases, accelerating the progress

materials, indissoluble materials, powder metallurgy materials and

of preliminary works, and setting up several headquarters for grand

diamond tools.

bases on uranium mines in Inner Mongolia, Jiangxi, Guangdong and Xinjiang. Brigade 208 and Brigade 243 have been undertaking further research in Inner Mongolia since the implementation of the eleventh five-year plan, innovating ideas and methods of prospecting, and verifying a large body of uranium deposits, which make Inner Mongolia the region with the highest potential and wide developing prospect of uranium resources. With this background,

Source: http://www.china-nea.cn

DSIC Acquires Nuclear Project Worth Tens of Billions DSIC Equipment Business nuclear project has received a letter of acceptance from CNPE regarding the nuclear container of the first phase project of Xudapu NPP.

the Mining Business Division is making overall plans and takes all

The nuclear container project is the biggest order that DSIC has

factors into consideration, stress the key point, and strengthen the

ever received with orders worth tens of billions RMB. DSIC has

design of top-levels, to further advance natural uranium geological

cooperated with CNPE twice before. In this bidding process, DSIC

prospecting, project construction, field tests, foreign cooperation

made specific schedules in response to different manufacturing

and mining management in the middle-west of Inner Mongolia. After

difficulties, this was highly recognized by CNPE’s committee, and

one-year of operation, the grand base headquarters of uranium in

laid the foundation for the follow-up results accumulated for the

Inner Mongolia has sufficient factors to turn into entity.

pressure vessel and heat exchanger.

source: http://www.china-nea.cn

Top Security Group is Exploring Nuclear Power in Marine Engineering An insider from Top Security Group has said that the major advantage of the company is its strong technology research

DSIC has gained an increasing high profile in the field of nuclear power, and accepted the invitations from Chinergy Co., Ltd. and CNPE to attend of tenders; this shows a strong growth trajectory for nuclear power. Source: http://news.bjx.com.cn


The 5th Annual Nuclear New Build China Summit 2013 December 12-13,2013 Shanghai China

——Optimize Nuclear Equipment Supply Chain, Accelerate the Localization Progress of 3rd Gen Nuclear Equipments

Conference Highlights

Past Chairmen Committee

1. Updates on China’s Nuclear New Build Projects 2. Predict and Analyze the Trends of Nuclear Technology Route in China 3. Analyze the Influence of the 3rd Gen Nuclear Technology on the Nuclear Equipment Suppliers 4. Updates on the Latest Localization Progress of 3rd Gen Nuclear Equipments 5. Updated on Nuclear Safety Equipment Supervision System 6. Grasp the Tendency of China’s Nuclear Standards and Regulations 7. Seek a Success Way to Explore the International Nuclear Market for Nuclear Equipment Suppliers 8. Parallel workshops for Valve& Pump, HVAC venders : Analyze the Impact of the 3rd Gen Nuclear Technologies and New Standards 9. Pre-Arranged Face-to-face Meetings with Your Target Clients

Save up 10%, If You Register by Three or More People!!

Jean Claude PRENEZ Thomas KOSHY Tianlin QIAN President Head of Nuclear Power President P.F.C.E Technology Development CNNC New Energy Div. of Nuclear Power Co.,Ltd. IAEA

Xin WANG GM, NI Engineering Department CNPDC

Jihong FAN GM,Dept. of R&D GM,Large Advanced PWR Project. SNPTC

Ruilin DONG Deputy Chief Engineer Institute for Standardization of Nuclear Industry

Wei LI Director, Construction Center SNPEC

Takashi SHOJI Programme Director WANO

François MORIN China Director WNA

Yuming XU Vice Secretary General CNEA

Organizer Official Parnters

Steering Committee Members

Chunyu XIAN Deputy President CNPDC

New Build Events — China Summit

Jianshe CHAI Deputy Director MEP Nuclear and Radiation Safety Center

Liming RAO Deputy Manager Procument Centre Quality Surveillance Dept. SNPEC

Endorser Zengqiang ZHANG Mechanical Section 1 Chief, Purchase Dept. CNPE

Guofeng ZHOU Deputy Director Engineering Modification Center CNPRI

Xu GAO Assistant Manager, Design Dept. Chinergy Co.,Ltd.

Bin DAI Director,NPP Maintenance Center CNPO

Ping HUANG Director,Machinery Dept. NPP Maintenance Center CNPO


News

64

International Cooperation

aspects in order to enhance engineering quality. In engineering construction, Taishan Nuclear Power has initiated standard benchmarking with the same industry at home and abroad

“Double-layer containment” construction of Taishan NPP runs smoothly On September 5th,the reactor of Taishan NPP Unit 2started pouring its last layer of concrete for the containment straight segment and will begin the key process of prestressing, signifying that the "Double-layer nuclear island containment"project, consisting of two units of Taishan NPP, has entered a new stage. The first phase of Taishan NPP is jointly constructed by Chinese enterprises and EDF who has the largest NPPs in the world. This project adopts the world's most advanced thirdgeneration EPR nuclear power technology. Drawing on active NPP design, construction and operating experience from engineering construction, Taishan nuclear power has adopted a lot of proven advanced technology and has made a lot of improvementsin the core, fuel and system design, optimization of protection and control systems, as well as the containment design, which further reduces the probability of a core melt and large-scale release of radioactive material, and significantly improvesnuclear safety. Meanwhile, Taishan Nuclear Power Project has established a complete quality assurance system which has setclear rules for the project’s design, equipment manufacturing and other

and activelypromote the standardization of construction and enhanced the quality of project management in accordance with the "International Benchmarking Central ManualEvaluation onSafe Nuclear Power Engineering Quality Standards" and "Implementation Standards on Nuclear Power Engineering Quality Management ". Currently, the system operates effectively under control and the engineering quality keeps in a good conditionwith strict supervision. As the third EPRnuclear power projectto be constructed in the world, the construction of Taishan NPP’s two units has a significant post-mover advantage. Through establishing a feedback mechanism with foreign counterparts, Taishan NPP has fully absorbed the experience of EPR units in construction abroad and other domestic NPPs under operation and construction; this has reduced construction risks significantly Jean Pierre, a French engineer who participated in the construction said thatChina hasn’t stopped nuclear power construction during the past 30 years and the technical capacity of nuclear power construction has become more maturewith the long-term accumulation of experience. Many advanced technologies have been applied in Taishan’s construction, which include the whole mass concrete pouring, the nuclear island lining modular construction, three-dimensional laser measuring and automatic welding of the main pipe. Due to its own advantages in technology and management methods, at present, the construction of Taishan nuclear power project has progressed steadily and approaching the implementation scheduling of the similar international projects.  Source: http://www.china-nea.cn

Subscribe to our free Newsletter and Magazine! Email us at info@dynabondpowertech.com or fax us at +86-10-64654957 your; Name: Email: Title: Company: Fields of interests:


65

China’s nuclear power seeks expansion overseas

News

currently, China has 17 reactors in operation and a further28 under construction. China's nuclear power companies are also actively seeking overseas expansion.

On September 2nd,according to the UK’s Financial Times newspaper, China Guangdong Nuclear Power Group (CGN)

Source: http://www.china-nea.cn

is currently negotiating with EDF regarding new nuclear power projects in the UK. CGN hopes to hold greater operational control over the investment in new nuclear power plants in order to allay concerns on national security for the British government. CGN and EDF intend to jointly fund 14 billion pounds into Hinckley Point in Somerset, UK to build anuclear power plant. But CGN says that the current deal can be negotiated as long as they have more rights to speak than the other UK companies. Besides Hinckley Point, EDF also plans to build two nuclear power plants in Saiz, Suffolk, Virginia. Informed sources said that CGN may seek to become a joint operator of Saiz Louisville plant, but EDF may still retain the overall right to operate. China is also likely to enhance participation in the construction of new plants, and may even provide services for the reactor design. The Informed sources said, "the Chinese side is using Hinckley Point as a stepping stone and they will require more control in the next project.” However, due to the sensitivity of nuclear energy, to allow the companies with a Chinese background to have operation rights may raise national security concerns. When Chinese companies showed interest in bidding for the Horizon Nuclear Power project last year, the British government required the Chinese side to hold a small stake, butfinally Japan's Hitachi won this project. Chinese state-owned companies in the United States and Europe are also facing a trade block due to national security concerns, particularly in the energy and telecommunications fields. Mark Pritchard, the Conservative Member of the UK Parliament and Member of the National Strategic Security Committee said that Chinese companies can only assume a "small role" in the energy and other sensitive fields. China has increased its investment inthe energy and infrastructure market in the UK. Last year, China bought a stake of Thames Water via Sovereign Wealth Fund, CNPC bought a 49% stake inTalisman’s business in theBritish North Sea, while CNOOC purchased Nexon for $18 billion. China is becoming a major force in the field of nuclear energy;

Safety DCS Platform developed by CTEC is granted SIL3 certificate by TUV SUD FirmSys, the safety DCS platform developed by China Techenergy Co., Ltd (CTEC) with its own intellectual property rights, was granted SIL3 certification by the international certification authority TÜV SÜD. It is the first safety DCS for nuclear power plants developed by a domestic supplier to pass the functional safety certification, which is considered a milestone. A nuclear power digital control system is the central nervous system of an NPP. For a long time, the core products in this field in China weremostly dependent on imports. In order to enhance the level of domestic nuclear power digital I & C system with intellectual property rights, and to develop its applications in national nuclear power for the long term, CETC independently designed, developed and manufactured the nuclear safety grade DCS platform, the FirmSYS and invitedTÜV SÜD to conduct its safety certification. FirmSYS is mainly used in systems of electronics, electrical and programmable logic control security to implement relevant security functions. For example: being applied in nuclear reactor protection systems to perform the function of reactor scram. FirmSYSmeets legal requirements on nuclear safety and process control. It can be applied to the SIS system’s of the nuclear power industry.


News

66

the Senior USAVice for replacement President ofofTÜV components SÜD Greater including China, the Mr. impeller Zhu and guide vanes andcooperation factory re-testing. That work has now been Wencai said: "The with CETC can bring valuable completed on the first two main pumps. SNPTC expects the reexperience for promoting functional safety technology to highshipped components to reach Shanghai in early October. risk fields including I & C systems in China. Westinghouse is currently constructing four AP1000 units in The leader of CETC said: "At the beginning of the project, we China, two each at Sanmen in Zhejiang province and Haiyang wanted to inviteCurtiss-Wright an experiencedwas thirdawarded party with strong local in Shandong. a contract by support to complete the certification process, after careful Westinghouse to produce 16 reactor coolant pumps for the comparison, chose unit TÜV1 SÜD in the expected end. We to hope to units in 2007.we Sanmen is currently begin generating 2014; it is notwith clear what effect - ifshare any maintain a electricity long-termincooperation TÜV SÜD and the coolant pump issue will have on the its reliability and experience in the fieldconstruction of nuclear schedule. power to Curtiss-Wright Flow Control filed an event notification enhance our safety designs and management levelwith andthe to US Nuclear Regulatory Commission in May 2013, detailing develop our international and domestic markets." the issues revealed during final testing of the defective pump. According to that filing, a piece of impeller blade was discovered The level of SIL is derived from the functional safety to have separated from the main impeller casting. The physical requirements of “IEC 61508”, which is the degree of risk cause of the failure, the report concluded, was most likely to reduction. SIL is divided four material levels from SIL4, be a flaw present in both into the cast andSIL1 weldtooverlay among which SIL1 blade, is the lowest andnot SIL4 highest. As applied to the the impeller and could bethe remediated by regard to International standards, the highest level concern of SIL is SIL3 subsequent weld repairs. CW-EMD expressed at a lack of process process control control systems in the sand process at Wollaston for the andcasting devices. Alloys, the sub-contractor which had manufactured the defective Source: http://news.bjx.com.cn

51

News

part. Russian-Chinese

sub-committeediscussion on construction of Tianwan NPP Units 5-8

Source:http://www.world-nuclear-news.org On September 13th, the 17thRussian-Chinese subcommission meeting on nuclear issues of the Russian-Chinese CNPE Held Exchange Meeting with Ceradyne GovernmentHeads was held in Moscow. In August 2013, Dingjian, General Manager Assistant of CNPE The Russian delegation, GeneralManager of Russian State and President of CNPE Design Institute, met with Dennis Atomic Energy Corporation (Rosatom), SV Kirienko and the Manning, general manager of Ceradyne Boron Products. Mr. Chinese delegation, Director of China Atomic Energy Authority, Zhaobo, vice chief engineer of CNPE, and other staff from Ma Xingrui co-chaired the meeting. the management department of the Design Institute, Reactor Engineering Institution and equipment department also attended During the meeting, both sides discussed using nuclear energy the meeting. conditions and prospects of bilateral cooperation. The two sides also proposed the smooth progress of construction of Tianwan Mr. Manning presented the application of enriched boron 10 in NPP Units 3 &4,meanwhile, they initiated discussion on possible worldwide NPPs and its development tendency in 3rd generation new cooperation projects, such as the construction of Tianwan NPPs, as well as nuclear fuel transportation and storage of NPP Units 5-8, WMWC reactor NPP in China, BN-800 fast boron and aluminum materials. CNPE introduced ACP1000 3rd neutron reactor, dual-unit NPPs and offshore nuclear power generation technology in the meeting. Both sides extended the plants. will for further understanding and deeper cooperation. The two sides signed a protocol during the course of the Source:http://www.cnpe.cc meeting. Source: http://industry.caijing.com.cn


67

LvHuaxiang exchanges with Babcock & WilcoxmPower Co. on small reactor On September 18th, LvHuaxiang, the vice president of CNNC, met with ChristoferMowre, the president of Babcock & Wilcox mPower and CEO of GmP, held frank talks on the issues of the international market of small reactors, as well as the situation of research and development, and concluded to push cooperation on small reactors. Babcock & Wilcox set up mPower, which specializes in the development of 160MWe small reactors. mPower set up GmP with Bechtel company in the US, responsible for small reactor projects there. Now, themPower reactor is the first reactor type to obtain funding from DOE. source: http://news.bjx.com.cn

Wa n g B i n g h u a m e e t s M i c h a e l F a l l o n , Minister of UKDEN and OGC Recently, Wang Binghua, the President of SNPTC with Vice President Ma Lu met Mr Michael Fallon, the Minister of UKDEN and OGC in London. Michael Fallon welcomed SNPTC. Wang Binghua firstly expressed her interest in the UK nuclear market, and then briefly introduced the general ideasof expanding the British nuclear market. Fallon remarked that the UK government was in favor of SNPTC competing for the nuclear market in England; he expressed his agreement with the SNPTC idea, and thanked the SNPTC for the work concerned. At the same time, he gave a positive evaluation on the cooperation between SNPTC and Westinghouse Electric Corp. In the meeting, they discussed issues of the site resources in England and evaluated the British Nuclear Regulators. The officials of DECC also attended the meeting. Source: http://www.snptc.com.cn

China-France Seminar of Nuclear Fuel Held in Chengdu On September 16th-17th, The China-France Seminar of Nuclear Fuel, hosted by CNEA and AREVA, was held in Chengdu. About 140 delegates of nearly 50 nuclear power companies from the two countries attended the meeting. Speeches were delivered at the opening ceremony by: Zhang Huazhu, the President of CNEA, LvXiaoming, the Deputy Director of National Defense Industry Bureau System Project, Chen Fei, the Deputy Director of the National Energy Administration Nuclear Power Company, Qiu Jiang, the Deputy Director of the Nuclear Safety Supervision

News

Department of the National Energy Administration, Nicolas Cordier, the Nuclear Counselor of the French Embassy, and Chen Yaqin, the Vice President of Areva, Asia Pacific. Zhang Huazhu pointed out in his speech that the meeting helped set up a platform of technical communication on ChinaFrance nuclear fuel, and had a vital practical significance on communication and cooperation. Firstly, this year is the 30th anniversary of the establishment of China-France nuclear power cooperation, and this meeting provided both countries an opportunity to review the cooperation and look forward to future cooperation; Secondly, the official signature on the letter of intent of China-France cooperation meant that the cooperation of both sides on nuclear fuel back-end technology and the business area would become an important new field. Thirdly, the disposition of high-level waste had received wide attention from the media and the public since the Fukushima nuclear accident. This meeting focused on discussing issues related to every aspect of nuclear fuel technology. This not only benefited the delegates, but also helped the public and media gain knowledge of nuclear fuel technology development. In this meeting, experts from both sides made special reports on the issues of nuclear fuel industry development, the spent fuel reprocessing process, financial matters and economic problems of spent fuel reprocessing, site selection and standards, the necessity of dry storage, the manufacturing and application of fuel MOX, the storage and transportation of spent fuel, and the underground laboratory for high-level waste disposal. The report intrigued the delegates. They discussed the issues concerned, and hoped that the CNEA would host the further in-depth discussion on specific questions. Zhao Chengkun, the Deputy Director of CNEA, and Mrs. DE Laihong, France's Areva Backend Strategic Sales and SVP of innovation, were invited to host the group discussion on the first day, and made a conclusion at the end of the meeting. Zhao Chengkun said that the closed fuel cycle can improve the use ratio of uranium resources, and reduce high-level waste, which was important to guarantee the sustainable development of nuclear power. China could learn from France with its rich experience on spent fuel reprocessing as its nuclear power started early. At the present stage, the technical discussion of both sides on the aspects of nuclear fuel could promote the development of the spent fuel reprocessing process. At the meeting, the delegates expressed agreement on China taking the route of closed fuel cycle technology, at the same time they expressed opinions on some specific questions. Zhao also said that the problem of spent fuel storage is increasingly prominent, suggesting the relevant department put it on the agenda and researched to


News

68

solve the problem as soon as possible. source: http://www.china-nea.cn

Dr. Heilman of KSB exchanged with the Power Institute of SNPTC On Sep. 18th, 2013, Dr. Heilman, Technology Director and Supervisor of Global Nuclear Business as well as China Business of KSB, visited the Power Institute of SNPTC, meeting with Dai Xichen, the Secretory of the Nuclear Power School. Secretory Dai welcomed Dr. Heilman, and exchanged on the issue of regular island pump development, and expressed common wishes for closecommunication, complementary advantages and win-win cooperation in the future. During the meeting, Dr. Heilman also made a specific introduction about KSB’s regular island pumps with its NPP. KSB is one of the biggest companies specializing in manufacturing pumps, valves and systems, even leading of the world in terms of design, manufacture, marketing, and service. In the nuclear field, KSB is a major manufacturer producing pumps and valves, and the only factory that could provide all kinds of reactors with main pumps. Meanwhile, KSB is also involved in the fields of thermal power, new energy, and others. Officials of departments related to the Power Institute of SNPTC also attended the meeting. Source: http://www.snpdri.com

Nexans awarded 9 million Euro cable contract for China’s Tianwan nuclear power plant Nexans to supply K0, K1, K2 (class 1E LOCA) qualified power cables as part of the construction of Phase 2 of the Tianwan nuclear power plant Paris, September 26, 2013 - Nexans, a worldwide expert in the cable industry, has been awarded a 9 million Euro turnkey contract by China National Nuclear Corporation to supply power cables and accessories for the construction of the second phase (units 3 & 4) of the Tianwan nuclear power plant, located in Lianyungang City, Jiangsu province, China. The entire project comprises the construction of two additional Russian type VVER-1000 pressurized water reactors, which will each generate 1060 MW power. The cables and accessories will be supplied for applications within the nuclear containment area and will be installed from 2015. Manufacture will take place over the course of the next three

years at Nexans’ facility in Mehun-sur-Yèvre, France. The cables will adhere to strict international safety standards including K0, K1, K2 (class 1E LOCA), which govern the quality of cables to be installed at operational nuclear sites. The cable technology used will ensure enhanced fireperformance in emergency situations, with insulation sheathing material having a high level of fire-retardancy and fire resistance together with low-smoke and low toxicity characteristics, provided by the use of zero-halogen materials. During their operational life, the cables will be subject to harsh conditions, such as severe environmental high pressures and temperatures as well as residual radiations. Olivier Dervout, Market Segment Director says: “In addition to Nexans’ high technical expertise and the work it has previously done to supply cables for Phase 1 of this project, Nexans has been awarded this contract because of its strong customercentric approach and its willingness to work closely with China’s nuclear regulators to ensure the cables and accessories are qualified for this project.” Source: http://www.nexans.co.uk

L-3 MAPPS Successfully Completes Major Projects for Eskom’s Koeberg Power Station in South Africa MONTREAL, September 12, 2013 –L-3 MAPPS announced today that it has completed two major projectsin support of South Africa’s KoebergPower Station. These accomplishments include the completion of the refurbished plant models for the legacy Koeberg operator training simulator and putting into service a second full scope simulator at the site on August 1, 2013. “The two projects in themselves were challenging, but it became clear that combining them would be beneficial to our overall project scheme,” said Christo Lombaard, operator training manager at Eskom’s Koeberg station. “Considering Eskom’s objectives, including timing the simulators to be ready concurrently with our new training center, we are pleased with the L-3 technology and with the cooperation between Eskom and L-3 MAPPS, which has resulted in high-quality, state-of-theart simulators at Koeberg.” “L-3 MAPPS is extremely pleased with our performance and we look forward to continuing our support of Eskom for years to come,” said Michael Chatlani, vice presidentof marketing & sales for L-3 MAPPS Power Systems and Simulation. “Following the putting into service of the Embalse full scope simulator in Argentina earlier this year, the Koeberg simulator deliveries in


69

South Africa once again demonstrate that L-3 MAPPS is the world’s leading nuclear power plant simulation solution provider.” The refurbishment of the legacy simulator was rolled out in two phases. Phase 1 included providing L-3’s Orchid® simulation platform, remodeling of the Balance of Plant (BOP) process loop, simulation of the new Alstom ALSPA CONTROSTEAM steam turbine controller, emulation of the core monitoring system display and provision of an interface to Westinghouse’s Ovation DCS. This deliverable enabled Koeberg to pretrain its operators for plant changes that followed in late2010.Phase 2 consisted of upgrading the remaining plant models, including containment, emergency core cooling, electrical systems and common services in L-3’s Orchid Modeling Environment, and migrating the legacy control logic into the Orchid Modeling Environment through a translator. The second full scope simulator involved replicating the plant’s main control room and emergency control facility driven by a compact modular input/output (I/O) system using WAGO-I/

News

O-SYSTEM 750hardware and L-3’s Orchid Input Output software. The new simulation platform and refurbished models were joined with the new second simulator’s hardware to facilitate validation and ultimate delivery to Eskom. As a followon effort, the legacy simulator’s I/O system will be replaced with the same compact, modular I/O system used on the second simulator. Eskom Holdings generates transports and distributes approximately 95 percent of South Africa’s electricity and approximately 45% of the electricity used in Africa. Koeberg Power Station is the only nuclear power station on the African continent. It is situated at Duynefontein, 30 km northwest of Cape Town in South Africa on the Atlantic coast. Koeberg, with two pressurized water reactor units and the largest turbine generators in the southern hemisphere, produces 1,800 megawatts and ensures a reliable supply of electricity to the Western Cape, one of the fastest growing regions in South Africa. It has operated safely and efficiently for more than 25 years and has a further active life of 25 to 30 years. Source: http://www.mapps.l-3com.com/


News

70

NPP News Coordination meeting on DCS supply of Fangjiashan project held at CNPE

After testing the machine’s function and the overall performance of the simulator, as well as inspecting the project documentation and testing records, the review panel said that the overall function and performance of the simulator meet relevant standards of the manufacturing and contractual requirements, hence, the conditions for personnel manipulated training.

Chen Hua, General Manager of China National Nuclear Power Co., Ltd and Li Dakuan, head of the preparatory group of the Qinshan NPP came to China Nuclear Power Engineering Co., Ltd (CNPE) on September 4th.They discussed DCS progresson the Fangjiashan project. At the meeting, the DCS special group mainly reported the profiles and key issues of DCS devices for Fangjiashan project. The first plant of China Nuclear Power Operation and Management Company (CNPOM) explained the impact of Fangjiashan DCS equipment/software suppliers on

Source: http://www.cnnc.com.cn

The Major Project of Unit 1 CAP1400 RPV Starts Construction On the night of September 5th, the major project of unit 1 CAP1400 RPV began manufacture with the joint efforts of the demonstration owner,suppliers, and companies.The RPV forging equipment, welding material, processing and manufacturing processhad met the start conditions.

commissioning and the relevant recommendations. After

CAP1400 RPV, located in nuclear island’s workshop, is a closed

discussing the solutions for DCS supply problems, leaders atthe

container to arrange the reactor and bear its pressure. It is linked

meeting reached a consensus to be steadfast and leave the goal

with a piping loop to combine into the pressure boundary of high

of 68.5 months for completion without wavering, to strengthen

pressure coolant, itsmain function is to arrange the reactor and

communication with the Nuclear Security Administration, and

prevent radioactive substance spillover. This is the first RPV

to attach importance on business negotiations with Davis in the

manufactured in the world since AP1000 was localized with

UK. A nuclear plant tripartite negotiating group organized by the

improved design parameters. RPV CAP1400’s new technology

DCS special group, the engineering design Institute and the

start from AP1000 which is mature with a projected lifetime is 60

first plant of CNPOM will devise schemes for negotiations and

years.

implement them. The parties agreed to continue to strengthen cooperation and make joint efforts to promote the work of DCS equipment supply and ensure completionof the project. Source: http://www.cnpe.cc

Full-scope simulator of Changjiang NPP passes on-site inspection On September 5th, the full-scope simulator for Changjiang NPP Units 1 & 2 in Hainan province passed on-site inspection and was officially put into operation.

source: http://www.snpec.com.cn

Fifth reactor under construction at Yangjiang Yangjiang workers direct an articulated concrete pump as the pour begins Engineers began pouring concrete for Yangjiang 5 on 18th September. The new power plant in China's Guangdong province is the largest nuclear construction site in the world. The start of the project represents the latest iteration in the mass


71

deployment of nuclear power across China. Work on the first reactor at Yangjiang began in December 2008 with subsequent reactor construction following in 2009 and 2010. China's postFukushima hiatus in new reactor approvals meant the start of construction at unit 4 was delayed until the end of 2012. The resulting high rate of work at the site, in a headland near the mouth of the Yang River, caused planners to delay first concrete on unit 5 by about a month to avoid having an impact

News

intellectual property rights in China. source:http://www.china-nea.cn

Preoperational tests underway at Fuqing unit1 The Fuqing 1 reactor under construction in China has moved a step closer to commissioning with the successful completion of hydrostatic testing of the unit's reactor coolant system.

on the late-stage construction work at units 1 and 2. The start of concrete pouring was announced yesterday by China Nuclear Engineering Corporation, which said it would take 45 hours. The first four Yangjiang units are CPR-1000 pressurized water reactors, with unit 5 being the more advanced CPR-1000+.

Hydrostatic testing to confirm the integrity of the reactor's water coolant lines was completed on 3rd October. During the tests, which took about four days, the pressure within the coolant loop was gradually increased to 22.8 MPa to check the functioning of valves, seals and welds.

The site's final unit, number 6, also to be a CPR-1000+, is

China National Nuclear Corporation's (CNNC's) Fuqing plant

slated to start construction next year. All the reactors should be

in Fujian province will eventually house six units, based on

in operation by 2018, producing a grand total of around 6100

Chinese-designed CPR-1000 pressurized water reactors.

MWe. Source: http://www.world-nuclear-news.org

Hongyanhe NPP Unit 1 put into commercial service with high localization rate The first nuclear power plant in Dongbei - Liaoning Hongyanhe NPP, first stage project unit 1 - was put into commercial service

Construction of Fuqing 1 started in November 2008 and it is scheduled to begin operating by the end of this year. Unit 2, construction of which began in June 2009, is expected to start up in September 2014. Ground was broken for Fuqing unit 3 and 4 in June 2009 and CNNC held an official ceremony to mark the start of work on unit 3 in December 2010. Those reactors should begin operation in mid-2015 and mid-2016, respectively.

on June 6th. It will generate 24 million kWhperday and meet a quarter of Dalian’s power demand. The localization rate of Hongyanhe NPP Unit 1 has reached 75%;thisfurther enhances nuclear power equipment manufacturing capacity in China. Hongyanhe NPP was launched by China Guangdong Nuclear Group Co. Ltd, CPI Group, and Dalian City Construction Investment Group Co. Ltdin the ratio 45%:45%:10%, and adopted the original technology of APWR CPR1000 designed by China Guangdong Nuclear Power Group. The Hongyanhe Unit 1 RPV, built by CFHI Dalian Base, is the first million-kilowatt nuclear reactor pressure vessel with complete independent

Source: http://www.world-nuclear-news.org


News

72

Fangchenggang Nuclear Project Promoted

and released by supervisors on the spot from the Ministry

Steadily

of Environmental Protection, which marks the successful

Fangchenggang nuclear power projects plans to complete

completion and the significant progress of the water test.

seven project milestones within 2013. So far the project has

The success lays the foundation for the continuous targets

accomplished two project milestones with the arrival of the parts

concerned, and provided preconditions for the follow-up hot

for the stator generator of unit 1, and the reactor building ring

functional test.

sling forunit 2 is ready. The first steam generator and the reactor pressure vessel have arrived. The complete project with its

The nuclear island primary circuit water pressure test is

attached facilities will advance according toschedule.

comprehensive for key equipment installation quality and performance;it aims to verify the integrity of the security

In the next stage, Fangchenggang nuclear transfer delivery will

protection.The cooling function of the support system is also

gradually enter the busy phase, and most plant facilities system

tested.

will enter the stage of debugging. Nuclear Islandis beginning installation, as is Conventional Island, and parts of the fire

This water test is a major node of the whole project, and thus

control andelectric systems will be transferred to producers and

caught the attention of all parties. The test was successfully

begin to run temporarily.

completed with staff from Qinshan NPP, CNPE, and other related companies, and built a foundation for similar work.

As the first phase of the Fangchenggang NPP project accomplished generating 15 billion kWh per year with two units,

source: http://news.bjx.com.cn

compared to the coal-fired power plant that equals a reduction of 6,000,000 tons of coal consumption, 14,820,000 tons of carbon

Sanmen Unit 1 Main Control Room OCS

emission, and 136,000 tons of sulfur dioxide with NOX, this

Device Starts Installation

brought an environmental benefit equivalent to planting a forest of 98,200 hectares, thus reducing of greenhouse gases.

The main control room OCS device for Sanmen Unit 1 began installation on October 5th.

The first phase of Fangchenggang NPP project has brought a gross output on industries concerned of 70 billion RMB. After

In order to complete the implementation of the available nodes

completion, it could provide Guangxi Beibu Gulf Economic

of the main control target, Sanmen SPMO has been actively

Zone with 15 billion kWh ofsafe and clean economic power

coordinating with related parties. The owner and Westinghouse

each year, with a total gross output of 14 billion ROMB. This strongly promotes Guangxi’s economic growth and is driving the development of minority areas of the economy Source: http://news.bjx.com.cn/html

Fangjiashan NPP Unit 1 Reactor Water Test Completed Successfully Fangjiashan nuclear power project unit 1 water test maintained the pressure platform of 22.8MPa on 15th.It was then certified

were monitoring the whole time. This first OCS system device installment willprovide valuable experience for similar work. Source: http://www.snpec.com.cn/


目录

74

目录 CONTENTS EDITORIAL STAFF

/ 编辑团队 EDITORS / 编辑

国际时政 铀资源:德国总理安吉拉会重新启动核电项目吗?

Arnaud Lefevre-Baril / 百力 Qi Jia / 戚佳

75

专题 NEWS / 新闻 78

Veronica/ 张维佳 TECHNICAL ARTICLES / 科技文章 Qi Jia / 戚佳

为什么企业战略会失败?

专 访 厦门虹鹭钨钼工业有限公司研发部宋久鹏博士专访 80

EVENTS / 展会会议 Veronica/ 张维佳 DESIGNER / 设计师

美国 AZZ-NLI 公司,营销及市场部副总裁, Craig Irish 先生专访 82

FangHua Design Inc. / 芳华设计公司

DYNABOND POWERTECH SERVICE / 代邦核讯 联系方式

89

HAF 政策

92

会议展会

科技文章

北京市朝阳区,工体北路甲 6 号, 中宇大厦 1509 PHONE / 电话

科技文章

+86-10-64681222 FAX / 传真 +86-10-64654957

关于使用蒙特·卡罗确定性混合法进行

95

快堆分析的可行性

EMAIL / 邮箱 info@dynabondpowertech.com

新闻

WEBSITE / 网站 www.dynabondpowertech.com

105

重点新闻

声明

107

企业新闻

版权所有。未经本刊物编辑和 / 或刊物内

109

国际合作

112

核电站新闻

各部分来源允许,不得以任何形式、任何 方法对本刊物内容进行复制。

核电词汇

116

© Dynatom is a trademark of Dynabond Powertech Service Co., Ltd.


75

国际时政

铀资源:德国总理安吉拉会重新启动核电项目吗? 作者:Didier Julienne 曾在欧洲战略金属冶金巨头 Comptoir Lyon Alemand Louyot 旗下任操盘手和亚洲业务拓展专员。随后出任在美国贵金属 及化学集团 Engelhard 负责全球业务的总经理,最后他担任了俄罗斯采矿集团 Norilsk Nickel 的国际营销总监。 由于长期担任独立董事,他还担任多家公司的主席,如今在自然资源战略方面与企业、金融及政府部门进行交涉。 他积极发表关于商品期货的文章,在各种会议上发言,还参与 ( 起草 ) 了有关自然资源 & 战略的各种政府报告。 他毕业于 Aix-Marseille 大学,获得了 HEC EMBA 学位,并担任 IHEDN、INHESJ 和 CHEDE 的审计员。

文章来源:http://blogs.lesechos.fr/market-makers/uranium-et-si-angela-atomisait-l-allemagne-a13317.html 毫无疑问,在 9 月 22 日的议会大选后,在莱茵河对岸,这位德国 女总理将会重新恢复职权。但问题仍然存在:她将用何种政治联盟方式 来管理国家?‘我们先跳过该问题,以便参考德国能源学说来分析选举 结果。

站不停运转。随后,当德国有大量电力需求时,如果此时瑞士变成出售方, 其风力或者太阳能发电会以瑞士水电的形式回销给德国。 5. 当生产过剩时,向德国生产商补偿气候电力可获利,出售价格 为零,甚至以倒贴价格出售瑞士水电,然后以正常价格回购,甚至以超 额成本回购:德国消费者接受比法国贵两倍的电力价格。  

生产 1.

在 2012 年,在德国电力生产中,煤炭发电占 45%(褐煤 26%,

要求:

发热煤炭 19%),可再生资源发电占 22%,核能发电占 16%,天然气发电

1. 德国工业附属于其所在国,不能勉强分离。不接受间歇性发电

占 11%,其它资源(燃油发电)占 6%。两种资源在电力生产中的比例保

或者受限制能源发电,但依靠煤炭、天然气或者核能的除外。褐煤和煤

持增长,是哪两种资源呢? 分别为煤炭和可再生资源。

炭发电站的成长证明德国中意于不利于控制温室效应的发电生产模式。

在 2030 年,可再生资源目标发电量为 35%, 但是在社会民主党当政中, 将此目标从 35% 提高至 45%,随后在 2030 年达到 75%。水力发电达到 35% 的极限,同时气候能源增加(比如风能,太阳能)了将近 60%。 2.

单一的气候发电会严重制约中欧工业的盈利性。 2. 但是如果由于某些原因工业受到限制而必须迁移 : 比如国外的 能源比煤炭资源更加诱人(

参考煤炭的未来 成本),那为何他们不

在福岛核事故后,德国女总理决定于 2022 年加快关闭核电站的

来我们这里呢?这里的电力好像更有市场并且是去碳的?是否因为无活

步伐并增加气候能源产量。但是实际情况是 : 发电站是靠德国褐煤与美

力,法国才遭遇劳动力成本过高?可能吧,但也存在其它的可能性,尤

国煤炭发电来获取利润的。越来越多的可再生资源和煤炭,使得抗温室

其是美国工业复苏,这归功于非常规的碳氢化合物。

效应措施的混乱性得到证实。

法国处于进退两难境地:20 年来,工业生产减少,我们需要更强的

3. 优先采用间歇性气候发电形式,这对生产商而言具备获利的保

发电能力吗?如何更好把它出口到间歇性生产过剩的市场上?但是摆脱

证,能产生两种情况。当太阳能或者风能发电生产过剩(比如今年),

工业化意味着减少工作岗位、减少生产过量电力,这也是工业复苏的一

价格则暴跌,常规发电厂(煤炭,天然气,核能)的盈利在德国出现暴

个关键。

跌的情况,在其它欧洲国家也如此。该余额附加到成本中:当此三种发

3. 德国家庭的电力消费与企业大不相同。节约型的住宅里发明出我

电资源必须作为间歇性气候资源的补充时,危机加剧,常规发电站变得

们国家很少用的短路电路,这体现出当地减少人口集中的创举,这项创

无利可图因而不得不关闭,因为它们要完全负担起从前的过剩状况。在

举成本很高,体现在气候能源、生物能以及地热领域中。德国是世界上

不久的将来,德国将制定策略保障现有的备用褐煤和煤炭发电站,并有

第一个在地面安装光电池的国家。

可能采用一种或多或少的补贴方式使之国有化。   

4. 这是史无前例的变革,住宅太阳能板的使用数量不断增加,能量

4. 前面的要点是电能的储存问题,然而它在电力生产过剩时消费

学家借助德国消费者和生产商来展开竞争,此结果还不得而知。此关系

一部分,德国人不消费电力而以比较低价格出售这是非常致命的,比如

还需调整但没有补助。另外还要想到的是:这百万小生产商必须为全球

出售给荷兰,这会导致当地发电厂关闭。或者出售给瑞士造成瑞士净化

电网的维护与现代化支付费用。


国际时政

76

这一点被特别加入到联邦州组织中,因为通过现代化电网把北方的

方面存在着奇怪的现象:随着 Areva 发展,纳米比亚的铀矿也得到了改善,

太阳能电力和风能电力输送到市中心和南方的工业区的决定是政治黑箱

资源减少而不是增加了:2007 年至 2012 年地质反踏措施把资源数量分

操作的牺牲品,它把决定 - 补助 - 联邦州混为一谈。

成了 170 份 .。矿石计划的流产成了人们交流时的笑料。可以凭此判断,

那么在 2013 年 9 月之后,什么将成为德国能源学说呢?如果其邻国

福岛核事故后价格下降,矿场将被抛弃。

认识到需要选择相同的气候能源,德国如何合理地向其邻国分包其电力 曾有人说福岛核事故扼杀了铀矿生产。这种说法显然是不对的。福 消费点?如何成为世界唯一的取消核能发电、增加煤炭发电以促进风能 和太阳能?通过不可控的弱性间断电流造成欧洲邻国电力生产失去稳定 性?并且分包其电力点给拥有核能的法国和拥有天然气的俄罗斯?此互

岛核事故仅仅折射出 2011 年的短暂挫折,而不是方向的改变,从那时起, 铀矿生产一直以各种形式向前发展。哈萨克斯坦是第一个开发铀矿的国

补性是否为法 - 德协商的实际结果,是否是欧盟未来的能源政策?德国

家,还将继续生产更多铀产品。加拿大的 Cameco 公司今年还计划增加产

意昂集团和德国莱茵集团两大能源集团的格局将深刻变革,德国将如何

量;美国和澳大利亚一样也开采铀矿,在纳米比亚,中国广东核电集团

优先发展气候能源和有计划关闭两家德国电力公司中的其中一家?如何

期待着大型胡萨贝铀矿将于 2015 年投产;尼日尔的 Areva 宣布其开采的

管理核废料税以及未来突出的火力发电煤炭税?未来个人消费者 / 生产

伊莫拉伦铀矿将于 2015 年投产。在 2019 年至 2024 年期间,行业杰出倡

商,能源学家和电网业主的之间的运行模式是怎么样的?德国放弃核能

导者,将会出现在加拿大的密歇林工地上。

的政策性决定是坚如磐石的。但是德国缺乏整体去碳措施,在电力储备, 2013 年,再生工业领域中出现了新情况,核巨头俄罗斯和美国裁减 生物能,太阳能,二氧化碳储集岩(甚至其肥料转化)的领域处于一个 等待着决定性进展的时期,在这期间, 根据地球工程 ,是否应当调头, 并且德国延迟 2022 年的放弃核能政策?最后,言归正传,什么会对全球

终止了全球 20% 的武器商业合同,其中美国核电站供应量达到 40%。莫斯 科中止对美再循环铀矿销售,核电站在市场上购买。

紧张的铀材料市场造成影响? 在思考答案前,先对市场水平进行快速回顾。随着日本核能恢复和 中国核能的持续增长,此前景将在德国再现,铀原料的市价有可能反弹 吗?

需求 世界上现有 437 座核反应堆正在运行,68 座正在建造,世界核发电 能力将在今后 4 年内从 373GW 增加到 425GW。目前,世界铀资源消耗正处 于上升趋势。

短期历史前景

日本大井分布了两座核反应堆。对于其它 48 座反应堆而言,根据

铀原料曲线显示 2007 年 6 月份的铀价格最高点大约是每磅 140 美元, 后来持续三年不停的下跌,直降至 2010 年 5 月份的每磅 40 美元。此后 的 7 个月从 2010 年 6 月至 2011 年 1 月,著名的核能重生使价格达到最

2013 年 4 月中旬公布的新安全规章,对铀矿的需求受到重新启动的约束。 日本所采购的部分铀矿用于储存,另一部分返销到市场上。

高点大约每磅 70 美元。但这仅仅是短期的变化。2011 年 1 月期间,福岛

中国对铀矿的采购是惊人的。随着新建发电站的开工,特别是中国

核事故前两个月,铀原料价格持续下跌持续到 2011 年 3 月。在日本刚发

热衷于铀矿战略性大量储存,将增加中国对铀的采购。这相当于目前世

生灾难后,价格剧烈下降是不可避免的,但在第二周价格恢复到先前水

界铀矿年产量,超过目前 8 年的消耗量,但是这仅仅是未来 1 至 2 年沿

平。然后缓慢回稳至 1 月份的下降趋势,在福岛事件前,下降坡度相同。

海地区的消费量,这个量相比法国来说已经比较微小了。

今天的价格点稳定在 2010 年 5 月份水平,略低于每磅 40 美元。 以上这些条件下,市场深处蕴含着什么呢?

矿产生产 采矿项目采用以下方式运行。一旦鉴定矿石后,地质工作至少回答 两个问题:定量公差(矿石丰度)和其它定量(矿石量)。倾向于发现 一个大储量的富矿而不是小储量的贫矿或者是大储量的极贫矿。随着时 间推移矿石勘探逐步进展,资源技术书中将大储量贫矿列入首选,因其 开发前景已得到确认,其随后的开发更加紧密,这会成为储备区,并终 用于开采。 例如,由 Areva 进行开采的尼日尔依莫拉伦铀矿的开采量,在 2007 年至 2012 年期间增加了 6 倍,与此同时,其储藏量增加了 60%。其投资

结论 从 2014 年起铀矿市场将重新回到到供应短缺以及价格稳定的局面。 一旦世界核发电能力达到 425 GW 并且日本重返核电市场,这时就重 建了供求平衡,价格将远离每磅 30 美元而回到正常价位。但没有把德国 延迟 2022 年目标的计划考虑在内。在此情况下就没有任何保证。我们具 有其它世界性目标能源:可预测能源、无间歇性能源、去碳能源、经济能源。 2013 年 9 月 22 日将会是出乎意料的能源变迁日吗?安吉拉将会再次在德 国启动核电项目吗?


77

国际时政


78

专栏

为什么企业战略会失败? 大多数企业战略上的失败,其主要原因并非来源于战略定义的失误, 而是战略执行方面的不足。同其它的人类活动一样,进行适当的培训, 似乎才是正确的前进道路。 为什么我们无法预见战略的影响力?全世界各行各业大大小小的董 事会都在讨论着这样一个问题。这个问题很现实—因为大多数企业的战 略都失败了。 •

执行能力差导致了 90% 成型的企业战略的最终失败 ( 战略核心 组织 , Kaplan & Norton)。

仅有 5% 的员工真正了解他们的企业战略 ( 复兴方案调查 )。

仅有 3% 的企业高管认为他们的执行战略是成功的 ( 商业理财 杂志的 AMA 调查 )。

由于缺乏执行力,75% 的业务改进流程都 面临着失败 ( 领导 变革 , John Kotter)。

相关调查很明显指出战略定义失误并非主犯。企业行政管理部门充 分意识到了其业务中的纷繁复杂与各种挑战。 而真正存在的问题是战略 执行很少能够达到相应的标准。 这不仅是资源的浪费,事实上,会产生相反的效果。假使行政管理 部门出台了一项新的决策,但如果其执行过程水准低下,就会产生一些 负面影响: •

经过一段时间,行政管理层就会意识到其员工的行为没有发生 任何的变化。 而毫无理由的归咎于战略失败也是常见的现象。 随之,一项新的政策将会被制定,然而,这并非是一个更加有 效的方法。

新的决策并没有让员工体会到真正的改变。这就培养了一种愤 世嫉俗的态度,特别是当领导们接连不断的改变战略方向,却 没有产生丝毫效果时。久而久之,员工们就会产生这样的想法: “好吧,就让他们这样闹下去吧,几个月后新的政策就又会出 现了,我们早领教过了。”

各种方法的知识保留度 我们可以看见,从传统的教学逐渐深入广泛的学员参与将会产生巨 大的效果。从金字塔的前四层,我们可以普遍看见学员是被动的,实际 上是在消耗现有的知识和信息。 而最后三层中,学员的主动参与成为了 战略改变的主要目标。

实践出真知 Thomas A Dewey

最有效的学习方式是通过教导他人,事实上很多老师都可以来作证。 其次更好的方式就是实践出真知,这一点也已被教学研究所认同。 在核电行业中,有一种国际上广泛的认识,那就是应该在仿真模拟 器中完成操作练习。这不仅仅是对核电行业来讲,许多航空和离岸石油 钻井中不同的技术都长期采用模拟器进行操作,现如今医学手术也在逐 渐加入这一行列。 那么,何时产生使用模拟机用于培训的需求? 当如何应对富于挑战的环境需求产生时。

战略十分重要。

环境条件错综复杂。

执行决定一切。

实际操作不同与理论学习。

JP Garnier,

GlaxoSmithKline 前 CEO。 为什么需要模拟实战?是因为你忘记了车钥匙放在哪里,而不是怎

成功的战略执行 至此,我们已经了解到企业失败的罪魁祸首是无效的战略实施和执 行过程。那么,怎样做才能够扭转这样的局面呢? 如同许多的其它人类活动一样,适当的培训会产生不同的效果。人 们需要承认的是最首要的改变就是行为习惯的改变。如果公司员工还是 按照先前的方式处理事情,就不会发生任何的战略改变。然而, 改变人 们的行为习惯是很困难的,仅靠书面或口头的教育是远远不够的,如果 有改变,也是微乎其微的。 如下图所示,培养一种新的行为才能变得更加成功。

样驾驶。 当我们仔细观察以上特征时,很明显的我们就会发现以上的全部特 征同执行决策的制定相关联。通过理论学习,首席执行官与行政管理团 队所指定的决策往往是错综复杂,富于挑战并且难以令人信服的。而且, 当定义一个新的战略时,战略的实施需满足上诉所有的标准。如果员工 拒绝改变自身的行为以符合新的战略要求,那么上述所有的挑战就将出 现。 那么,商业决策的制定和战略的实施可以通过模拟实战来加以练习 吗?答案很简单,是的。 许多世界 500 强企业都将商业模拟实战作为其 战略执行过程中培训员工的一种工具。仅在核电这一方面, 许多欧洲和 北美的大型企业就都采用此种方法,然而,直到现在亚洲的许多企业都 太轻易将模拟实战用于员工能力的发展方面。


79 核电行业的模拟实战 将模拟实战用于执行决策的制定还处于一个非常早期的发展阶段。 Vattenfall, 北欧最大的核电运营商,已经开发了一款用于培训核商业 智慧的模拟器。 核商业智慧就是指在变化的核环境中以其洞察力,知识和能力来管 理技术,经济,人力资源,组织因素与安全性之间的相互关系。 IAEA 定义 在这个模拟器中,具有不同技能和背景的参与者组成一个虚拟的核 电站中的一组虚拟的管理团队。在典型的团队中,有 5 名背景不同的成员, 分别负责操作,维护,财务,人力资源,通讯或其他代表了一个典型的 现实管理团队的任何方面。 他们的第一项任务就是制定一项决策,包括为绩效改进过程提供的 时间表。我们是否需要通过替换老旧零件,甚至升级电力生产来使核电 现代化?或许改进现有零件的维护是一个更好的选择?我们是否需要立 刻改进所有的反应堆,还是一个一个的改进? 正如现实生活一样, 预算是有限的。如果购买昂贵的设备,那么花 在员工能力发展和签证上的资金就会变少。同样类似于现实生活,团队 也同时面临着一系列已知的和无法预见的事件的发生。每年都需要计划 储运损耗,因为燃料不足随时都会出现。 然而,后者发生的频率是可以 降低的,如果在模拟的早些时候采用“干净 - 系统程序”。 这些团队划分为不同的参数,如核电站安全,员工能力,监管满意 度和商业绩效。他们的结果需高于在所有四个参数中设定的最低标准。 因而,仅专注于其中一个,毫不起作用。事实上,培训需要使所有的特 征都同时保持平衡,那么, 核商业智慧的培训就能达到这一点。 模拟器的产生是用来回答先前的调查:调查表明公司最好的发展潜 力来源于不同专业间的相互沟通。在技术方面,技术专家是顶尖的,而 他们对于业务影响的理解就相对有限,他们可以延长储运消耗与采购, 事后才发现其不必要的昂贵。同理,财务部门无法理解决策的技术影响。 例如, 在短期内实现成本节约的最简单的方法就是降低维护的费用,而 从长远角度来看,这必将产生巨大的后果。 在经济行业培训技术专家或在技术领域培训经济学家,都有很多种 方案,然而在商业绩效方面没有或仅有一些不明显的效果。相对于单独 培训的方法来说,进行模拟培训具有一些独特的差异: 具有不同背景的专家会见并交流专业知识。这并不等同于经济学家 研究技术或技术学家研究经济。 决策制定复杂性的诸多部分都需要对其进行考虑。 培训过后,所有的参与者都与具有不同专业知识的人建立起个人人

专栏

脉网络。在真实的模拟培训之后,联系你的前队友就变得更加自然。进 而需要更多的学习。 最后 , 培训的方式很有意思。

推进培训的效果 最后一点,不应被低估。参与者在评估中证实这种培训所具有的令 人兴奋地特性包含了很多内容而不仅仅是这个学习的过程(看似要比其 它培训过程高级),同时也在培训后激发了人们用不同的并且专业的方 式返回到工作当中。 最后,这种培训的效果还可以通过结构化的行为组合来显著地增加。 许多经理人都已经让他们的员工参加了相应的培训课程,并在培训后发 现了其持久的影响。这是经过科学证实的。在一个实验中,两组队员参 与培训课程。其中一组队员在培训前联系他们的经理并组织工作,以方 便员工能够在培训后立即将培训内容应用于日常工作中。另一组队员并 没有进行相关的实际工作安排,直到很久以后才开始安排,而其所获得 的知识几乎是前一组的两倍之多。 这可以作为经理人的精神食粮。通过安排课程培训和及时关闭在岗 培训可以双倍增加培训的效果。 通过参考能力发展的四柱模型,可以进一步来讨论培训效果。 能力四柱模型: 日常工作 = 在岗培训 改变工作 ( 项目,新工作 ) 导师制 ( 双方 ) 正规课程 主要的成功因素 : 将其结合起来 这四个方面有不同的特点,并且每一个的学习过程都不一样。通过 参与一个新项目或转换了一个新的职位,人们会比在日常工作中学到更 多的其它的东西。成为一名导师或学生,会比参与普通课程获得更好的 思考机会。调查研究和实际经验表明将其中两种或两种以上的方式结合 起来会带来更快速和深入的能力发展,相对于将全部努力投入到单独一 个方面或将其看做是单独的活动,而不是运用其协同潜力。

结论 总而言之,成功的战略执行需要一种结构性的方法,在这种方法中, 新的战略的产生不仅进行了良好的商议,也进行了相应的培训。商业模 拟是实现这些目的的强有力的工具。 通过将此培训方式同其他行为结合, 例如, 在日常工作和项目中练习这种新的行为,同样的成本, 其效果将 更加明显。时间是很重要的考量,相对于单独的行为培训, 行为的及时 组合会产生更高的成功率。

免费订阅《代邦核讯》和电子月刊,请填写以下表格并发送邮件至 info@dynabondpowertech.com 或者传真至 010-64654957

姓名 : 邮件 : 职位 : 公司 : 感兴趣的领域 :


专访

80

厦门虹鹭钨钼工业有限公司研发部

宋久鹏 博士专访 邮箱 :song.jiupeng@cxtc.com DPS: 请做一下自我介绍?您是何时进入虹鹭钨 钼工业公司的?现在的职位是什么?

的运输容器,具备力学性能,替代现有的不锈钢或混凝土夹层中灌铅的结构。

宋久鹏 : 我毕业法国弗朗什-孔泰大学 , 在 2007 年获得了博士学位, 目前主要从事粉末冶金和钨钼材料方面的研发工作,在 2009 年 5 月加入厦 门虹鹭钨钼工业有限公司,现在的职位是研发部负责人。

DPS:可否介绍一下贵公司? 宋久鹏 : 厦门虹鹭钨钼工业有限公司创建于 1992 年,注册资金人民 币 20900 万元,是上市公司厦门钨业的核心成员,是国家火炬计划重点高 新技术企业。公司主要从事钨、钼等难熔金属的棒材、杆材、丝材、深加 工制品等的研发与生产。钨丝生产规模世界第一,拥有年生产能力:粗钨 丝 1500 吨,细钨丝 120 亿米,粗钼丝 1000 吨,细钼丝 10 亿米,磁控线圈 6500 万只,钨钼深加工制品 200 吨。产品广泛应用于电光源及电真空、半 导体及电子技术、航空航天及汽车工业、工业窑炉、机械制造及焊接、3C

纯钨管

及医疗等多个领域。厦门虹鹭注重钨钼新产品的开发和新应用领域的开拓, 依托厦门钨业“钨矿山-冶炼-深加工”完整的钨加工产业链优势,坚持 以市场为导向,以质量为核心,以技术进步和科技创新为手段,规范企业 管理,完善企业制度,以“团结拼搏创新高效”的企业精神,打造“国际 化的、领先的、专业的钨钼及粉末制品企业”。

DPS:您能否介绍一下钨聚合材料? 宋久鹏 : 钨聚合物材料是将钨粉填充到高分子材料中的一种复合材料, 根据钨粉的含量不同,其密度可以从 2.0 g/cm3 做到 14.0g/cm3 甚至更高。

DPS:是什么契机使得贵公司有意愿进入核电市 场? 宋久鹏 : 首先,无铅化是未来核电用屏蔽材料的发展趋势,欧美多个国 家已经开始批量使用钨基的屏蔽材料 ; 其次,日本福岛核事故以后,日本

通过选择不同的高分子材料、如橡胶、热塑性弹性体、聚乙烯、尼龙等, 可以制备出柔性或具备一定力学性能的复合材料。 该材料可以通过挤出或注射工艺制备成各种形状的部件,主要用于替代铅, 实现绿色防护。

政府明确放弃采用铅作为放射性核废料和被污染材料处理的屏蔽材料,相 关机构在国内寻求合作合并,开发钨基的屏蔽材料及部件,厦门虹鹭是其 选择的唯一合作方 ; 而且目前,我们已经与国内知名的核工业研究所及法

DPS:这种材料是否可以用于放射服的制造?

国原子能研究委员会(CEA)建立了相关的合作关系。

宋久鹏 : 完全可以,国外已经大批量应用

DPS:哪些产品会进入核电市场?这些产品在核 电站的应用是什么?

DPS:贵公司是否有自己的工厂来生产这种材 料?预计的年生产量是多少?

宋久鹏 :

宋久鹏 : 有,厦门钨业是世界上唯一的拥有从钨矿山到下游产品的整个

可能进入核电的产品及应用有:

钨聚合物复合材料 – 核电站检修和换料大修时用的柔性屏蔽件(平面和管 状),人员用防护服等;高比重钨合金 – 堆芯部分的屏蔽件及放射性物质

产业链的公司。目前,公司拥有一条钨聚合物材料的中试线,可根据市场 需求投资扩充产能。


81

DPS:与其它公司相比,贵公司产品的创新之处 在于哪里?

专访

供应商,因此没有计划在核电行业推广。

宋久鹏 :

目前,国内没有此类产品。与国外公司相比,我们在钨粉的 处理和资源上拥有绝对优势,我们针对钨聚合材料的需求,开发了一种特 别适合这类材料的钨粉,可以使材料的密度范围很宽。此外,公司在拥有 特殊的粉体分散技术,可以是钨粉在高分子中均匀分布,其均匀程度超过 国外,这对于材料的屏蔽性能很重要性。

钨合金容器

DPS:这些核电产品在韩国是否已经有所应用? 如果没有,那么为何选择首先进入中国核电市 场?如果有,那么中国和韩国核电市场对材料的 质量标准是否有不同的要求?遵循什么样的质量 体系? 钨聚合物

宋久鹏 :

目前没有在韩国推广。我们目前正在开发的是国内、日本和

DPS:贵公司研发部门的经费占比是多少?

欧美的市场。

宋久鹏 :

DPS:贵公司的产品如果期望应用于核电市场, 是否需要获得相关的证书或资质?可否举例说 明?

占销售额的 3% 以上,(公司近年来的销售额稳定在 7-8 亿

RMB)

DPS:贵公司的核屏蔽材料所能承受的最大辐射 值和辐射周期是多少?

宋久鹏 :

需要,我们正在和国内相关专业机构合作,进行产品的鉴定。

宋久鹏 : 卫生部射线防护器材防护质量监测中心有测过我们材料对于 X 射线的屏蔽性能,也就是铅当量: ( TFP 的密度测量值为 11.6 g/cm3) 某研究所对我司密度为 11.3g/cm3,厚度为 3mm 的钨聚合物材料进行了 伽马射线屏蔽性能测试,采用 Cs137 和 Co60 两种射线源,结果表明对于 Cs137 产生的伽马射线的屏蔽率为 23%,对于 Co60 产生的伽马射线的屏蔽

DPS:贵公司对其核能产品的客户定位是什么? (哪些公司或单位会成为虹鹭的客户)?有没有 已经建立的合作关系或合作订单?

率为 18.5%。

宋久鹏 : 国内外的核电运行商、核电设备制造商等,目前在核电行业没

进一步的测试还在完善中。

有合作订单。

DPS:钨钼及其合金作为电火花放电加工用电极 和焊接电极已广泛应用于各类精密的机械制造和 焊接技术中。那么这些产品是否也会考虑在核电 行业中推广?它们的优势是什么?

DPS:贵公司进驻中国核电市场的规划是什么? 宋久鹏 :

需要进一步的调研,正在规划中如何进入核电行业。

宋久鹏 : 用于电火花加工和焊接用的电极采用的是钨铜合金,他与铜合金相比,主要是精度 高、寿命长。因为这类产品属于成熟度很高的产品,也是不核电企业的直接

BCI 印度有限公司


专访

82

美国 AZZ-NLI 公司, 营销及市场部副总裁,

Craig Irish 先生专访 Email:craig.irish@nuclearlogistics.com

DPS: 众 所 周 知,AZZ-NLI 在 升 级 商 业 产 品 成为核级产品方面做得非常成功 , 您能告诉我们 AZZ-NLI 是怎样起步的吗? Craig Irish: 公司开始于 1991 年,总部基地一直坐落在德克萨斯 州的沃斯堡市。这是因为开创公司的核心成员都来源于一家名为 Impel 的

1979 年 3 月的三里岛事件。在当时,三里岛事件彻底改变了整个美国的核 工业状况。三里岛事故后,大部分制造商都纷纷离开了核电行业。当时, 似乎核电行业正处于濒临死亡的边缘。在美国, 一百多个工程许可被取消, 三﹑四个接近完工的核电站至此停工并再也没有被启动,还有许多核电站 耗费很多年修建完成,为了满足相应的修改要求。所以在上世纪八十年代,

工程公司。这家工程公司在上世纪七八十年代和九十年代早期从事了很多

美国的核工业才会看起来奄奄一息。大多数为核电行业提供设备的制造商

与核电行业方面相关的工作。公司召集了那些曾在名为 ComanchePeak 核电

都生产核级设备。许多核电设备供应商不愿继续维持其核质量保障项目与

站工作的人员组成了公司核心成员。当 ComanchePeak 开始运作时,这群人

工程部门,并且不愿继续冻结产品生产线。他们不愿做这些具体事项的原

就离开了那里并开始创办 NLI(核能物流股份有限公司)。NLI 当时的目标,

因是因为当时没有其他业务可以支撑其业务发展。那么,随之而来的结果

就是成为一家小型的工程公司并开始着手一些设备供应。

就是那些专注于核电行业的设备制造商最终选择离开了这个行业。人们在 担忧哪里或怎样才能找到相关的核级设备。因此,如 NLI 这样的公司就应

DPS: NLI 是一家私营公司吗?

运而生,来支持核电行业的发展,为其提供特定类型的设备,资格认证和

Craig Irish: 是的,从 1991 年至 2012 年 7 月 1 日期间,NLI 一直

质量保证需求等类似服务。所以,NLI 是真正的在试图满足核电行业对于核

是一家私人公司。在 2012 年 7 月 1 日,AZZ 并购了 NLI。那么,现在我们

级相关设备的需求。

成为了 AZZ 附属企业的一部分。

DPS: AZZ 收购 NLI 的主要原因是什么 ? Craig Irish: 主要原因就是 AZZ 想闯进核电行业。AZZ

卓著于电镀,

电气设备定制等方面,但在核电行业却没有什么进展。所以 AZZ 想要并购 NLI,以便获得一些核电行业的产品供应。

DPS: 关于并购的讨论是发生在福岛核事故之前 吗? Craig Irish: 讨论发生在 2011 年年底。当时,除了德国等少数国家, 福岛事故还并没有对核电行业造成很大影响。并购之初,核电行业还处于 工程分析的早期阶段,例如设备需求和操作变更分析。

DPS: 那么需求来源于哪里?运营商,工程公司 还是制造商? Craig Irish: 如果从一个更高的层次来看,需求则来源于发生在

蓄电池


83

DPS:NLI 是何时建立的? Craig Irish:1991 年 4 月,这里需要提一点,有许多非常成功的 公司,它们都是在冬天建立,然后在刚进入春天的时候开始营商。比如微 软成立于 1975 年 4 月,苹果是 1976 年 4 月,华纳兄弟在 1923 年 4 月成立, 联邦快递成立于 1973 年 4 月。人们的理念一般都是在冬天播种,于春天发芽。

DPS: 那么 AZZ-NLI 仅将其业务放在核行业 这一方面吗?

专访

DPS: 在秋季和冬季的高峰季节中,贵公司是如 何调整工作流程的? Craig Irish:

通常我们会延长工时,我们实行两班制,周末我们也

工作,但都会用同一批人。我们有大约 210 名员工,我们并不根据大修季 节调整人员,而仅仅是做一些额外的调整。 

DPS: AZZ-NLI 是否有一个低人员流动率 ?  Craig 加 3-5%。 

Irish: 我们的确有一个较低的人员率,我们的员工每年增

Craig Irish: 是的,我们仅专注于商用核电行业与核能源部分(DOE) 这一个领域。总的来说,AZZ 并不是一家核电企业,但 NLI 却相反。

DPS: 您能告诉我们贵公司是如何开始建立工程 商与供应商之间的合作关系的吗?贵公司最初的 商业模式是怎样的? Craig Irish: 我们的商业模式真正的建立始于我们与名为 GNB 工业

DPS: 你们提供如此多的设备种类,你们怎样挑 选所需要的员工类型? Craig Irish: 我们倾向那些先前有核电经验的人,而这样的人越来越难找 寻到。我们将经验丰富的专家与大学刚毕业的工程师们结合在一起。这样 的模式很有利于工作。 

电池公司建立联系的时候。公司在 1991 年成立时,GNB 公司不想生产应用

DPS: 你们是否拥有内部的培训项目 ?

于核行业电池的人们联系了我们。他们不想建立一个专门的核用电池生产

Craig-Irish: 几乎所有的事情都是通过内部来完成,例如,工程培训,质

线。因此,他们询问我们是否愿意接手这一块儿,并愿意承担起质量保证,

量保证培训,产品培训。有时,会有外部的咨询机构对内进行培训,但大

资格认证,工程,文件编制和和具体的销售事宜。对我们来说这是一个非

部分是针对项目管理而言。

常大的机遇,对此,我们十分高兴。和 GNB 公司建立联系,是公司发展历

户关系来源于一些本身就在核电行业的企业,然而,他们却认为这一行业

DPS: 举个例子:根据西屋公司核自动化部门的 高级副总裁 David Howell 所说,在过去的几 年中,仪控升级大多数都集中在非核级系统,那 么在你看来,其主要原因是什么?

的业务发展可能会维持不下去。还有一些公司,我们认为他们的产品很适

Craig Irish: 在美国,这种情况同欧洲和亚洲略有不同。在美国有一个专

合核电行业。大约三分之一的客户关系来源于那些从事核能行业的公司,

门的质量保障大纲,这是其他国家所没有的,而且与设计变更相关的工程

然而,他们不想再做直接的设备供应商,接近 2/3 的客户关系来源于那些

很昂贵。可见,美国的质量,工程与资格认证都是十分不同的。所以当人

史上的一个转折点。随后,我们便十分专注于核电行业的设备供应。与我 们建立关系的公司,一部分来源于那些曾经为核电行业直接提供设备的公 司,一部分来源于为核电行业提供优质产品的公司。因此,我们的一些客

我们认为其产品或服务足够好的公司,这些产品和服务能够直接应用于核

们考虑在核电行业中使用电子设备的时候,自然而然会先选择在非核级设 备领域开始这一过程。在美国,进行核级设备的设计变更的费用非常昂贵。

电行业。

只是进行简单地设计变更的书面工作,培训监管影响和技术规格书等其它 文件工作,其花费就不菲。所以核能行业都会首先选择从非核级相关设备

DPS: 在美国,你们为多少个核电站提供服务? Craig Irish:

我们为美国所有的 100 家核电站提供服务。 

DPS: 那么,贵公司是如何管理生产线的,考虑 到你们要为 100 座核电站提供服务? Craig Irish: 我们有一套合理的并且可管理的工作流程。在大修前, 工作量会增加 60 至 90 天。在每年的春天和秋天,核电站都会进行大修。通常, 我们会在春季和秋季的大修来临之前的 60 至 90 天里比较忙碌。除此之外, 工作流程都相当固定。因为我们只专注于核电这一方面,所以在维持工作 流程方面,我们没有太大问题。 

方面着手,来确保无任何问题,随之他们就可以过渡到核级系统。

DPS: 最近的一篇由 H.M. Hasemian 2012 年发表在国际核工程杂志上的文章阐述了人们对 于在美国升级需要 54 亿美元的市场评估表示出 担忧。供应商很少,并且花费相当高,因此美国 需要采取什么的措施来平衡安全需求与成本管 控? Craig Irish: 我认为我们需要尽可能去投资各种数字设备,因为数字设备 能够带来很多的益处。数字设备的使用寿命更长并且更加精准。在很多情


专访

84

况下,更适于地震等因素,但并不利于辐射和温度等事宜,所以当你使用 数字设备时,必须十分小心。但在大多数情况下,数字设备都是很有益处 的并且可以不断的被改善。在美国,核工业的发展是十分保守的,他们不 愿意改变原有的方式。所以,美国现存的核电站很大一部分使用的都是基 于模拟的设备或是早期的数字设备。他们习惯于此并且很清楚这一模式可 能会出现的故障套路,他们知道怎样进行维护,更新与修理。因此 , 在引 进数字设备这一方面,进展比较缓慢。所以人们宁愿保持原有的方式,即 使知道这些所使用的模拟设备正在被淘汰,因其难以维护而且并不十分精 准。人们不愿意接受改变,原因就在于他们不知道数字设备的引进会带来 怎样的新的故障套路。因此,美国核工业在引进数字设备这一方面进展十 分缓慢。

DPS:但是数字化升级是可以强制执行的,你不 可能避免这一步… Craig Irish:你说对了。

DPS: 所以在你看来 , 增加核电站数字升级所需 要的费用,是否能够提高核电站的安全性和可靠 性? Craig Irish: 是的,以美国核电站组为例,大部分的现存设备都是在七十 年代末和八十年代初的头几十年生产的,因此这些设备十分老旧,即使你 有一个核电站,比如,在 1975 年开始运行,该设备可能为六十年代末和

推进器

DPS: 关于成本的评估,贵公司是否参与进一些 项目来,能够为核电站建设提供一些好的建议? Craig Irish: 我们曾经帮助他们做过一些设备的成本效益分析,比如逆向 工程电力供应和电子模块等。也做一些引进数字设备的成本分析,同时也 要考虑到设计更改,软件鉴定与认证等的相关资格认证,与电磁辐射无线 电干扰 (EMI/RFI) 等。我们不得不考虑到所有的方面。

七十年代初的核级设备。因此,去维护这些三十多年头儿的设备是十分困 难的。我认为,美国的核工业与世界范围内的核工业都需要使用数字设备。 电子设备确实能给人们带来很多的益处。人们需要十分小心的操作,就像 管控网络安全那样,需要考虑可能会出现的新的故障套路。因此,所有的 升级事项都需被正确地进行操作。如果什么也不做,则不会带来任何一点 好处。

DPS: 让 我 们 以 Invensys 和 Areva 为 例, 这些公司的主要目标就是销售其最新产品和进行 相应升级,那么您是否将 NLI 视为强制升级的替 代方案? Craig Irish: 是的,作为一个公司,当我们会见客户时,我们告诉他们我

DPS: 因此,您不建议对老旧模拟设备使用逆向 工程,也不建议对模拟系统进行升级? Craig Irish: 我们很关注逆向工程,并且在电子设备更新与采用数字技术

们能够为其提供逆向工程,现有电子模拟设备,或数字升级等服务。我们 为客户分析利弊,成本并帮助他们做相应选择。因此,有时我们会为其制 定解决方案,有时客户会选择继续更新设备,那么我们就为其进行更新和 维护。每个核电站都有不同的需求,至今也没有什么特别的趋势。

的电子设备替换方面也投入了很多精力。主要在三个方面:逆向工程,更 新与替换。我认为到目前为止,相比其他方面,核工业在逆向工程方面做 的非常好,完成了简单地工程如电力供应,电子模块,甚至是更加复杂的 逆向工程,如反应堆保护系统的部分工程,核仪器等工程。我认为人们还

DPS: 在核电站的运营期间,维护费用在 I&C 环节所占的份额或占比为多少?

会继续进行逆向工程,但花销会很昂贵并且会花费很长时间。所以人们就

Craig Irish: 我不知道具体的数字,但我知道他们确实在维护原始的 I &

会问:“怎样才能够做到节省,是采用逆向工程还是升级数字设备?”因此,

C 设备翻新和原始模拟模型方面做出了相当大的资金投入。一些核电站配备

很多核电站都开始关注成本分析,其中有一些人决定采用数字设备,还有

有不错的内部功能,可自行进行设备翻新。其他的核电站高度依赖地区生

一部分人决定更新老旧设备。

产商,如通用电气,西屋或阿海珐。还有一些核电站与像我们 NLI 这样的 公司进行合作。各个电站都有所不同。我个人估计每年仪表维护的费用在


85

7000 万美元左右。

专访

以美国核电站需要思考的就是如何处理这样的突发事故。我们做了很多地 震测试,很多高于原震级别的地震测试。还有一些新的严酷环境认证,高

DPS: 众所周知,仪控和机械市场占了核电站升 级业务的三分之一,除此之外,让我们以泵市场 为例,只有少数公司能够投资机械设备,材料科 学和水利工程。那么北美洲市场是否为几个少数 公司所掌控?在这一市场区隔是否面临着更加激 烈的竞争?

温高辐射,尤其是内置条件下的高温与高辐射。我们做了更多的严酷环境 认证程序。最大的问题可能就是洪涝灾害。现在需要更多水下设备,比如 特定阀门、促动器等,需要长时间放置在距离水下 9 至 12 米的地方。现在 我们做了许多测试工作来保证设备入水时可以正常运行。

Craig Irish: 在美国核电行业,只有少数公司能够提供彻底的泵维护和翻 新工作。只有两到三个原设备制造商能够胜任泵的维护和翻新,两到三个 非原设备制造商能够提供维修服务。很长一段时间以来,核电站既没有对 自身的泵进行任何的自行维护,也没有返回给原设备制造商。而现在,他 们有更多的选择,因为非原设备制造商也能够为其泵进行更新和维护。另外, 在核电行业发展的早期,在泵升级和材料设计方面,并没有积累足够经验。 人们修改原始叶轮,改变冶金,但结果并不尽人意。但现在人们能够很好 地涉及到一切事项,包括流量要求的水化学,压力与磁头等相关方面。在 涉及到泵的升级和维护方面,人们做的比以前要好。

DPS:在美国,对于 NLI 来说,维修和保养问 题是不是很重要? Craig Irish:是的,一直都是这样的。因为就像我们讨论的那样,可能 四五年前,大多数人都或多或少会进行一些简单的维修,比如更换轴承, 或驱动器,进行腐蚀保养,现在这些公司想做的更多,所以市场一直在发展。 OTEK Linear Single

DPS:关于泵的维修,最主要的问题是什么?例 如,一些关于材质寿命的问题。在处理这些维修 问题时你需要考虑放射性问题吗?是什么使得现 有的问题成为一项特殊的业务? Craig Irish:在核行业中最大的问题就是原始设备的寿命问题,所以当你

DPS:公共设施或 NRC 全部都需要这些改变 么? Craig Irish:这些都需要得到许可部门的认可,并且由 NRC 强制执行。

进行设备维修的时候,你可能不具备所有的技术信息。因此当你试图去修 复泵的时候你并没有原始的设计概念,或者最初的性能数据,保证修复的 正确性。在修复的过程中,你必须在最开始的时候掌握一切准确的信息。 你试图修复一个泵,但是你不知道确切的规格,所以你现在必须回头找工 程师寻求帮助。

DPS: 由于福岛事故,很多设备类型面临着更为 严厉的资格认证。您能告诉我在以下的要求中都 发生了哪些变化:地震测试,热量寿命,电磁, 放射频率干扰资格测试,冷却事故测试,放射测 试和软件确认与验证?

DPS:福岛事故揭示了备用电量的不足的问题。 那么美国对此采取了怎样的措施?从全球来的角 度看,关于电力设备建设方面会有什么样的改变 吗?例如开关设备,甚至是 (SBO) 柴油发电机。 Craig Irish:从福岛事故中吸取到的最大的教训就是柴油机不够坚固,例 如,燃料送达系统的暴漏问题。美国所有的核电站都必须检查确保柴油机 引擎和发电机的安全性在防洪抗震级别之上,同时确保燃料池位于燃料附 近。燃料送达系统的坚固同时保证了防洪抗震性。核电站需要查看并确保 引擎和发电机的完善性。他们需要增加电力管制以确保现有的引擎可以承

Craig Irish:我们可以从福岛事故中得到很多教训。人们需要思考突发事

担负荷,同时也可以承担起楼区和办公的照明。很多核电站仍然考虑采用

故带来的后果。福岛核电站所导致的地震和海啸要比预期中严重很多。所

电力管制,并且其中一些已经这样做了。


专访

86

DPS: 在 中 国 的 核 电 市 场,50% 的 核 电 站 都 采 用 AP1000, 其 中 并 不 具 备 紧 急 柴 油 发 电 机。所以您认为中国核电站的 AP1000 都需要 SBO 吗?对此,您有什么建议? Craig Irish:AP1000 作为一种被动设计,情况有所不同。早期的核反应堆

DPS: 在 三 里 岛 事 故 之 后,10 CFR50 附 录 B21 部分的要求是否更为严厉? Craig Irish:那些要求确实在三里岛事故之前就已经存在了,很明显变得 更为苛刻了,美国核管理委员会也因此变得更加严谨。这些要求已经存在 很长时间了,这几年随着情况的多样化而变得更加严谨。

属于主动设计。他们要求积极强制的冷却。人们需要柴油机保持堆芯冷却, 然而 AP1000 却是一个被动设计。所以它并不需要强制冷却去保证堆芯冷却。 因此,AP1000 的柴油机并不属于安全相关的领域,它与现有的反应堆存在 关键性的差别。AP1000 将会用于美国唯一一个无需强制冷却,无需安全柴 油机的核电站,但他们仍然需要相当大的电池组容量,相当大的 DC 能量。

DPS:所以您的意思是说 AP1000 的设计已经 在核电站安全方面进行了升级,同时能够被视为 第三代核电站技术? Craig Irish:是的,毫无疑问,AP1000 是一个被动的设计;在安全设备方 面的可靠性较低,比如直流电开关设备、电池组、直流电马达控制中心、泵、 阀,但低于之前反应堆版本的安全性。

DPS:从您的观点来看,您觉得 EPR 有任何具 体的优势吗? Craig Irish:阿海珐的 EPR 可以说是西屋压水反应堆的升级扩大版。但是 属于 AP1000 之前的一代,所以仍然需要强制冷却,并需要更大的柴油机和 更多的组件。所以阿海珐的 EPR,或美国 EPR 都属于需要从福岛事故中吸取 教训并做一些设备方面的改变。否则,我认为很难去相信美国政府和公众

DPS:中广核集团和中国核工业集团公司都拥有 核电站,而且现在他们都拥有一个庞大的核电规 模,从广东延伸到辽宁。在他们所要面对的跨距 离操作与维护中,其最主要的影响是什么? Craig Irish:我认为供应链基础在核产业中是极其重要的方面。了解你的 供应商,了解他们采用什么样的质量保证程序,并对他们进行控制是非常 重要的。我相信中国绝对需要做同样的事情当他们拥有如他们所料想那样 的核电规模时。

DPS:我来举一个具体的例子:从南德克萨斯的 项目到锡布鲁克核电站之间的距离与昌江核电站 到红沿河核电站的距离差不多是一样的。在远距 离的管理问题上,你有什么预见性的意见吗? Craig Irish:我认为距离对于中国来说并不是一个问题。我认为许多国家

会允许这样一个反应堆在美国出现。所以我认为阿海珐的设计,GEA 的沸水 反应堆设计,日本三菱公司的设计都需要做出相应的改变。

在中国建反应堆才是问题所在。他们有着不同类型的技术,不同的质量保 证程序要求。他们可能也有一些不同的供应链基础。现在中国拥有法国的

DPS:目前为止,中国大多数的核电站都以法国 核电站为基础,这就引发了公司产品认证与供应 的问题,这些公司要么失去对相关信息的了解, 要么信息随着时间的流逝而消失不见。商业等级 奉献在核产业中成为了必要的过程,您在中国是 否看到过这样的情况? Craig Irish:我认为中国必须有这样的情况。像我之前说过的那样,核产 业中存在着一种特定的质量保证程序。这个程序叫做 10 CFR50 附录 B21 条

反应堆,加拿大反应堆,俄罗斯反应堆,和现在的美国反应堆,并且中国 马上又要建设自己的反应堆。我认为中国真正的困难并不是省际间的距离, 而是来自这些不同技术间的差异。不同的技术,不同的供应基础,不同的 质量要求,以及不同的资格证书。而且我认为随着中国核电站规模的扩大, 这些问题也会成为更大的挑战。

DPS:在美国,你们有通用电气、巴威、西屋等 公司,他们是否都采用同样的质量保证程序?

和 ASME NQA-1。这是一种美国特定的质量保证程序,被其它一些欧洲国家 所采用,例如德国、法国和瑞士,他们规定,像 ISO9001 或其他的质量标

Craig Irish:在美国,全部要求采用同样的质量保证和同样的管理机构。

准并不是针对核产业的。在美国,这也是不被安全相关设备所认可的。所

基本上来说,有两个不同类型的反应堆:通用电气的沸水反应堆和由燃烧

以在美国,我们绝对需要采用一种被称为“贡献”的过程,为了采用商业

工程公司、西屋和巴威共同建造的压水反应堆。这些全都按照相同的质量

级别设备去升级安全相关设备。我认为同样的问题也会出现在中国以及一

要求,采用同样的设备,所以有着非常相似的供应链。不要误解我的意思,

些安全性较低的地方。所以贡献是一个确保设备安全质量的方法。考虑到

这对美国的监管机构,客户和工程公司来说是非常困难的。中国也同样面

中国的供应基础,和外国采购的可能性,贡献也会为中国所适用。

临着语言、文化、技术以及质量要求等方面的困难。


87

专访

DPS: 您 能 够 告 诉 我 们, 贵 公 司 向 中 国 的 AP1000 提供了什么类型的设备?

行综合研究,尽管他们已经有足够高大坚实的墙,或足够高于水位线。大

Craig Irish:这些设备包括有专门的仪器,安全壳内的变送器和差压变送

电站的工程公司现在都在对这些资料进行整合,再有六个月才会实现。 

多数的核电站正在进行这样的分析,在接下来的六到十二个月里,会了解 到哪一个需要加坝,需要移动设备,需要新建,或需要二级建筑。所以核

器,安全壳内都是核级设备,通过了严峻的环境资格认证。对于其他的项

Craig Irish:是的,较之以往的 AP1000,我们提供了更多的设备,包括提

DPS: 中 国 取 得 了 AP1000 技 术, 并 且 对 新 一代 CAP1400 进行了积极研究,以便于出口 海外。这项技术同样也要求高国产化率。尽管 AP1000 和 CAP1400 的 国 产 率 对 于 核 级 设 备来说相对还处于一个较低的水平,但是却呈现 出增长的趋势。对于成本控制需求,可靠性和供 应链的控制三者之间的平衡,您有什么样的建议 吗?

供配电帮助,电池、专业仪器和阀门等服务。

Craig Irish:我对中国管理机构的意见就是他们要以美国的经验为鉴,例

目来说,这是一种核级仪器,第三种项目通过了美国 ASME section III 核 级堆芯给水箱仪器。由 NLI 供应一个专门的核级仪器。

DPS:您是否跟工程公司的采购部门联系过,以 拓展你在新 AP1000 标准方面的活动?

如,贡献。由于大部分的制造商都离开了核电行业,贡献活动最早是为了

DPS:您也是防洪方面的专家。在三门核电站和 海阳核电站 AP1000 的建设中,是否会出现新 的障碍?

帮助核电站得到他们可利用的部分。贡献使得我们采用商业级别的设备在 核级设备方面进行程序的升级。中国应该学习这些经验,并且应该从韩国 最近所经历的伪造等不正当行为的问题中吸取教讯。这些都将帮助中国避 免出现同样的危机和问题。

 Craig Irish:并没有,相关的讨论一直都在进行,关于通道,洪涝区域

在低仰角度放置关键的设备,也不对此进行有效的评估,甚至不在洪涝区

DPS:您认为福岛事故使设备发生了哪些方面的 变化?

域放置这样的建筑物。所以我们帮助其中大部分的坝进行升级,现有的核

Craig Irish:目前来看,美国几乎没有采取强制性的设备要求。首先就是

电站对洪涝区域或对洪涝区域在未来几年中的改变,并没有太多的关注,

对乏燃料水池采取持续的水平监测。现在加强了对排气阀和排气过滤器的

所以他们现在正面对着如洪涝这样之前并没有面对过的问题。 

使用要求。两个主要的强制性设备待升级。大多数其他的变化都属于工程

的选择,但是当很多新的核电站建设向现有的舰队借鉴经验时,他们并不

方面的。除此之外,还有一些比较少的设备升级,例如全场断电柴油机, 便携式发电机之类的设备,但是美国研究委员会并没有对此提出强制要求。

DPS:您认为中国是否在设计和采购过程中也考 虑到了这些要求?  Craig Irish:是的,并且据我所知,这种方法已经为世界范围内的核能 产业所广泛应用,尤其是美国通用电气公司的沸水型反应堆, 电源

DPS:大多数新建的核电站都始建于 2007 和 2008 年,并都考虑到福岛事故所带来的影响。 您是否对中国电站厂址进行过评估,哪些是在 2007 年到 2011 年期间所选择的?您能对此预 见一些问题或影响吗? Craig Irish:像美国一样,中国电站必须超越设计基础去看待一些问题, 所有的反应堆和电站都在海岸线附近,或在湖边,在大河边,都需要考虑 到 50 年到 100 年间可能发生的洪涝灾害。他们需要考虑不同的情况,并进 Oconee Switchgear 1920


HAF 政策

88

放射性废物安全监督管理规定

(HAF401)


89

HAF 政策

放射性废物安全监督管理规定 (HAF401) 1.引言

性废物产生和管理的各个步骤间的相互依赖关系;

1.1 目的

  (9) 设施安放射性废物管理设施必须确保其使用寿期内的安全. 

本规定阐明放射性废物管理的目标和原则,以及放射性废物的安全 监督管理职责.

3. 放射性废物安全监督管理职责 3.1 国家核安全部门的职责

1.2 范围

(1) 制定有关核设施(包括放射性废物处置库,下同)放射性废物

本规定适用于放射性废物从产生到处置全过程的安全管理。主要针

管理法规、导则和技术文件;

对核燃料循环所产生的固态、液态和气载放射性废物.对于放射性同 位素生产和应用过程所产生的放射性废物的安全管理和可参照执行。

(2) 按照本规定的要求,评价营运单位提交的安全分析报告、有关 文件和运行计划等;

2. 放射性废物管理的目标和原则 2.1 管理目标

(3) 通过对设计、建造、运行以及人员资格和记录的审查,评价放 射性废物处理、处置设施是否符合有关规定和标准;

放射性废物管理的目标是保护现在和将来人类的健康和环境,不给

(4) 对不符合法规和标准要求的事项,要求采取补救和纠正措施.

后代造成过度的负担。

3.2 核设施营运单位的职责 2.2 管理原则

3.2.1 营运单位必须遵守国家法律、法规和管理制度

为了达到上述目标,放射性废物管理应遵守下述原则: 3.2.2 放射性废物管理活动的安全责任由营运单位承担,营运单位必须: (1) 保护人类健康放射性废物的管理必须确保对人类健康的影响不 (1) 及时完成放射性废物处置前工作;

超过可接受水平: (2) 保护环境放射性废物的管理必须确保对环境的影响不超过可接 受水平;

(2) 进行安全和环境影响评价; (3) 确保财工作人员、公众和环境足够的防护;

(3) 超越国界的保护放射性废物的管理必须考虑超越国界可能对人 类健康和环境的影响;

(4) 确保放射性废物安全管理的各步骤有合适的工作人员、设备、 设施、培训和操作程序;

(4) 保护后代放射性废物的管理必须使预测的对后代健康影响不超 过今天可接受的有影响水平;

(5) 建立和执行放射性废物产生及其预处理、处理、整备、贮存和 处置的质保大纲;

(5) 给后代的负担放射性废物的管理必须确保不给后代造成过度的 负担:

(6) 建立和保持有关放射性废物的产生,预处理、处理、整备、贮 存和处置,包括放射性废物存量信息的记录;

(6) 遵守国家法律规定和管理制度放射性废物的管理必须遵守国家

(7) 根据有关部门的要求,提供监视和控制;

法律、法规和标准,包括明确划分责任和规定独立的监督管理职能; (8) 收集、分析和运用营运经验,确保安全持续改善; (7) 控翻放射性废物的产生放射性废物的产生必须保持在实际可行 (9) 开展适当的研究开发工作,支持运行的需要。

的最低限度; (8) 放射性废物产生和管理间的相互依赖关系

必须适当考虑放射

3.2.3 营运单位必须通过对核设施合适的设计、运行、维修与退役,


HAF 政策

90

使放射性废物的产生处于实际可行的最低限度,必须适当考虑放射性废

4.3.1 安全文化要求从事放射性废物管理的个人和组织对安全具有献

物产生和管理各步骤间的相互依赖关系,保证放射性废物的处理和整备

身精神和责任感.负责放射性废物管理活动的领导和组织应建立和执行

工作符合计划的贮存方式,使之在规定的贮存期限可回取废物进行最终

利于促进安全文化的制度和程序。

处置。

4.3.2 提高安全意识的责任,主要由各组织的高层管理人员承担,所 3.2.4 营运单位有责任在适当时间范围内,根据法律和法规的规定,

有从事放射性废物管理的组织都应制订和执行有关安全的规章和审查程

并得到国家核安全部门批准,确定其所属的放射性废物的去向,营运单

序,以确保建立和使用正确的方法,形成和保持安全意识。应该制订和

位可按批准的方式自行处理、整备和贮存放射性废物或者将放射性废物

执行强调安全重要性和个人行为要求的员工培训大纲。

转给另一营运单位进行处理、整备和贮存;排出流向环境的排放必须得 到批准。

4.放射性废物安全管理的重要环节 4.1 放射性废物的产生与管理

4.4 质量保证 4.4.1 质量保证应采取适当的措施为保护人类健康和环境提供必要的 信任。

4.4.2 营运单位应给质量保证职能部门提供充分的独立性。应明确规

4.1.1 放射性废物产生与管理的所有步骤间存在相互依赖关系,因此,

定有关人员和组织的责任和权限,质量保证适用于所有的放射性废物管

为放射性废物管理动制定计划时,应考虑:

理活动,尤其是对安全有重要意义的环节。质量保证大纲特别应当确保 废物货包满足废物接收的要求。

(1) 放射性废物量(活度和体积)应保持在实际可行的最低限度; (2) 放射性废物管理各步骤的安全要求。

4.1.2 制定放射性废物管理计划对,应顾及所有安全问题和需要。决 定放射性废物管理中具体步骤时,不应孤立考虑,否则可能妨碍方案选 择或影响废物管理的其它步骤.

4.1.3 制定放射性废物管理计划时,应与有关各方交流和对话。

4.4.3 质量保证大纲应得到国家核安全部门的认可。在执行中应受到 相应的监督和检查。

4.5 研究和开发 4.5.1 应根据放射性废物管理计划的规模和需要进行研究和开发工作。 4.5.2 当一个体系(如处置系统)的长期性能不能通过直接观察予以 证明的情况下,应该通过研究和开发工作去获得必要的信息,也可通过

4.2 安全分析和环境影响评价 4.2.1 营运单位应根据法规和标准,对新的废物管理设施与实践以及 现有设施或实践的重大改变进行评价。编写安全分析报告和环境影响评

参加国际合作研究去取得。

4.5.3 营运单位和有关部门应考虑本国和国际实践所获得的经验和教 训,以确定是否需要改进设备和工艺、培训人员或改变安全要求。

价报告,分别提交给国家核安全部门和环境保护部门。

4.2.2 在报告中应当分析和论证正常运行时的辐射安全和非辐射安全,

4.6 文件和记录

也要评价事件和事故的可能影响,必要耐,这种评价应根据 2.2 条规定

4.6.1 营运单位应按法规要求和自身需要,保管好文件和记录。这些

的原则论证长期安全性。

文件和记录的编录和保存应使非直接从事该项活动的人员能够方便查阅 和了解,并利于用计算机管理。

4.2.3 对于正常运行工况的评价,应当分析和论证放射性废物管理过 程的各个步骤对工作人员、公众和环境的辐射安全和非辐射安全,这些

4.6.2 文件和记录应包括:

评价应该以设施设计和工艺过程为基础。 (1) 放射性废物存量、来源、所在地、物理和化学特性。必要时,

4.2.4 对放射性废物管理设施可能给人类生存、环境(土壤、水、空

还应有一份从设施转移出放射性废物的记录;

气和非人类生物群)和自然资源造成的非放射学影响做出评定、描述和 分析。

4.2.5 应评价内部和外部事件(这种事件可能导致事故)可能的后果, 及其对工作人员、公众和环境的影响,这种评价应该利用适当的模式和

(2) 场地平面图,工程图纸,技术规格书和工艺说明; (3) 质量保证和质量控制活动资料; (4) 安全分析和环境评价方法与计算机程序;

可得到的实验数据。 (5) 安全分析和环境评价结果;

4.2.6 评价处置设施的长期性能,应当考虑可能被容纳的放射性废物 的放射性核素含量、物理和化学特性,以及处置系统所提供的屏障的有 效性.天然屏障的有效性应通过现场调查来确定.这种评价只能利用预 先确定的模型来进行,这些模型应是建立在实验数据的基础上。

4.3 安全文化

(6) 排出流和环境监测结果; (7) 放射性废物货包标识;   (8) 处置设施关闭资料。 


91

4.7 人员培训和资格认定

HAF 政策

放射性废物处理包括通过改变放射性废物特性来改善安全性或经济 性的那些操作,基本的处理概念是减容、去除放射性核素和改变组成。

  运营人员必须有必要的专业知识。应制订适当的人员培训计划,以 确保工作人员有必要的能力,培养注重质量和安全的素质,使工作人员 适应有关技术和规章的变化。这包括设备供应商提供的培训。培训之后 要进行适当考核,给予资格认定。 

4.8 应急计划

例如:可燃性废物的焚烧;干固体废物的压缩(减容);废液的蒸发、 过滤或离子交换(去除放射性核素)和化学物质的絮凝沉淀(改变组分)。 经常将几种方法联合使用,使废液有效净化。这可能产生需要管理的二 次放射性废物(如被污染的过滤器、废树脂、泥浆等)。 放射性废物的整备包括使放射性废物适合装卸、运输、贮存和处置

放射性废物管理活动中,如果存在对人类健康和环境有潜在危害的事故

的一些操作。这类操作可包括放射性废物的固化,将放射性废物置入容

时,需要提供应急计划和作好对付事故的必要准备。

器和提供外包装。普通的固化方法包括低中放废液的水泥固化、沥青固 化或塑料固化、高放废液的玻璃固化。通常根据放射性核素的性质和活

4.9 有组织的控翻

度将废物固化体封装在钢桶中(通常用 200 升钢桶),或者封装在特制

4.9.1 放射性废物应及时处理和整备,其安全性尽可能不依赖于长期

的厚壁容器中。在许多情况下,处理和整备两者密切结合,同时进行。

管理的安排,然而,处置库关闭后,需要有适当时间的有组织的控制,

  处置是放射性废物管理体系的最后一步,处置主要是将放射性废物

以便:

安置在确保安全的处置设施中,并且不打算回取,不依赖长期监护。处 置安全性主要通过浓集和封隔来实现的。封隔是把经过适当整备的废物

(1) 防止人们闯入处置库;

隔离于处置设施中。在放射性废物周围设置屏障来限制放射性核素释放

(2) 防止移出或扰动放射性废物;

到环境中。屏障可以是天然的或是工程的,隔离系统可能是由一个屏障 或多个屏障组成。多重屏障系统能更好地实现隔离,确保放射性核素向

(3) 对照设计准则监测处置库的效能;

环境的任何释放以可接受的低速率进行。屏障可能提供在一段时间内的 绝对封隔(象金属容器),或者可以延缓放射性物质释放到环境(象回

(4) 执行必要的补救行动。

填物或具有高吸附能力的主岩)。在放射性废物被屏障系统封隔期间,

这种控制可以是主动的(例如连续监测、定期检查、维护、控制人们接

废物中的放射性核素将衰变。屏障系统是根据所选择的处置方案和所包

近等),或者是被动的(例如永久性标志、土地使用限制)。

容的放射性废物的形态设计的。

4.9.2 有组织的控制的最长期限,应当由国家审管部门确定。

  虽然计划以浓缩和封隔来处置大多数类型的放射性废物,但处置也 包括在允许限值内向环境排放液态和气态放射性废物。实际上,这是一

附录 放射性废物管理的基本步骤 放射性废物的有效管理是把管理过程的基本步骤(示于图 1)作为 废物从产生到处置整个体系的各个部分,因为在某一个步骤所做的决定 有可能妨碍另一个步骤的方案选择,所以应强调考虑放射性废物管理设 施的计划、设计、建造、运行和退役各步骤间的相互关联性。 本附录叙述了放射性废物管理的各个步骤,为从事放射性废物管理的有 关人员提供共同的术语和认识。这些考虑适用于核燃料循环(包括核电 生产)、医学与工业应用放射性物质所产生的放射性废物的管理;也适 用于设施运行期间和退役期间所产生的放射性废物的管理。这些步骤应

种不可逆转的行动。因而认为只是有限数量的特殊放射性废物可以适用。   废物和物料的特性鉴定、贮存和运输可能在放射性废物管理基本不 走之内进行。这些步骤的适用性因放射性废物类别而异。   放射性废物的贮存,例如:(1)提供隔离、环境保护和监测;(2) 有利于如处理、整备和处置等活动。在某些情况下,进行贮存可能是出 于技术考虑。例如,短寿命核素放射性废物的贮存,是为了让其衰变, 随后在允许限值内排放;或者出于释热考虑,如在地质处置前贮存高放 废物。在其他情况下,进行贮存是由于经济和政策等原因。   运输在放射性废物管理步骤间可能是必要的。有效的放射性废物管 理应当考虑运输所涉及的问题。

用的差别取决于放射性废物的种类。 应对废物进行特性鉴定,确定其物理、化学和放射学性质,以利于 记录保存和放射性废物从一个步骤转入到另一个步骤。例如,分出免管 或复用的废物,对废物实行不同的处置,或者确保废物符合贮存和处置 的需要,选择合适的包装等,都可以应用这些鉴定资料。 废物的预处理是废物产生后废物管理的初始步骤,例如收集、分拣、 化学调节和去污,并且可能包括中间贮存一段时间。这个初始步骤是非 常重要的,因为它在许多情况下,为分类处理废物提供了很好的机会, 如在工艺过程内作再循环,或者根据其放射性物质存量确定作为非放废 物处置,或作为放射性废物进行近地表处置或地质处置。 图 1 放射性废物管理的基本步骤


会议展会

92

会议展会 长春

北京

西安

北京 天津 济南 济南 河南

扬州 上海

上海

义乌 宁波 贵州 云南

广州 广东 深圳

厦门

11 月 2013 年秋季 ( 第 82 届 ) 中国电子展 时间:2013-11-13---2013-11-15 地址:上海新国际博览中心 联系人:侯旭海 联系方式:13810788214 网址:http://www.elexcon.com/ceffall/

2013 中国(上海)国际蒸发及结晶技术设备展览会 时间:2013-11-18---2013-11-20 地址:上海光大会展中心 联系人:胡岩 联系方式:13701897673 网址:http://www.shecexpo.icoc.cc

2013 中国(上海)国际试验机展览会暨研讨会 时间:2013-11-18---2013-11-20 地址:上海世博展览馆 联系人:王俊 联系方式:15821309643 网址:http://www.18show.cn/exhibition/132129/default.html

2013 中国钣金工业(宁波)展览会 时间:2013-11-21---2013-11-23 地址:宁波国际展览中心 联系人:江涛 联系方式:0574-55127120  网址:http://www.cismie.com/


93

2013 年中国国际燃气、供热技术与设备展览会

会议展会

地址:上海国际博览中心 联系人:上海奥亚展览有限公司

时间:2013/11/13-2013/11/15 联系方式:021-33518138 地址:济南国际会展中心(简称“高新馆) 网址:www.forging-expo.cn 联系人:聂松 联系方式:010-66206773 网址:www.gaschina2013.com

12 月 2013 中国水博览会暨中国国际膜与水处理技术及装备展览 会

2013 第十三届北京国际食品加工和包装机械展览会

时间:2013/12/2-2013/12/4

时间:2013/11/13-2013/11/15

地址:北京国家会议中心

地址:北京国际会议中心

联系人:薛鸽 周庆 孟慧琳

联系人:李娜

联系方式:86-10-64426130 /64450741

联系方式:15026940388

网址:http://www.membranes.com.cn

网址:http://www.chinafoodtech.com.cn/

2013 中国义乌国际装备制造业博览会

2013 中国水博览会 时间:2013/12/02-2013/12/04

时间:2013/11/19-2013/11/22

地址:国家会议中心

地址:义乌国际博览中心

联系人:赵松

联系人:孙挺

联系方式:010-63203480

联系方式:86-10-58280741

网址:www.waterexpo.cn/

网址:http://www.ywmeexpo.com/www/

扬州 2013 国际机床模具展览会

2013 第十二届国际袋式除尘技术与设备展览会暨研讨会 时间:2013/12/04-2013/12/06

时间:2013/11/21-2013/11/23

地址:上海世贸商城

地址:扬州国际博览中心

联系人:任鹏

联系人:杨先生

联系方式:+86 21 6587 6481

联系方式:13914008762

网址:www.bagfilter.net

网址:http://www.ly-expo.com/

2013 第十六届北京国际热处理展览会

2013 中国广州国际绿色建筑与节能展览会 时间:2013/12/11-2013/12/13

时间:2013/11/25-2013/11/27

地址:广州保利世贸博览馆

地址:北京国家会议中心

联系人:黄冰

联系人:邵周俊

联系方式:15018783021

联系方式:010-62914108

网址:www.igbchina.com

网址:http://www.chts.org.cn/

2013 年第五届上海国际锻造(产品)博览会 时间:2013/11/28-2013/11/30


科技文章

94

科技文章 关于使用蒙特·卡罗确定性 混合法进行快堆分析的可行性


95

科技文章

关于使用蒙特·卡罗确定性 关于使用蒙特·卡罗确定性混合法进行快堆分析的可行性

混合法进行快堆分析的可行性 Woong Heo, Woosong Kim, Yonghee Kim*

Sunghwan Yun 韩国科学技术高级研究院(KAIST) Woong Heo, Woosong Kim, Yonghee Kim*

291 Daehak-ro, Yuseong-gu, Daejeon, South 韩国科学技术高级研究院(KAIST) Korea, 305-701 韩国科学技术高级研究院 (KAIST) goodh7284@kaist.ac.kr; *yongheekim@kaist.ac.kr 989-111 Daedeok-daero, Yuseong-gu, 291 Daehak-ro, Yuseong-gu, Daejeon, South Korea, 305-701 Daejeon, Korea, 305-353 Sunghwan Yun goodh7284@kaist.ac.kr; *yongheekim@kaist.ac.kr syun@kaeri.re.kr 韩国科学技术高级研究院(KAIST) 989-111 Daedeok-daero, Yuseong-gu, Daejeon, Korea, 305-353 syun@kaeri.re.kr

1. 简介 钠冷快堆(SFR)采用了第四代反应堆的设计,在铀资源利用率方面具有优势,并且其放射性废物的产生量很低   钠冷快堆(SFR)采用了第四代反应堆的设计,在铀资源利用率方面具有优势,并且其放射性废物的产生量很低。对如 SFR 等快堆 。对如SFR等快堆所进行的设计和分析应该与对轻水反应堆(LWR)的设计和分析有所不同,因轻水反应堆中存在柔和的中子。在典 所进行的设计和分析应该与对轻水反应堆(LWR)的设计和分析有所不同,因轻水反应堆中存在柔和的中子。在典型的 LWR 分析中,横 型的LWR分析中,横截面通常是使用一个单一的燃料组件计算生成。然而,由于快中子光谱的因素,在快中子反应堆中,中子的平均 截面通常是使用一个单一的燃料组件计算生成。然而,由于快中子光谱的因素,在快中子反应堆中,中子的平均自由程长度更长,从 自由程长度更长,从而使中子流成为其主导因素。这就需要使用一种不同的方法来为快堆分析生成横截面数据。目前的方法是在一个 而使中子流成为其主导因素。这就需要使用一种不同的方法来为快堆分析生成横截面数据。目前的方法是在一个确定性方法的基础上, 确定性方法的基础上,来考量众多中子群,堆芯的异构性,并考虑到不同的谐振截面。 来考量众多中子群,堆芯的异构性,并考虑到不同的谐振截面。 一般情况下,快堆分析的若干组横截面数据,通常是使用TRANSX和TWODANT代码的组合产生的。 TRANSX 生成150组横截面,然后传递给TWODANT代码,随即用于解决的输运方程,并确定核心R  一般情况下,快堆分析的若干组横截面数据,通常是使用 TRANSX 和 TWODANT 代码的组合产生的。 TRANSX 生成 150 组横截面,然 Z模型的当地通量谱。然后,这些通量谱将被插入到TRANSX代码中,用于生成简明截面。但是,截面生成的确定性方法也有限制。这些 后传递给 TWODANT 代码,随即用于解决的输运方程,并确定核心 R-Z 模型的当地通量谱。然后,这些通量谱将被插入到 TRANSX 代码中, 限制来源于多群中子能量的使用和在TRANSX 与TWODANT 用于生成简明截面。但是,截面生成的确定性方法也有限制。这些限制来源于多群中子能量的使用和在 TRANSX 与 TWODANT 代码中使 代码中使用的几何近似法。这些限制使得用纯粹的确定性方法对高阶散射事件进行分析变得困难。为了克服这些限制,可以使用蒙特卡 用的几何近似法。这些限制使得用纯粹的确定性方法对高阶散射事件进行分析变得困难。为了克服这些限制,可以使用蒙特卡罗法用 罗法用于生成多组横截面数据的快堆分析。在蒙特卡罗方法中,连续能谱被用于离散的多组中子能量中,以减少由此产生的误差,并可 于生成多组横截面数据的快堆分析。在蒙特卡罗方法中,连续能谱被用于离散的多组中子能量中,以减少由此产生的误差,并可以在 以在不使用几何近似法的情况下完成一个模型的创建过程。 不使用几何近似法的情况下完成一个模型的创建过程。   使用蒙特卡罗方法是可行的,因为快堆分析通常不需要许多在栅格分析中费时的燃耗计算来确定有效截面。这是因为在常规快堆 使用蒙特卡罗方法是可行的,因为快堆分析通常不需要许多在栅格分析中费时的燃耗计算来确定有效截面。这是因为在常规快堆设计中 设计中的各种核素的微观截面只是轻微的受到燃耗的影响。因此,人们认为蒙特卡罗方法可以被用来生成快堆堆芯的横截面数据,相 的各种核素的微观截面只是轻微的受到燃耗的影响。因此,人们认为蒙特卡罗方法可以被用来生成快堆堆芯的横截面数据,相对于确定 对于确定性方法,蒙特卡罗方法只是合理的增加了一些计算时间。这将对近似精确的确定性方法进行重置,而这种方法则往往借助于 性方法,蒙特卡罗方法只是合理的增加了一些计算时间。这将对近似精确的确定性方法进行重置,而这种方法则往往借助于传统扩散 传统扩散码的运算得以实现。最近的一项由 Fridman 和 Shwagerhaus 开展的研究通过结合蒙特卡洛 Serpent 与 DYN3D 方法验证了这一 码的运算得以实现。最近的一项由Fridman和Shwagerhaus开展的研究通过结合蒙特卡洛Serpent与DYN3D方法验证了这一种说法。根据 种说法。根据他们的研究,Serpent/DYN3D 的组合所得到的结论与他们的参考解具有良好的一致性。在目前的工作中,MCNP5 被用来代 他们的研究,Serpent/DYN3D的组合所得到的结论与他们的参考解具有良好的一致性。在目前的工作中,MCNP5被用来代替Serpent的使 替 Serpent 的使用。 用。   在以往的研究中,分别将由 TRANSX/TWODANT 和 MCNP5 生成的横截面通过使用 300 兆瓦的 SFR TRU 燃烧器堆芯模型进行比较。在比 在以往的研究中,分别将由TRANSX/TWODANT和MCNP5生成的横截面通过使用300兆瓦的SFR 较中,使用了 MCNP5 高阶勒让德散射截面生成模型。在目前的研究中,这两种横截面被应用到 DIF3D 中,在 DIF3D 中,相对于参考解, TRU燃烧器堆芯模型进行比较。在比较中,使用了MCNP5高阶勒让德散射截面生成模型。在目前的研究中,这两种横截面被应用到DIF3 keff 与堆芯的功率分布来自于每个方法中的同构模型。参考解是一种异构的核心模型。 D中,在DIF3D中,相对于参考解,k eff与堆芯的功率分布来自于每个方法中的同构模型。参考解是一种异构的核心模型。

2. MCNP5多组散射截面的生成方法 2.1 基于连续能量的多组散射截面的生成方法框架 基于连续能谱的多群截面的基础是连续的能量稳态输运方程式。这个著名的方程式形式如下:

          2l  1    r , E ,    t ( r , E, )   d  dE   sl ( r , E   E ) Pl (  0 ) (r , E ,  ) 4 0 l  0 4 (1)       (E)      d d E E E     ( r , )  ( r , ,  ), f 4k eff 4 0

其中  0

      , 为角通率,  t 是总横截面,  f 为裂变截面,  为裂变谱, k eff 为该系统的特征值,  sl 为散射时刻。

在(1)方程式中,在使用球谐函数的加法定理和基团的缩合与均化的一些数学过程后,在高阶散射截面方程(3)中发现了碰撞估计方 法:


 sl , g  g 

   d E d   rl ( r , E ) Eg

96

科技文章

V

 0 ( r , E )  dE  dPl (  0 ) s ( r , E   E ,    ) 4

Eg

 sl , g  g 

      d r ( r ,E)l )( r, E )  dE dPl (  0 )d E E0,  ( r , E  s

  Eg

Eg

4

V

,

  dE  d r l ( r , E )

Eg

V

(2)         ( r , E )  dE  dP (  ) ( r , E   E ,    )  dE  d r 散射截面的统计,在参考文献[9]和参考文献[10]中以相同的方式做以假设。在方程式(2)中,分母 ,  0

E g

V

Eg

4

l

s

0

  dE  d r 0 ( r , E )

Eg

V

E ) 是MCNP5中传统的标量通量统计。此外,方程式(2)中的分子可以表示为:

    d dE  d r 散射截面的统计,在参考文献[9]和参考文献[10]中以相同的方式做以假设。在方程式(2)中,分母

其中,

4

E g

V

  I dE  d r0 ( r , E )是MCNP5中传统的标量通量统计。此外,方程式(2)中的分子可以表示为:   

    0 ( r , E )  dE  dPl (  0 ) s ( r , E   E ,    )   Eg 

V

4

Eg

i 1

 0 ( r , E )  dE  dPl (  0 ) s ( r , E   E ,    )   Eg

I

4

i 1

  P (

  l for all  for all 

  P (

  l for all  for all 

0

)  ( wgt ) i

0

)  ( wgt ) i

 EE g , E E g  , rV

,

 EE g , E E g  , rV

,

(3)

其中, ( wgt) 为 i 散射事件从 ( E , ) 相空间至向 r 相空间[3]的蒙特卡罗粒子重量。对于该横截面的估计器,在MCNP5[3]中加入 i 散射事件从 ( E , ) 相空间至向 r 相空间[3]的蒙特卡罗粒子重量。对于该横截面的估计器,在MCNP5[3]中加 并修改了几个子程序,这些过程的流程在下面图1中显示: i

程序,这些过程的流程在下面图1中显示:

图1:在MCNP5代码中使用的碰撞估计

2.2. 采用MCNP5/DIF3D分析快堆堆芯

图2显示了典型的快堆的TRANSX/TWODANT/DIF3D/REBUS确定性分析计算程序。在传统方法中,TRANSX使用了150组截面库以生 成有效的横截面,然后将其用于TWODANT去解答RZ模型的一个离散坐标()的输运方程并产生相应的区域通量谱。然后来自于TWODANT的当地中子能谱被插入到TRANSX的截面组,然 后折叠成较少的群体。倒塌组和裂变产物的横截面随之组合到一起。这些组合截面被DIF3D/REBUS代码用于多维岩心分析和燃烧计算。 。

图1:在MCNP5代码中使用的碰撞估计

2.2. 采用 MCNP5/DIF3D 分析快堆堆芯

DIF3D分析快堆堆芯

图 2 显示了典型的快堆的 TRANSX/TWODANT/DIF3D/REBUS 确定性分析计算程序。在传统方法中,TRANSX 使用了 150 组截面库以生成有效的横 截面,然后将其用于 TWODANT 去解答 R-Z 模型的一个离散坐标 () 的输运方程并产生相应的区域通量谱。然后来自于 TWODANT 的当地中子能谱被

插入到 TRANSX 的截面组,然后折叠成较少的群体。倒塌组和裂变产物的横截面随之组合到一起。这些组合截面被 DIF3D/REBUS 代码用于多维岩 快堆的TRANSX/TWODANT/DIF3D/REBUS确定性分析计算程序。在传统方法中,TRANSX使用了150组截面库 心分析和燃烧计算。 ,然后将其用于TWODANT去解答R坐标()的输运方程并产生相应的区域通量谱。然后来自于TWODANT的当地中子能谱被插入到TRANSX的截面组 群体。倒塌组和裂变产物的横截面随之组合到一起。这些组合截面被DIF3D/REBUS代码用于多维岩心分析和燃烧


97

科技文章

图2. 工作流程表 图2. 工作流程表

图3. 修改后工作流程表

图3. 修改后工作流程表

在新的混合方法中,所有必要的由MCNP5生成的多组截面和结果都直接运用于DIF3D/REBUS中对堆芯进行分析。正如图3所示。在典型 在新的混合方法中,所有必要的由 MCNP5 生成的多组截面和结果都直接运用于 DIF3D/REBUS 中对堆芯进行分析。正如图 3 所示。在典型的热反应器 的热反应器的分析中,单晶格分析可用于多组截面的生成。然而,一种简化的RZ模型被用于当前的工作中,因为通常来说,对于快中子 在新的混合方法中,所有必要的由MCNP5生成的多组截面和结果都直接运用于DIF3D/REBUS中对堆芯进行分析。正如图3所示。在典型 的分析中,单晶格分析可用于多组截面的生成。然而,一种简化的 RZ 模型被用于当前的工作中,因为通常来说,对于快中子反应堆的扩散分析来说, 反应堆的扩散分析来说,本地中子能谱在若干组横截面的测定过程中起到了非常重要的作用。 本地中子能谱在若干组横截面的测定过程中起到了非常重要的作用。 的热反应器的分析中,单晶格分析可用于多组截面的生成。然而,一种简化的RZ模型被用于当前的工作中,因为通常来说,对于快中子

反应堆的扩散分析来说,本地中子能谱在若干组横截面的测定过程中起到了非常重要的作用。 在当前的工作中,DIF3D 分析使用扩散理论方法来进行。必要的扩散系数简单地由通过使用运输交叉部分来决定,是由方程式(4)决定的。并且 在当前的工作中,DIF3D分析使用扩散理论方法来进行。必要的扩散系数简单地由通过使用运输交叉部分来决定,是由方程式(4)决 扩散系数是通过使用方程式(5)来计算的。 定的。并且扩散系数是通过使用方程式(5)来计算的。 1)运输交叉部分:

 

  在当前的工作中,DIF3D分析使用扩散理论方法来进行。必要的扩散系数简单地由通过使用运输交叉部分来决定,是由方程式(4)决 dE '  s1 E '  E J i r , E ' , t   0 定的。并且扩散系数是通过使用方程式(5)来计算的。 ,  tr r , E    t r , E  (4-a)  Ji r, E',t 1)运输交叉部分:

2)扩散系数:

 

  ' ' '  s1 sE  . E Ji r, E ,t ,g      tr , g 0 tdE 1g '  g g' ,  tr r , E    t r , E   Ji r, E',t

1

(4-b)

(4-a)

 tr , g D gt , g3tr ,g .  s1g '  g .

(5)

(4-b)

g'

2)扩散系数:

2.3 运输近似值[1]

D 

1

.

g 运输截面对于扩散分析来说具有重要价值。 TRANSX使用5种运输近似值产生运输截面。本文同时使用了Consistent-P 3 tr ,g Hansen-Sandmeier近似法,用于与MCNP5生成的截面进行比较。

(5)

Bell-

运输近似法起始于 SN运输方程式:

2.3 运输近似值[1] 运输截面对于扩散分析来说具有重要价值。

TRANSX使用5种运输近似值产生运输截面。本文同时使用了Consistent-P

Bell-


科技文章

98

 其中  为散射余弦,x 是位置,

  g (  , x)   gSN ( x) (  , x)  x

 (  , x) 为

g组的角通量,

N

 P (  )  l 0

SN lg  g '

l

( x) lg'  S g (  , x),

(6)

lg 为g组的勒让德通量, Pl (  ) 为勒让德多项式, S g (  , x) 为

g组的外部裂变源. 这个多组方程可以写成PN形式:

  (  , x)  x

N

 P ( ) l

l 0

PN ltg

( x) lg 

N

 P (  )  l 0

l

PN lg  g '

( x) lg'  S g (  , x),

(7)

其中PN截面由以下组平均值给出:

PN ltg

  ( E )W ( E )dE ,    W ( E )dE g

t

g

l

l

 dE  dE ( E  E )W ( E ) .   dE W ( E ) '

PN lg  g '

'

l

g'

'

g'

l

l

'

'

(8)

 t (E) 和  l ( E '  E ) 为基本的能源依赖总和散射截面, Wl (E ) 为一个加权通量,其选择要尽可能的接近于 .当将方程式(6)与方程式(7)进行比较时, SN方程式需要 在方程式 (8)中,

 lgSNg'  lgPN g ' for g '  g , and  lgSN g   lgPN g   ltgPN   gSN , SN

其中  g 是待定的.

(9)

 gSN 的选择提供了各种运输近似方法。 SN

方程式(9)的第二个公式,  g 可以被写成: PN  gSN   otg  Ng ,

(10)

N

其中  g 可以用来最小化截断勒让德扩展的影响。 Consistent-P近似法如下所示:

Ng  0,

(11)

Bell-Hansen-Sandmeier近似法或扩展的运输近似为 PN Ng   otg   NPN1,tg 

 g'

PN N 1, g ' g

.

(12)

Consistent-P近似法最适合用于当N以上的散射阶很小。B-HS法试图纠正各向异性散射矩阵,对于正向峰散射是特别有效的。这种形式是最常用的。

在本文中,MCNP5/DIF3D法的结论是与那些带有consistent-P和B-HS选项的常规TRANSX/TWODANT/DIF3D确定性方法所得出的结论进行比较的。 3. 数值结果 用作比较的参考堆芯是一个300兆瓦的SFR TRU燃烧器堆芯。本文完成了采用consistent-P和Bell-Hansen  用作比较的参考堆芯是一个 300 兆瓦的 SFR TRU 燃烧器堆芯。本文完成了采用 consistent-P 和 Bell-Hansen-Sandmeier 运输近似法选项的 Sandmeier运输近似法选项的TRANSX/TWODANT/DIF3D运算,并与同构的MCNP5/DIF3D目标结果进行了比较。通过使用MCNP5的 同构和异构模型生成了多组横截面和高阶散射截面。异构MCNP5模型被用作参考解,并通过进行3000个周期,每个周期100,000中子 TRANSX/TWODANT/DIF3D 运算,并与同构的 MCNP5/DIF3D 目标结果进行了比较。通过使用 MCNP5 的同构和异构模型生成了多组横截面和高阶散射截面。 异构来完成。为了生成一个正确的对照,异构模型截面的产生仅使用了0次散射通量近似。使用MCNP5生成的第9群截面的数据是通过使用 MCNP5 模型被用作参考解,并通过进行 3000 个周期,每个周期 100,000 中子来完成。为了生成一个正确的对照,异构模型截面的产生仅使用 连续的能谱和一个同构的模型来完成的。参考堆芯请参见图4。 了 0 次散射通量近似。使用 MCNP5 生成的第 9 群截面的数据是通过使用连续的能谱和一个同构的模型来完成的。参考堆芯请参见图 4。 为了通过TRANSZ / TWODANT生成横截面数据,采用了一个简化的300兆瓦SFR堆芯同构模型( RZ -模型)。相同的RZ 模型也可以用来生成高阶散射横截面的数据,并使用了MCNP5的混合方法。对于TRANSX / 为了通过 TRANSZ / TWODANT 生成横截面数据,采用了一个简化的 300 兆瓦 SFR 堆芯同构模型( RZ - 模型)。相同的 RZ - 模型也可以用来生 TWODANT(如图2所示),使用了150组库,然后将其缩合成9组截面库。此计算的特点是包含几何和多组近似值。该MCNP5截面的 成高阶散射横截面的数据,并使用了 MCNP5 的混合方法。对于 TRANSX / TWODANT(如图 2 所示),使用了 150 组库,然后将其缩合成 9 组截面库。 生成显示于图3中。为了执行DIF3D计算,异构模型中的每个组件都被视为一个同构组件。从TRANSX / 此计算的特点是包含几何和多组近似值。该 MCNP5 截面的生成显示于图 3 中。为了执行 DIF3D 计算,异构模型中的每个组件都被视为一个同构组件。 从 TRANSX / TWODANT 和 MCNP5 生成的横截面数据随即被插入到每个组件的局部区域。在这个过程中,P0 散射截面被用作为 MCNP5 的散射截面。最后, 计算得出的每个代码的 keff 值和功率分布会进行相互比较并与参照解进行比较。两种生成的横截面数据的输出格式为 ISOTXS,这种格式允许数据 被插入到 DIF3D 中。ENDF/B-VII.0 库被用于 MCNP5 连同 TRANSX / TWODANT 的计算当中。


,计算得出的每个代码的keff值和功率分布会进行相互比较并与参照解进行比较。两种生成的横截面数据的输出格式为ISOTXS 格式允许数据被插入到DIF3D中。ENDF/B-VII.0库被用于MCNP5连同 TRANSX / TWODANT的计算当中。 99

科技文章

TWODANT和MCNP5生成的横截面数据随即被插入到每个组件的局部区域。在这个过程中,P0散射截面被用作为MCNP5的散射截面 。最后,计算得出的每个代码的keff值和功率分布会进行相互比较并与参照解进行比较。两种生成的横截面数据的输出格式为ISOTXS ,这种格式允许数据被插入到DIF3D中。ENDF/B-VII.0库被用于MCNP5连同 TRANSX / TWODANT的计算当中。

图4. 异构和同构的300MWe堆芯模型 图4. 异构和同构的300MWe堆芯模型 图 4. 异构和同构的 300MWe 堆芯模型

表I显示了9组内部堆芯区域的散射截面数据。在高能区,MCNP5和TRANSX/TWODANT的结果之间差异增加。采用B-H-

表 I 显示了 9 组内部堆芯区域的散射截面数据。在高能区,MCNP5 和 TRANSX/TWODANT 的结果之间差异增加。 显示了9组内部堆芯区域的散射截面数据。在高能区,MCNP5和TRANSX/TWODANT的结果之间差异增加。采用B-HS的TRANSX/ TWODANT的最大相对误差为采用 B-H-S 的 TRANSX/ TWODANT 的最大相对误差为 -38.53%(第 1 组为自散射),并且自 1 至 4 组的散射截面有 38.53%(第1组为自散射),并且自1至4组的散射截面有一个很大的相对误差,与此同时自散射错误随着组能量的降低而减少。采用B NSX/ TWODANT的最大相对误差为 一 个很大的相对误差,与此同时自散射错误随着组能量的降低而减少。采用 B-H-S 和 consistent-P 的 TRANSX/ -H-S和consistent-P的TRANSX/ (第1组为自散射),并且自1至4组的散射截面有一个很大的相对误差,与此同时自散射错误随着组能量的降低而减少。采用 TWODANTG6⟶8的向下散射的相对误差为42.55%,G3⟶9的向下散射的相对误差为31.53%。除了第9个散射截面有5〜10%的相对误差 , nsistent-P的TRANSX/ 其 他的截面的错误率低于 5%。 ,其他的截面的错误率低于5%。 NTG6⟶8的向下散射的相对误差为42.55%,G3⟶9的向下散射的相对误差为31.53%。除了第9个散射截面有5〜10%的相对误差 表I. 内部堆芯的同构模型散射截面(P0) 的截面的错误率低于5%。 GROUP

1

1

9.0381E-02a 9.0411E-02b 9.0518E-02c

2

5.5555E-02d 3

4

5

1

2

3

4

5

6

7

8

9

9.0381E-02a

3.7424E-02

1.6875E-02

6.7104E-03

1.7823E-03

4.0040E-04

8.3307E-05

2.0554E-05

7.7739E-06

9.0411E-02b

3.7413E-02

8.2173E-05

2.0455E-05

8.1588E-06

9.0518E-02c 2

3.7372E-02 3

1.6902E-02 4 6.7416E-03

1.8028E-03 5

4.0886E-04 6

8.6228E-05

72.1201E-05

8.6622E-06 8

9

5.5555E-02d

3.7372E-02

1.6902E-02

6.7415E-03

1.8028E-03

4.0886E-04

8.6228E-05

2.1201E-05

8.6622E-06

1.2472E-01

2.8025E-02

8.9212E-03

1.9786E-03

3.6534E-04

6.7484E-05

1.3526E-05

2.0554E-05

7.7739E-06

4.0131E-04 8.2173E-05 2.0455E-05 6.6664E-05 1.3553E-05 4.1714E-06

8.1588E-06

表I. 1.6925E-02 内部堆芯的同构模型散射截面(P 0) 6.7401E-03 1.7923E-03 4.0131E-04

3.7424E-02

1.6875E-02

3.7413E-02

1.6925E-02 6.7401E-03 1.7923E-03 1.2633E-01 2.7506E-02 8.9651E-03 1.9914E-03

3.6291E-04

3.7372E-02

1.2618E-01 2.7464E-02 9.0088E-031.8028E-03 2.0070E-03 1.6902E-02 6.7416E-03

3.6183E-04 6.6789E-05 1.3580E-05 4.0886E-04 8.6228E-05

4.3877E-06 2.1201E-05

8.6622E-06

3.7372E-02

1.6902E-02

2.1201E-05

4.3876E-06

8.6622E-06

1.2472E-01

2.8025E-021.6608E-01 8.9212E-03 1.5634E-021.9786E-03 1.9962E-03

3.6534E-04 6.7484E-05 3.6294E-04 1.0912E-04 3.7395E-05

1.3526E-05 5.0345E-06

4.1662E-06

1.2633E-01

1.5495E-021.9914E-03 1.9986E-03 2.7506E-021.6586E-01 8.9651E-03

3.7203E-04 1.0894E-04 3.9794E-05 3.6291E-04 6.6664E-05

6.4068E-06 1.3553E-05

4.1714E-06

1.2618E-01

2.7464E-023.0973E-10 9.0088E-03 2.0070E-03 2.0107E-01 9.5306E-03

5.4339E-05

3.6183E-04 6.6789E-05 1.3580E-05 8.0498E-06 1.1642E-06 1.9909E-07

4.3877E-06

1.0940E-01

2.0406E-012.0070E-03 9.3836E-03 2.7464E-023.5021E-10 9.0088E-03

1.0940E-01

6.7104E-03

1.7823E-03

4.0040E-04

8.3307E-05

2.7464E-02

9.0088E-03

2.0070E-03

3.6183E-04

6.6789E-05

1.3580E-05

1.6473E-01

1.5956E-02

1.9751E-03

3.5899E-04

1.0677E-04

3.6165E-05

6.7415E-03

1.5992E-01

1.8028E-03

1.5495E-02

1.9986E-03

4.0886E-04

3.7203E-04

8.6228E-05

1.0894E-04

3.9794E-05

5.4463E-05 8.1135E-06 1.1270E-06 3.6183E-04 6.6789E-05

_

2.0557E-01

9.2325E-03

5.4360E-05

7.8677E-06

1.0903E-06

_

1.9781E-01

9.2327E-03

5.4360E-05

7.8676E-06

1.0903E-06

1.9751E-03

3.5899E-04

1.0677E-04

4.1662E-06

4.8708E-06

6.4068E-06

1.9940E-07 1.3580E-05

4.3876E-06

1.9804E-07

3.6165E-05

4.8708E-06

3.7395E-05 2.2226E-07

5.0345E-06

1.6473E-01

1.5956E-02

1.6608E-01

1.5634E-02 2.9584E-101.9962E-03 2.2790E-01

1.6586E-01

1.5495E-02

1.9986E-03

3.7203E-04

1.0894E-04

3.9794E-05

6.4068E-06

1.5992E-01

1.5495E-02

1.9986E-03

3.7203E-04

1.0894E-04

3.9794E-05

6.4068E-06

3.0973E-10

2.0107E-01

9.5306E-03

5.4339E-05

8.0498E-06

1.1642E-06

1.9909E-07

3.5021E-10

2.0406E-01

9.3836E-03

5.4463E-05

8.1135E-06

1.1270E-06

1.9940E-07

_

2.0557E-01

9.2325E-03

5.4360E-05

7.8677E-06

1.0903E-06

1.9804E-07

3.6294E-04 1.0912E-04 7.8705E-03 1.0265E-04 1.7103E-06

1.9804E-07


科技文章

100

3.4108E-10

2.3089E-01

7.7076E-03

1.0321E-04

1.6821E-06

2.2631E-07

_

2.3445E-01

7.7556E-03

9.5054E-05

1.6238E-06

2.2637E-07

_

2.2308E-01

7.7558E-03

9.5056E-05

1.6238E-06

2.2637E-07

6

0.0000E+00

3.0305E-01

9.6842E-03

6.2232E-05

1.8729E-05

2.9931E-10

3.0452E-01

9.3711E-03

6.1126E-05

1.8814E-05

_

3.0896E-01

9.6476E-03

8.8712E-05

1.7001E-05

_

2.9233E-01

7

9.6486E-03

8.8711E-05

1.7000E-05

2.5260E-01

6.6872E-03

5.5389E-05

2.5114E-01

6.2290E-03

5.5230E-05

2.5156E-01

6.4184E-03

5.6680E-05

2.4523E-01

6.4183E-03

5.6680E-05

4.9325E-01

1.5650E-02

4.9964E-01

1.5235E-02

4.9937E-01

1.5328E-02

4.8955E-01

1.5328E-02

8

4.5294E-01 4.5419E-01

9

4.5453E-01 4.3405E-01 a: MCNP5 参考模型 b: MCNP5 的同构模型结论 c: 带有 consistent P 输运最大值选择结果的TRANSX/TWODANT同构模型 d: 带有 Bell-Hansen-Sandmeier 输运最大值选择结果的TRANSX/TWODANT 同构模型

  表 II 显示了内部堆芯区域主要截面的区域数据(输运截面,俘获截面,裂变截面乘以中子裂变产额)。这种比较的参考数据是 表II显示了内部堆芯区域主要截面的区域数据(输运截面,俘获截面,裂变截面乘以中子裂变产额)。这种比较的参考数据是异构3D 异构 3D 堆芯的 MCNP5 计算。方程式( 4,5)被用于计算参照解的输运截面。对于运输截面,在高能范围内的 MCNP5 数据具有最小的 堆芯的MCNP5计算。方程式( 相对误差。混合法在所有组中有大约 1 %的误差,确定性法在第 5 组和第 7 组截面中有大约 2-3%的误差。运输截面在第 9 组确定性 4,5)被用于计算参照解的输运截面。对于运输截面,在高能范围内的MCNP5数据具有最小的相对误差。混合法在所有组中有大约1 %的误差,确定性法在第5组和第7组截面中有大约2〜3 方法中的最大误差约为 5%。从方程式(5)中,很明显可以看出其扩散系数与输运截面的扩散系数具有相同的变化趋势。其他的相对 %的误差。运输截面在第9组确定性方法中的最大误差约为5%。从方程式(5)中,很明显可以看出其扩散系数与输运截面的扩散系数 误差一般在 3%以下。俘获截面误差在 0-2%左右,使得它与参考数据吻合良好。对于裂变截面乘以中子产额的,从第 1 组至第 8 组 具有相同的变化趋势。其他的相对误差一般在3%以下。俘获截面误差在0〜 2 的代码错误率都在 1%以下。然而,在第 9 组中的错误率却突然增加,达至约 3%。 %左右,使得它与参考数据吻合良好。对于裂变截面乘以中子产额的,从第1组至第8组的代码错误率都在1%以下。然而,在第9组中 的错误率却突然增加,达至约3%。 表II.内部堆芯区域的主要截面数据 GROUP

1

2

3

Ʃ_transport

Rel.Error(%)

Ʃ_γ

Rel.Error(%)

νƩ_fission

Rel.Error(%)

Diffusion Coeff.

Rel.Error(%)

8.9258E-02a

_

2.6721E-05

_

3.6023E-02

_

3.7345E+00

_

8.9290E-02b

0.04

2.6724E-05

0.01

3.6026E-02

0.01

3.7332E+00

-0.04

8.7842E-02c

-1.59

2.6716E-05

-0.02

3.6040E-02

0.05

3.7947E+00

1.61

8.7842E-02d

-1.59

2.6716E-05

-0.02

3.6040E-02

0.05

3.7947E+00

1.61

1.1218E-01

_

4.0111E-04

_

1.9173E-02

_

2.9714E+00

_

1.1253E-01

0.31

4.0285E-04

0.43

1.9149E-02

-0.13

2.9622E+00

-0.31

1.1371E-01

1.36

4.0278E-04

0.42

1.9146E-02

-0.14

2.9314E+00

-1.35

1.1372E-01

1.37

4.0281E-04

0.42

1.9145E-02

-0.14

2.9312E+00

-1.35

1.3626E-01

_

1.1048E-03

_

7.6593E-03

_

2.4463E+00

_


101

4

5

6

7

8

9

1.3716E-01

0.66

1.1066E-03

0.16

7.6561E-03

-0.04

2.4303E+00

-0.66

1.3584E-01

-0.31

1.1068E-03

0.18

7.6473E-03

-0.16

2.4539E+00

0.31

1.3584E-01

-0.31

1.1068E-03

0.18

7.6473E-03

-0.16

2.4539E+00

0.31

1.8150E-01

_

1.3281E-03

_

5.3803E-03

_

1.8365E+00

_

1.8399E-01

1.37

1.3344E-03

0.47

5.3805E-03

0.00

1.8117E+00

-1.35

1.7918E-01

-1.28

1.3364E-03

0.62

5.3776E-03

-0.05

1.8603E+00

1.29

1.7918E-01

-1.28

1.3364E-03

0.62

5.3776E-03

-0.05

1.8603E+00

1.29

2.2203E-01

_

2.0036E-03

_

5.3137E-03

_

1.5013E+00

_

2.2491E-01

1.30

2.0152E-03

0.58

5.3141E-03

0.01

1.4821E+00

-1.28

2.1734E-01

-2.11

2.0385E-03

1.74

5.3178E-03

0.08

1.5337E+00

2.16

2.1734E-01

-2.11

2.0385E-03

1.74

5.3178E-03

0.08

1.5337E+00

2.16

3.0419E-01

_

3.7694E-03

_

5.6457E-03

_

1.0958E+00

_

3.0539E-01

0.39

3.7935E-03

0.64

5.6468E-03

0.02

1.0915E+00

-0.39

2.9528E-01

-2.93

3.8216E-03

1.38

5.6486E-03

0.05

1.1289E+00

3.02

2.9528E-01

-2.93

3.8216E-03

1.38

5.6486E-03

0.05

1.1289E+00

3.02

2.6172E-01

_

5.6648E-03

_

6.4235E-03

_

1.2736E+00

_

2.5989E-01

-0.70

5.7012E-03

0.64

6.4265E-03

0.05

1.2826E+00

0.70

2.5391E-01

-2.98

5.6983E-03

0.59

6.4469E-03

0.36

1.3128E+00

3.08

2.5391E-01

-2.98

5.6983E-03

0.59

6.4469E-03

0.36

1.3128E+00

3.08

5.0936E-01

_

8.8187E-03

_

8.6998E-03

_

6.5442E-01

_

5.1534E-01

1.17

8.9987E-03

2.04

8.7042E-03

0.05

6.4682E-01

-1.16

5.0827E-01

-0.21

8.9921E-03

1.97

8.7096E-03

0.11

6.5582E-01

0.21

5.0827E-01

-0.21

8.9921E-03

1.97

8.7096E-03

0.11

6.5582E-01

0.21

4.7706E-01

_

1.7951E-02

_

2.3214E-02

_

6.9872E-01

_

4.7806E-01

0.21

1.8207E-02

1.43

2.2438E-02

-3.34

6.9726E-01

-0.21

4.5303E-01

-5.04

1.7849E-02

-0.57

2.2544E-02

-2.89

7.3579E-01

5.30

4.5302E-01

-5.04

1.7850E-02

-0.56

2.2544E-02

-2.88

7.3580E-01

5.31

科技文章

a: MCNP5 参考模型 b: MCNP5 同构模型结论 c: 带有 consistent P 输运最大值选择结果的TRANSX/TWODANT同构模型 d: 带有 Bell-Hansen-Sandmeier 输运最大值选择结果的TRANSX/TWODANT 同构模型   表 III 显示了各种不同方法的 keff 值。令人感兴趣的是,传统的第 25 组模型具有最高的错误率,而 MCNP5/DIF3D 模型却提供了更 表III显示了各种不同方法的keff值。令人感兴趣的是,传统的第25组模型具有最高的错误率,而MCNP5/DIF3D模型却提供了更高的精 高的精确度。第 9 组 MCNP5/DIF3D 的模型为 keff 值预测提供了最小的误差。在第 25 组模型中,MCNP5/DIF3D 也有最小的错误,但当与 确度。第9组MCNP5/DIF3D的模型为keff值预测提供了最小的误差。在第25组模型中,MCNP5/DIF3D也有最小的错误,但当与第9组计 第 9 组计算进行比较时,其错误增加了约 算进行比较时,其错误增加了约200 pcm。 200 pcm。 表III.keff值的对照 Code MCNP5

Geometry Heterogeneous

Energy group

keff

CX generation code(option)

Error(pcm)

Continuous

1.07479±0.00 003

--

_


102

科技文章

DIF3D*

Homogeneous

9

DIF3D*

Homogeneous

9

DIF3D*

DIF3D* DIF3D*

Homogeneous

9

1.06409

9

1.06409

Homogeneous

9

Homogeneous

DIF3D*

DIF3D*

Homogeneous Homogeneous

259

DIF3D*

DIF3D*

Homogeneous Homogeneous

2525

DIF3D*

DIF3D*

DIF3D*

Homogeneous

Homogeneous

Homogeneous

TRANSX(BHS**)/TWODANT in RZ model TRANSX(consistent-P**)/TWODANT in 1.06409 RZ model TRANSX(BHS**)/TWODANT in RZ 1.06409

25

25

25

1.07325

-1070 model MCNP5 in RZ model TRANSX(consistent-P**)/TWODANT in -1070 RZ model

TRANSX(BHS**)/TWODANT in RZ MCNP5 in RZ modelmodel -154 TRANSX(BHS**)/TWODANT in RZ TRANSX(consistent-P**)/TWODANT in 1.06202 -1277 1.06202 model RZ model

1.06202 1.07325

1.06202

1.07122

TRANSX(consistent-P**)/TWODANT in RZ model

-1277

MCNP5 in RZ model

-357

MCNP5 in RZ model

1.07122

-1070 -1070 -154 -1277 -1277 -357

*Fine-mesh FDM (54 triangles/hexagon), **transport in TRANSX *Fine-mesh FDM (54 triangles/hexagon), **transportapproximation approximation in TRANSX   图 5 显示了第 9 组 MCNP5(同构和异构)与 TRANSX/ TWODANT(Consistent-P, B-H-S 近似法)的内、外堆芯的相对功率分布。 图5显示了第9组MCNP5(同构和异构)与TRANSX/

TWODANT(Consistent-P,

B-H-S

图5显示了第9组MCNP5(同构和异构)与TRANSX/ TWODANT(Consistent-P, B-H 结果发现,TRANSX/ TWODANT(Consistent-P & B-H-S) 的最大相对误差为 -3.14%,MCNP5 1%。堆芯模型具有 60 近似法)的内、外堆芯的相对功率分布。结果发现,TRANSX/ TWODANT(Consistent-P & 的最大误差大约为 B-H-S) 的最大相对误差为近似法)的内、外堆芯的相对功率分布。结果发现,TRANSX/ TWODANT(Consistent-P & B-H-S) 的最大相对误差为 3.14%,MCNP5的最大误差大约为1%。堆芯模型具有60度的几何对称。 度的几何对称。 3.14%,MCNP5的最大误差大约为1%。堆芯模型具有60度的几何对称。

图5. 内部与外部堆芯的相对功率分布 4. 结论 本文的目的是探讨使用MCNP5法代替TRANSX/ TWODANT代码生成截面对快堆进行分析的可行性,并专门针对SFR。在本文中,确定性方法代码(TRANSX/ TWODANT)被替换为随机方法代码(MCNP5)而保留了其扩散节点的分析。随后,这项研究的结果,用于与参考异构的300兆瓦的S FR TRU燃烧器的MCNP5模型进行比较,以验证其有效性。截面是通过使用同构的R-Z模型生成的。 在SFR扩散分析中,应慎重考虑运输截面。对于运输截面,所有的代码系统都与参考数据保持了较好的一致性。在高能区,相对确定 性方法来说,MCNP5具有较小的误差。可以看到,在低能组,传统方法是相对不精确的,尽管其影响在快堆中是相当有限的。对于俘 图5. 内部与外部堆芯的相对功率分布 获截面,所有的方法都保持了误差小于2%的的一致性。在与裂变截面乘以中子裂变产额的比较中,除了第9组以外,所有的代码误差

4. 结论

本文的目的是探讨使用MCNP5法代替TRANSX/ TWODANT代码生成截面对快堆进行分析的可行性,并专门针对SFR。在本文中,确定性方法代码(TRANSX/ TWODANT)被替换为随机方法代码(MCNP5)而保留了其扩散节点的分析。随后,这项研究的结果,用于与参考异构的300兆瓦的


103

科技文章

4. 结论   本文的目的是探讨使用 MCNP5 法代替 TRANSX/ TWODANT 代码生成截面对快堆进行分析的可行性,并专门针对 SFR。在本文中,确 定性方法代码(TRANSX/ TWODANT)被替换为随机方法代码(MCNP5)而保留了其扩散节点的分析。随后,这项研究的结果,用于与参 考异构的 300 兆瓦的 SFR TRU 燃烧器的 MCNP5 模型进行比较,以验证其有效性。截面是通过使用同构的 R-Z 模型生成的。   在 SFR 扩散分析中,应慎重考虑运输截面。对于运输截面,所有的代码系统都与参考数据保持了较好的一致性。在高能区,相对 确定性方法来说,MCNP5 具有较小的误差。可以看到,在低能组,传统方法是相对不精确的,尽管其影响在快堆中是相当有限的。对 于俘获截面,所有的方法都保持了误差小于 2%的的一致性。在与裂变截面乘以中子裂变产额的比较中,除了第 9 组以外,所有的代 码误差都在 1%以下。在功率分布的对比中,每个代码都很好的对应了参考结果,其 MCNP5 的相对误差在 1%以下,确定性方法代码系 统的相对误差在 3%左右。    对 于 keff 值 比 较,MCNP5/DIF3D 的 误 差 为 -154.3pcm, 最 接 近 第 9 组 计 算 的 参 考 值。 采 用 consistent-P 与 B-H-S 的 TRANSX/ TWODANT 也有类似的误差,约为 1070pcm。这是由于在高能量区域的输运截面的相对较大的误差。在第 25 组计算中,MCNP5/DIF3D 的 误差最小,但相对第 9 组计算有一个 200pcm 误差的增加。要找到这个误差增加的原因,MCNP5 计算中的中子的历史数量就会增加,但 是没有明显的效果。这是未来研究当中的一个可行性区域。   总之,混合分析法(同随机方法结合以生成截面数据,同确定性方法结合来分析反应堆堆芯),对于快堆分析来说,可以成为一 种有效的分析方法。在未来的研究中,为了提高性能,混合法将会被改进,以便更好的测定扩散系数和进行更高效的计算。


新闻

104

新闻 NEWS 重点新闻 企业新闻 国际合作 核电站新闻


105

重点 新闻

新闻

实现供货的有稳压器、安注箱、一体化堆顶组件、环吊等。 他同时透露,获得 AP1000 及自主化 CAP1400 项目招标的上市公司有一重、 二重、东方电气和上海电气。以东方电气中标的蒸汽发生器为例,一个电站 两台机组就约达 8 亿元,公司整体中标额约 20 亿元。他表示,国家重大示 范工程 CAP1400 的最新一批招标结果将在 10 月公布。“一个核电项目投资 200 亿,其中 50% 是装备投资,目前国内能做的龙头公司就是这么几家。” 他说。 来源:http://www.china-nea.cn

新突破:世界最大单机容量核能发电机完成制造 世界最大单机容量核能发电机——台山核电站 1 号 1750 兆瓦核能发电 机由中国东方电气集团东方电机有限公司日前完成制造。

高温气冷堆核电站示范工程完成厂房封顶 日前,中核北方核燃料元件有限公司高温气冷堆核电站示范工程完成厂 房封顶,预计 10 月份可完成土建施工、内装修和辅助设备安装,并具备工

台山核电站是我国首座、世界第三座采用 EPR 三代核电技术建设的大型

艺设备安装条件,至 2015 年 10 月试生产完毕,2016 年建成投产。

商用核电站,是中法两国迄今为止在核能领域的最大合作项目。东方电机为 台山核电站提供首期全部两台核能发电机,单机容量高达 1750 兆瓦,是东 方电机迄今为止制造的技术难度最高、结构最复杂、体积最大、重量最重的 核能发电机。

该工程是国家“十一五”重大科技专项工程,由中核北方核燃料元件有 限公司投资 2.75 亿元建设。这条生产线以满足高温堆核电站燃料元件首炉 料和换料要求为目标,规划建设一条年产 30 万个球形燃料元件的生产线, 为 20 万千瓦模块式高温气冷堆核电站示范工程提供燃料元件,并为今后商

台山 1 号核能发电机的成功制造,标志着东方电气在大容量、高参数发

用高温气冷堆核电站的燃料元件生产积累技术经验。

电机制造领域再次刷新纪录。 来源:http://news.bjx.com.cn/html/20130912/459391.shtml 来源:http://www.china-nea.cn

未来七年我国核电机组的投运规模将扩张三倍

中国自主三代核电通过论证计划 2018 年底并网 发电

未来七年,我国核电机组的投运规模将扩张三倍,2020 年前后核电发

记者 11 日从中国核学会 2013 年学术年会上获悉,具有自主知识产权的

展将达到高峰期,将可能以每年 10 台机组的速度增长,年新增订单达千亿,

中国三代核电技术 CAP1400 初步设计已通过国家能源局组织的专家组论证,

而目前的运行机组为 17 台。这是 9 月 2 日开幕的 2013 中国国际核电装备展

示范工程计划 2014 年在山东威海开工建造,2018 年底并网发电。

上传出消息。 自去年 10 月核电开闸以来,国内核电项目建设逐步提速。在 9 月 2 日 开幕的 2013 中国国际核电装备展览会暨核电可持续发展高峰论坛上,国家 核电技术公司设备部副主任简靖文表示:根据国家核发展规划定下的 2030 年核电装机容量要求,需要近 200 台机组。他预计,“十二五”期间每年新 批复 4 至 6 台核电,“十三五”期间可增至每年 6-8 台,2020 年后每年稳步 新增 10 台。中国工程院院士叶奇臻也认为,核电发展将大幅提速,预计到 2020 年我国核电投产运行机组将达约 6000 万千瓦,是目前 17 台机组 1500 万千瓦容量的四倍。

国家核电技术公司副总经理魏锁表示,CAP1400 技术消化吸收了从美国 引进的 AP1000 先进

核电技术,采纳了首批 AP1000 机组建设经验和创新

成果。 据介绍,CAP1400 技术研发按照中国在日本福岛核电站事故后对核安全 的最新要求,并参考国际最新标准,采取了增强对地震、外部水淹等极端自 然灾害设防等一系列增强核安全的措施,非能动安全系统具有 72 小时后的 补水能力,确保核电站安全。 来源:http://www.china-nea.cn

从具体技术路线来看,发展三代技术已成为国际国内核电建设的主 流,目前世界上在建的压水堆三代核电主要有 AP1000 和 ERP 两种。其中, AP1000 及其改良机型主要有两种技术路线,国家核电主导的 CAP1400 和中核、

中国自主知识产权锆合金研发取得阶段性成果 近日,中国广核集团核燃料研发设计中心(国家能源先进核燃料元件研

中广核为代表的 ACPR1000。在引进国外技术的基础上,两者的国产化率都大

发中心,简称“燃料中心”)负责的“中国自主知识产权高性能锆合金研制

幅提升,如中广核位于阳江的机组国产化率最高可达 85%,预计年底完成研发,

(第一阶段)项目”新型锆合金 CZ1 和 CZ2 的工艺优化和堆外性能试验策划,

明年初投建。

通过国内相关专家的评审。这标志着中广核自主品牌锆合金研发取得了阶段

此外,简靖文介绍,正在建设的 AP1000 项目中,位于海阳的机组国产

性成果,为我国燃料组件锆合金结构材料的国产化和自主化奠定了基础。

化率已达 70%,其蒸汽发生器、屏蔽电机主泵、反应堆压力容器、堆内构件

经过讨论及审查,评审专家一致认为:燃料中心在国核锆业的支持下,

驱动机构等设备正在研制生产,预计今年年底或明年年初可交货。目前已经

完成了两种自主品牌锆合金管材工业规模的工艺摸索研究,制备出的 1000


新闻

106

余支管材经相关性能的研究和评价表明,两种合金包壳管材的加工工艺路线

强 20%,所以它的组件相对来说会更大。例如,蒸汽发电机的管板直径超过

可行,工艺参数合理,管材性能优良,为后续工艺优化及固化奠定了良好基础。

5 米,而 AP1000 是 4.5 米。

来源:http://www.cnnc.com.cn

王斌华同时表示,反应堆的基础部分都已就绪,包括反应堆压力容器、 蒸汽发电机、稳压器、累加器、被动除热系统、控制杆驱动装置、反应堆内

AP1000 首台国产化燃料操作机制造完工

部构件和涡轮机。

9 月 9 日,由大连华锐重工集团股份有限公司承制的海阳核电 1 号机组

CAP1400 的管理审查工作在 2013 年 3 月开始进行。中国国家核安全管

燃料操作机顺利完成工厂验收试验,标志着 AP1000 依托项目首台国产燃料

理局在 2013 年 4 月开始对初步的安全分析报告进行审查。国家环保局在

操作机的工厂制造工作全部完成。

2013 年 6 月举行相关会议对厂址评估报告和环境影响调查报告进行审查。初

燃料操作机是核电站燃料操作系统中的重要设备之一,安装于核岛辅助 厂房燃料贮存水池上方,其主要功能是负责燃料组件等在辅助厂房的运输工 作。

步设计的审查在 2012 年 12 月开始进行。现在正在进行的是厂址的挖掘工作。 王斌华最后表示国家核电技术公司同时也在对更大的 CAP1700 反应堆做 初步的研发工作,并将计划在石岛湾核电站建设一座示范性反应堆。

燃料操作机是制约海阳 1 号机组辅助厂房封顶的核心关键设备,由于是

来源:http://www.neimagazine.com

首台国产化设备,制造过程中遇到很多困难,山东核电抽调骨干技术力量, 与总承包单位和制造厂积极沟通,不断解决国产化过程中遇到的难题,并成 立“燃料操作机进厂青年突击队”,在确保设备质量的前提下,有力地推动 了相关问题的快速处理,确保设备保质、按期完工。

中国或更换田湾核电站三期反应堆类型 中国核能电力股份有限公司(CNNP)总经理陈桦周五向记者表示,该公 司正在考虑建设田湾核电站三期工程的时候替换前两个机组安装的 AES-91

来源:http://news.bjx.com.cn

型核反应堆的可能性,在第三和第四机组将采用 VVER-2006 型反应堆运作。 周五田湾核电站开始第四机组建设的积极阶段,进行“第一次水泥”灌

AP1000s 反应堆计划于 2014 年底接入电网 国家核电技术公司董事长王斌华在九月中旬伦敦举行的世界核联合年会

注。计划 2018 年 12 月将机组交付使用。2018 年 2 月份还计划交付第三机组, 该机组建设 2012 年底开始。

上发表讲话中说道,三门一号和海洋一号预计在 2014 年 12 月接入中国电网 系统。他还提到,眼下中国正在进行 28 个核反应堆的建设工作,同时 16 个 反应堆的初步准备工作已经就绪(这意味着他们已经通过了中央政府的初步 审定)。

陈桦说:“现在我们在考虑建设另一种类型反应堆的可能性。我 11 月 份会到俄罗斯,我会在那里与(俄罗斯国家原子能公司总经理)谢尔盖 - 基 里延科谈判,我们将就 VVER-2006 进一步交换信息,此后我们将(就反应堆 类型)作出决定。”

此外,美国西屋公司总裁兼首席执行官罗睿德(Danny Roderick)表示, 中国在下一年中,就需要完成对至少 8 个 AP1000 灌入混凝土的工作以确保 相关安全性。其中分别包括两个新址所在地的两座机组,辽宁省的徐大堡核 电站和广东省的陆丰核电站,还有两座新增机组,分别位于三门核电站和海 阳核电站(三门核电站的 3 号机组和 4 号机组,海洋核电站 3 号机组和 4 号 机组)。 根据国家核电技术公司与美国西屋达成的技术转让协议规定,AP1000 反应堆的建设工作已经在进行中。作为协议的一部分所提及到,中国供应链 将逐步地扩大在反应堆建设中所占据的比重。然而,据美国西屋高级副总裁 杰弗里·本杰明所言,新增的 8 个机组在关键部分方面仍将采用美国西屋的

VVER-2006 由 圣 彼 得 堡 原 子 能 设 计 院 (Atomenergoproekt) 研 制。 与 AES-91 型核反应堆相比,它除了功率增加了 200 兆瓦以外,它还增加了被动 散热系统,以便提高安全程度。 陈桦指出:“田湾核电站一期工程的成功展示了我们与俄罗斯方面合作 的成绩。今天我们灌注二期工程第四机组的水泥,我们很高兴看到两国在核 能领域的进一步合作。” 中国田湾核电站前 2 个机组按照圣彼得堡原子能设计院的设计建设, 2007 年它们投入工业使用。2010 年 11 月俄罗斯和中国签订建设田湾核电站 二期工程的总合同。

技术,包括数字控制系统、燃料和反应堆内部构件。此外,美国西屋表示还 将提供在运作准备、启动和供应者培训方面给予帮助。 国家核电技术公司董事长王斌华表示,对 AP1000 和 CAP1400 反应堆的 研发工作将会继续进行,同时会加大规模与本土化程度。概念设计工作始于

来源:http://news.bjx.com.cn

中国自主三代核电ACP1000年底可开工

2008 年,初步设计工作在 2011 年 12 月得到实现,现在正在进行大规模的测

中国自主三代核电品牌ACP1000近日在国际上亮相。14日,

试。他说,将在 2014 年 4 月对石岛湾核电站的示范性机组着手并完成第一

正在四川绵阳参加中国科技城科技博览会的中核集团工作人员表示,ACP

次的混凝土填充工作,并在 2018 年计划接入中国电网。到那个时候,有望

1000已具备2013年底开工条件,同时,多重防护措施保证其有能力

完成 75% 的设计图工作(八月中旬已完成 43%)。

抵御“福岛式”核事故。

王斌华说,由于设计 1400 兆瓦的反应堆承诺比 AP1000 的发电功率至少

ACP1000是中核集团立足于中国核电30年的技术基础,自主研


107

发的先进压水堆核电站。其初步设计在2013年4月通过国家核行业权威 鉴定,9月末,作为中国自主三代核电品牌的ACP1000,借助国际原 子能机构(IAEA)第57届大会在全球亮相。 ACP1000在设计中增加了“非能动”的事故处理措施,可使其在 遭受造成福岛核事故那样的地震、海啸并导致全厂断电的情况下保证安全。 “所谓‘非能动’,就是不借助电源,而是利用重力、温差、密度差等

新闻

化和自主化奠定了基础。 经过讨论及审查,评审专家一致认为:燃料中心在国核锆业的支持 下,完成了两种自主品牌锆合金管材工业规模的工艺摸索研究,制备出的 1000 余支管材,经相关性能的研究和评价表明,两种合金包壳管材的加 工工艺路线可行,工艺参数合理,管材性能优良,为后续工艺优化及固化 奠定了良好基础。 来源:http://www.cgnpc.com.cn

自然驱动力实现流体的流动、传热等功能。对可能产生的氢爆、高压熔堆、 安全壳长期超压、安全壳底板熔穿、全厂断电等事故,均有相对应的措施。” 中核集团工作人员说。

核动力所研制出福清核电第二台全范围模拟机 8 月 29 日至 9 月 3 日,核动力运行研究所研制的福清核电第二台全 范围模拟机系统通过出厂验收。福清核电公司验收检查组对全范围模拟机

据悉,ACP1000具有完整知识产权,并已获得出口合同。现在已

进行测试后认为,全范围模拟机性能、功能满足该项目出厂验收大纲基本

具备首堆2013年底开工条件。首堆目标工程设备国产化率大于85%,

要求,该模拟机系统顺利出厂。

有利于加快推动国内装备制造水平的提高和进一步降低工程造价。

  核动力运行研究所仿真项目人员表示,将再接再厉,加大投入完成现 场安装调试工作,继续为福清核电厂第二台全范围模拟机项目的后期顺利 投用作出更大贡献。

来源:http://www.china-nea.cn

来源:http://www.cnnc.com.cn

线缆订单“僧多粥少”饿死毋须意外

企业 新闻

  近期某调研小组调研宜兴地区的大中小型线缆企业,共出现了六七 家倒闭的状况。其中具有代表性的有超能电缆、金塔电缆、五方电缆,剩 余的为小企业。究其倒闭原因——资金:首先,货款回笼困难,回款率极 低;其次,银行贷款收紧,贷款利率提高,有部分转向个人高利息贷款来 集资,因利润率下滑最终亏空越来越大;再次,部分企业盲目投资期货, 导致资金严重亏损等等。 作为中国的线缆制造业基地之一,无锡线缆企业运行状况不佳,折射 出当前中国线缆行业现状。第一,铜价下跌导致下游订单延迟,上半年线 缆企业开工率在 60——70% 之间;第二,货款拖延较重,大部分回款率一 般在 70%,剩余 30% 延迟六个月左右用承兑来支付,部分中小型企业回款

核电用 690U 型管签逾 2 亿供货合同

率低至 50% 以下;第三,线缆企业基本都以销定产,只有极少数备货少量 库存用于订单周转备用;第四,订单日渐集中在大企业手中,小部分中小

记者从宝钢下属公司宝银特钢获悉,上周四,宝银特钢已与东方重

线缆企业由于订单少、资金紧张等问题限制,抗风险能力差。对于三大电

机签署第三代核电示范工程蒸发器用 690U 型管供货合同,合同金额为 2

缆线缆集中地来说,河北和安徽地区的订单及开工率而论,无锡地区的大

亿多元。价格要高于原先预期的 70 万元一吨,为 100 万元一吨。

型电缆厂略占优势,线缆质量也相对较好,运营状况也相对较好。

目前,作为国家重大科技攻关项目的 690U 型管只有宝银特钢和久立特

  中国是电线电缆制造大国,线缆被喻为国名经济的 " 血管 " 和 " 神经 "。

材刚刚通过评审。第三代核电示范工程为 2 台机组,一台由东方重机制造,

但当前线缆行业面临的三大问题:1. 线缆企业集中度低。中国前十线缆

另一台由上海电气核电公司制造,东方重机对应的是宝银特钢,上海电气

企业占国内市场份额 7%——10%,其中最大线缆企业占市场份额也只有

核电公司对应的是久立特材,预计久立特材的供货合同也会在近期签署,

1%——2.5%,而欧美国家线缆企业集中度达到 80% 以上。2. 利润率低,

供应数量与合同金额与宝银特钢相当。690U 型管的正式开始供货,将对

超过 7000 家线缆企业令行业竞争非常的激烈,人工费不断的上涨增加生

久立特材今明两年业绩产生重大影响。

产成本,且铜价格的剧烈波动将蚕食加工费用,导致行业利润率低于 4%。

来源:http://news.bjx.com.cn

中广核自主品牌锆合金研发取得阶段性成果

3. 技术含量低,船舶、航天等特种线缆基本被国外所垄断,技术投入严 重不足,我国生产的绝大部分都属于传统低技术含量的普通线缆,且假冒 伪劣产品猖狂的局面还较严重。   数据显示 2013 年中国经济增速下滑,且面临转型关键期,政府出台

2013 年 8 月 20 日,中国广核集团核燃料研发设计中心(国家能源先

超级刺激性措施的可能性很小。就线缆需求来说,电力电网、房地产及基

进核燃料元件研发中心,简称“燃料中心”)负责的“中国自主知识产权

建方面都没有特别表现,总需求稳中有降。线缆行业当前处在 " 僧多粥少 "

高性能锆合金研制(第一阶段)项目”新型锆合金 CZ1 和 CZ2 的工艺优化

的尴尬境地,拿一个相对一般的投标项目来说,原来竞标的就 38 家左右,

和堆外性能试验策划,通过国内相关专家的评审。这标志着中广核自主品

就今年却有近 70 家大小不等的线缆企业参与竞标。近期项目同比减少,

牌锆合金研发取得了阶段性成果,为我国燃料组件锆合金结构材料的国产

大项目又不多,年度性较大的项目投标工作基本都已结束,此对于电线电


新闻

108

缆企业来说是一个沉痛的打击,增加 " 饿死 " 的可能性。

中国核建在瑞金筹建核电项目

  中国线缆企业正处在优胜劣汰的淘汰过程之中,出现倒闭现象实属正

  本报讯(记者黄继妍通讯员张启堂)10 月 13 日,记者从省核工业地 质局获悉,中国核工业建设集团公司将在瑞金选址建设核电项目,以支持 赣南等原中央苏区振兴发展。

常。调研分析员丁艾娜认为,想要在竞争激烈又疲软的市场占据一席之地, 就得依靠品牌、技术、管理模式的提高,纯粹赚取可怜加工费的模式是一 条不归路。 来源:http://www.fe-cable.com

大连大高签订价值 2 亿元爆破阀合同 近日,大连大高阀门公司在北京国家核电技术公司,隆重举行了 CAP1000 海阳 3、4 号机组和 CAP1400 石岛湾示范工程 1 号机组爆破阀的 研制采购合同签约仪式。 今年 6 月,国家核电工程三门 3/4#、海洋 3/4#、陆丰 1/2# 及国家示 范 1/2# 核电机组 CAP1000/CAP1400 招投标过程中,大高阀门获得技术评 标获第一名,一举获得海洋 3/4,国家示范工程 1 号国内首台套合同,合 同总价大约 2 亿。 国家核电技术公司、国核工程公司、上海核工程研究院、上海发电设 备成套院、四川省科学城海天实业、大连市政府、大连大高阀门等相关单 位参加了此次合同签订仪式。 爆破阀是 CAP1000、CAP1400 三代核电站关键设备。   目前爆破阀设备全部进口,大连大高 2011 年 4 月与国家核电技术公 司签订了爆破阀 AP1000 技术转让协议。通过消化、吸收美国西屋及厂家 的技术,并与上海核工程研究设计院、中国工程物理研究院化工材料研 究所(爆破装置设计与制造)、大连理工大学材料学院等组成研发团队, 自主、创新解决关键制造技术进行多个攻关课题,设计和制造 CAP1000、 CAP1400 爆破阀,同时也获得国家重大专项的专项资金支持。 来源:http://www.zgbfw.com

核燃料公司入股西部新锆推进核级锆产业发展 9 月 27 日,中核集团旗下的中国核燃料有限公司与西北有色金属研 究院等单位在西安正式签署增资协议,共同投资组建西部新锆核材料科技 有限公司。中核集团党组成员、副总经理杨长利,核燃料公司负责人等出 席签字仪式。 核级锆材是核燃料元件制造的重要原材料之一。随着我国核电的发展,核 级锆材的需求逐渐增加。中核集团投资西部新锆,可以增强核级锆合金的 研发能力,完善核级锆合金的研发生产体系,加快国内核级锆合金材料和 核燃料组件的自主研发工作。 在核级锆合金领域,中核集团具有基础研究、工业化应用和市场等优势, 西北有色金属研究院具有技术、设备、产业化和人才等优势。双方通过投 资西部新锆,建立核级锆合金加工研发能力,实现了一次优势互补、共赢 互利的合作。此举对于完善我国自主核级锆合金研发体系,支持我国核电 大规模持续发展具有重要战略意义。 来源:http://www.cnnc.com.cn

  在省核工业地质局的积极推动下,10 月 9 日,中国核工业建设集团 公司下属的核建清洁能源有限公司与瑞金市政府签订了战略合作框架协 议,并成立江西瑞金核电筹备处。按照协议,核建能源公司将在瑞金市选 址投资建设具有我国完全自主知识产权和第四代核电技术特征的高温气冷 堆核电站以及相关配套产业基地,并选址建设核电站生活基地。据中国核 建专家介绍,高温气冷堆属于第四代核电项目,具有安全性能好、热效率 高、发展前景好等优势。   此外,在城镇基础设施与交通基础设施建设领域,中国核建集团将充 分发挥资源优势并借鉴以往经验,通过综合开发模式,积极参与瑞金市城 乡一体化建设、红色旅游开发、工业园区建设。 来源:http://www.china-nea.cn

中核集团首个铀矿大基地实体公司正式运行   9 月 25 日,中核内蒙古矿业有限责任公司在包头市揭牌成立。作为 地矿事业部打造我国天然铀产能新的重要增长点,该公司的成立,标志着 中核集团国内第一个区域内天然铀开发的法人实体和市场竞争主体开始正 式运行。   中核内蒙古矿业有限责任公司负责统筹内蒙古中西部地区的天然铀地 勘、科研、项目管理,打造成为资源储备丰富、产能规模大、管理科学规 范、盈利能力强的多元化矿业公司。当前,地矿事业部全力推进以纳岭沟、 巴彦乌拉项目为重点的各项工作,力争在 2015 年建成投产。   地矿事业部成立以来,以铀矿大基地建设为抓手,创新产业发展模式, 优化调整布局结构,推动产业转型升级,着力加快产能布局重心向新探明 资源丰富的北方砂岩地区转移。为深入贯彻落实集团公司大基地战略,加 快提升我国天然铀产能,地矿事业部按照探采一体、优化产业布局、整合 内部资源、强化区域协同的原则,着力于建立与资源分布、产能布局相适 应的开发管控体系,积极推行大基地地质勘查、工艺试验、矿权管理、项 目建设的协同联动,加快项目前期工作,先后组建设立了内蒙古、江西、 广东、新疆铀矿大基地指挥部。   自“十一五”以来,二○八大队、二四三大队在内蒙古地区深入研究, 创新找矿思路和方法,探明了一大批大型、特大型铀矿床,使内蒙古成为 我国铀资源潜力最大、开发前景广阔的地区。在这一背景下,地矿事业部 坚持统筹兼顾、突出重点、强化顶层设计,进一步推进内蒙古中西部地区 的天然铀地勘科研、项目建设、现场试验、对外合作、矿权管理等工作, 经一年多的运作,内蒙古铀矿大基地指挥部率先具备了转为实体的条件。 ( 单广宁 ) 来源:http://www.china-nea.cn

安泰科技正积极开拓核电海工等领域   安泰科技(000969.SZ)内部人士指出,公司的主要优势在于技术研 发能力,目前正积极开发产品新的市场,比如石化、核电、海洋工程等领域。   该人士介绍,虽然我国制造业发展迅速,但高端制造业相对较差,其 主要原因为材料“跟不上”。我国材料发展水平和国外差距较大。   证券部人士并称,目前该部分材料市场主要由国外企业供应,因此公 司存在替代空间。公司今后产品方向仍将围绕新材料,公司正在积极开拓 新的市场。   安泰科技以先进金属材料及制品的研发和生产销售为主业。其主要产 品为高速工具钢、焊接材料、非晶材料、难溶材料、粉末冶金材料和金刚 石工具等 6 大类。 来源:http://www.china-nea.cn


109

新闻

电站充分借鉴国外 EPR 机组建设和国内其他在运、在建核电机组建设运行的 经验反馈,有效降低了建设风险。

大船集团获千万核电项目订单   日前,大船集团装备公司核电项目接到中国核电工程有限公司发来的 辽宁省徐大堡核电厂一期工程核岛容器项目中标通知书。   辽宁徐大堡核电厂一期工程核岛容器 ( 第一批 ) 项目,是大船集团承 接的最大一笔核电项目订单,实现了核电产品千万元级订单“零”的突破。 此前,大船集团与中国核电工程有限公司有过两次成功的合作,在该项目 的投标过程中,大船集团针对项目制造难点制定了详细的应对措施,获得 了中国核电工程有限公司评标委员会的高度认可,为后续的核二三级压力 容器、热交换器扩证的业绩积累奠定了坚实基础。   目前大船集团在国内核电领域的知名度越来越高,先后接受了中核能 源科技有限公司、中国核电工程有限公司等知名核电巨头的邀请,参与了 华能山东石岛湾高温气冷堆核电站示范工程余热排出系统水冷壁设备、辽 宁徐大堡核电厂 1、2 号机组 CB 类结构模块等项目的投标活动,显示了大 船集团核电项目强劲的发展势头。 来源:http://news.bjx.com.cn

国际 合作 台山核电站 " 双层安全壳 " 施工顺利质保体系保 安全 9 月 5 日 , 记者从广东台山核电站获悉,该核电站 2 号机组反应堆厂房 外壳直筒段开始浇筑最后一层混凝土,即将开始关键的预应力张拉施工。这 标志着台山核电项目两台机组“双层核岛安全壳”施工工作进入新阶段。 据介绍,台山核电站一期工程是中国企业与全球拥有核电机组最多的法 国电力公司合资建设的核电项目。该项目采用当前世界上最先进的三代 EPR 核电技术。台山核电在工程建设中充分借鉴了现役核电厂的设计、建造和运 行经验,采用了大量经过验证的先进技术,在堆芯设计、燃料设计、系统设计、 保护和控制体系优化、安全壳设计方面做了大量改进,使堆芯熔化概率和放

参加工程建设的法国工程师让·皮埃尔表示,近 30 年来,中国从未停 止核电建设,长期的经验积累,使中国在核电建设中的技术能力更加成熟。 “大体积混凝土整体浇筑、核岛钢衬里模块化施工、激光三维测量、主管道 自动焊接等先进技术在台山核电建设中得到应用,为台山核电站工程建设的 顺利推进奠定了坚实的基础。” 得益于项目自身在技术和管理模式上的优势,目前,台山核电项目工程 建设稳步推进,施工建设进度已逐步接近早先开工的国际同类项目。 来源:http://www.china-nea.cn

中国核能寻求海外扩张 北京时间 9 月 2 日早间消息,据《金融时报》报道,中国广核集团正在 和法国电力就英国新的核电项目进行谈判,该集团希望对其投资的新核电厂 持有更大的运营控制权,从而给英国政府带来国家安全顾虑。 中国广核集团和法国电力意欲共同出资 140 亿英镑在英国萨默塞特郡的 欣克利角修建一个新的核电厂。但中国广核向法国电力明确表明,只有广核 在这两家集团合资修建的另外两家英国核电厂拥有更多发言权,当前的这笔 交易才能谈下去。 除了欣克利角,法国电力还计划在萨福克郡的塞兹维尔修建两个核电厂。 知情人士称,广核可能会寻求成为塞兹维尔厂的联合运营者,但法国电力可 能会保留整体运营权。中方还可能加强新厂建设的参与度,甚至可能为反应 堆的设计提供服务。 这名知情人士称,“中方把欣克利角作为垫脚石,他们会在下一个项 目中要求更多控制权。”但由于核能的敏感性,让具有国家背景的中国公 司持有运营权会引发国家安全方面的担忧。当中国公司在去年表现出竞标 Horizon 核电项目的兴趣时,英国政府要求中国只能持小部分股权,最后日 本日立公司竞得该项目。 中国国有公司在美国和欧洲也因国家安全担忧而面临交易阻碍,特别是 在能源和电信领域。保守党议员、国家战略安全委员会成员 Mark Pritchard 表示,中国公司只能在能源等敏感领域承担“小角色”。 中国加大了在英国能源和基建市场的投资。去年,中国的主权财富基金 买下了泰晤士水务的一部分股权,中石油则买下了 Talisman 公司英国北海 业务 49% 的股权,而中海油以 180 亿美元收购加拿大 Nexen 公司。 中国正在成为核能领域的主要力量,该国目前有 17 个反应堆处于运行 之中,还有 28 个正在修建。中国的核能公司也在积极寻求海外扩张。

射性物质大规模释放概率进一步降低,核安全纵深防御能力显著提高。 来源:http://www.china-nea.cn 同时,为确保工程高质量建设,台山核电项目建立了完整的质保体系, 对项目设计、设备制造等各环节做出了明确的规定。在工程建设中,台山核 电主动开展了与国内外同行业的对标,按照《核电工程安质环标准化及国际 标杆评价手册》和《核电工程质量管理实施标准》,积极推行标准化建设, 持续改进和提升工程质量管理水平。目前,台山核电项目质保体系运作可控 有效,台山核电项目建设过程监督控制严格,工程质量良好。

首张国内核电仪控领域 SIL3 等级功能安全认证 证书诞生 近期,TUV 南德意志大中华集团 ( 以下简称“TUV SUD”) 为北京广利 核系统工程有限公司 ( 以下简称”广利核”) 颁发了国内首张核安全级数字 化仪控平台领域 SIL3 等级功能安全认证证书。此次证书的颁发,不仅是我

记者了解到,作为全球第 3 个在建 EPR 核电项目,台山核电站两台机组 的建设具有显著的后发优势。通过与国外同行建立的经验反馈机制,台山核

国核电仪控发展史上具有里程碑意义的重大突破,同时也有力的证明了 TUV SUD 在核电安全控制系统认证方面的丰富经验和强大的本土团队支持能力。


新闻

110

中俄核问题委员会分会讨论建设田湾核电站第 5-8 号机组 9 月 13 日,中俄政府首脑定期会晤委员会中俄核问题委员会分会第 17 次会议在莫斯科召开。 俄方代表团团长俄罗斯国家原子能公司 Rosatom 总经理 S.V. Kirienko 与中方代表团团长中国国家原子能机构主任马兴瑞共同主持了会议。 在会议中,双方共同就和平利用核能双边合作的条件和前景进行了探讨。 双方还特别提出了田湾核电站 3、4 号机组建设项目的顺利推进,同时还就 可能合作的新项目展开了讨论,例如建设田湾核电站的第 5-8 号机组,在中 国建设其他 WMWC 反应堆核电站,BN-800 型快中子反应堆双机组核电站、近 海核电站等。 产品照片 核电数字化仪控系统是核电站的神经中枢系统,它的性能与可靠性等级, 标志着一个国家在大型核电装备领域的先进化程度。长期以来,我国在该领 域的核心产品绝大部分依赖进口。为提升国内自主知识产权核电数字化仪控 系统水平,并长期发展其在国家核电中的应用。广利核自主设计研发,并自 主制造生产了核安全级数字化仪控平台 FirmSys 产品,并邀请 TUV SUD 对该 仪控系统产品进行了 SIL3 等级功能安全认证。 Firmsys 是广利核公司开发的通用的 I&C 保护系统平台,主要应用于电 子 / 电气 / 可编程逻辑控制安全保护系统中,执行相关的安全保护功能,例如: 应用于核电站反应堆保护系统,执行反应堆紧急停堆功能。FirmSys 满足核 电安全及过程控制领域的法律法规要求,可以应用于核电行业的 SIS 系统中。 针对此次合作,TUV SUD 大中华区高级副总裁朱文才先生表示:“祝贺 广利核顺利地通过了所有测试和评估项目,并获得国内首张核电数字化仪控 系统 SIL3 等级功能安全认证证书。此次与广利核公司认证项目的合作成功, 将对国内核电仪控等高安全风险领域推广功能安全技术有着非常宝贵的经验 借鉴和积累。” 在进行项目介绍时,TUV SUD 大中华区功能安全高级经理赵勇先生进一 步表示:“广利核从 2008 年就已经启动了与 TUV SUD 的合作,并在 2012 年 全面启动系统的认证工作。由于双方在前期的沟通和准备工作筹备完善,为 产品顺利通过打下了坚实的基础,也充分提高了现有产品的功能安全设计水 平,并使得双方大大缩短了整体产品认证的周期。” 广利核相关领导表示:“项目开始之初,我们非常希望能够邀请一家经 验丰富,本地支持能力较强的专业第三方机构协助完成认证流程,经过慎重 比较后,我们最终选择了 TUV SUD 功能安全团队。在整个认证过程中,TUV SUD 核电专家为我们的产品能够早日应用在核电项目中提供了积大的支持和 帮助。“一站式”知识服务方案大大缩短了整体产品认证的周期。我们希望 能够和 TUV SUD 保持长期合作,分享其在可靠性和核电领域的丰富经验,提 升我们的安全设计和安全管理水平,协助我们开拓国际国内市场。” 关于 SIL3 等级功能安全认证 SIL 等级是来自功能安全基础标准 IEC 61508 的规定,是安全风险降低 程度的级别,SIL 分为四个等级,从 SIL1 到 SIL4,其中 SIL1 最低,SIL4 最 高。国际标准中,对于过程控制领域的系统和装置来说,最高 SIL 等级推荐 为 SIL3。 此次颁发的 SIL3 认证,标志着客户的产品通过合理配置,可以用在相 关的保护控制场合。 来源:http://news.bjx.com.cn

此次会议过程中,双方签署了一项议定书。 来源:http://industry.caijing.com.cn

吕华祥与美国巴威 mPower 公司交流小堆发展 9 月 18 日,中核集团副总经理吕华祥在集团总部,会见了美国巴威 mPower 公司总裁兼 GmP 公司 CEO 莫里一行。双方就未来小堆国际市场、各自 小堆研发情况进行了坦诚的交流与沟通,并就推动小堆合作达成了共识。 美国巴威 (Babcock & Wilcox) 公司专门成立了 mPower 公司,负责开 发 160MWe 的 mPower 反应堆。mPower 公司与美国 Bechtel 公司共同成立了 GmP(Generation mPower) 公司,负责在美国建设 mPower 小堆工程项目。目前, mPower 反应堆是第一个获得美国能源部资助的小堆堆型。 来源:http://news.bjx.com.cn

王炳华拜会英国能源部兼商务部部长迈克尔·法 隆 近日,国家核电技术公司董事长王炳华、副总经理马璐一行,在伦敦拜 会了英国能源部兼商务部部长迈克尔·法隆先生。 迈克尔·法隆部长对国家核电一行的到来表示欢迎。王炳华首先表达了 对英国核电市场的兴趣,并简要介绍了公司开拓英国核电市场的总体思路。 法隆部长表示,英国政府欢迎国家核电参与英国核电市场的竞争,他本人对 国家核电的思路表示赞同,并感谢国家核电为此而开展的工作。同时,他对 国家核电与美国西屋公司的合作给予了积极的评价。 会上,双方还对英国厂址资源、英国核监管部门的评审等事项进行沟通 交流。 英国能源与气候变化部的官员陪同参加了会见。 来源:http://www.snptc.com.cn

中法核燃料循环后端技术研讨会在成都举办 9 月 16-17 日,由中国核能行业协会和法国阿海珐集团共同主办的中法 核燃料循环后端技术研讨会在成都举办。来自中法两国核能领域近 50 家单 位的约 140 名代表参加了会议。中国核能行业协会理事长张华祝、国家国防 科工局系统工程二司副司长吕晓明、国家能源局核电司副司长陈飞、国家核 安全局核安全监管一司副司长邱江、法国驻华使馆核参赞科尔迪耶、阿海珐 亚太区副总裁陈亚芹等出席开幕式并致辞。


111

张华祝理事长在致辞中指出,本次研讨会为中法两国在核燃料循环后端 合作搭建了技术交流的平台,对加强沟通、推动合作具有重要的现实意义。 首先,今年正值中法核能合作 30 周年,本次研讨会为中法两国核能伙伴共 同回顾合作历程、展望合作前景提供了契机;其次,今年 4 月《中法合作建 设大型商业后处理 - 再循环工厂项目的合作意向书》的正式签署意味着核燃 料后端的技术与商务方面的合作将会成为中法合作一个新的重要领域;再次, 福岛事故后,包括乏燃料在内的高放废物的处理处置受到公众和媒体的广泛 关注,本次会议就核燃料循环后端技术各个层面的相关问题进行分析和交流, 这不仅会使与会代表有所收获,也会帮助公众和媒体更好地了解核燃料后端 技术的发展。 在本次会议上,中法两国专家就核燃料循环产业的发展、乏燃料后处理 工艺、乏燃料后处理的资金与经济性问题、后处理厂址选择与标准、干式贮 存的必要性、MOX 燃料的制造与应用、乏燃料的贮存与运输,以及高放废物 地质处置地下实验室等内容作了专题报告。报告引起与会代表的高度兴趣, 大家就报告提到的观点、结论与关切问题展开积极交流和探讨,并希望中国 核能行业协会今后能就该领域的具体问题组织进一步的深入研讨。 中国核能行业协会副理事长赵成昆和法国阿海珐后端战略销售与创新高 级副总裁德莱鸿女士应邀主持了第一天的小组讨论,并在会议结束时作了总 结。赵成昆谈到,通过闭式燃料循环可有效提高铀资源利用率,减少高放废物, 是保障我国核电长期可持续发展的一个重要方面。法国核电起步较早,在乏 燃料后处理方面积累了不少经验,值得我们借鉴。在现阶段,中法两国就核 燃料循环后端领域的各个方面开展技术交流,将促进乏燃料后处理事业的发 展。会议上,代表们在赞同我国走闭式燃料循环技术路线的同时,也就一些 具体问题发表见解,提出建议,充分说明大家对我国核燃料后端事业的高度 重视和积极参与。赵成昆还说到,从目前情况看,我国乏燃料的离堆贮存问 题日益突出,建议相关部门及早纳入议事日程并研究解决。 来源:http://www.china-nea.cn

德国凯士比公司技术董事海尔曼教授一行到访国 核电力院开展技术交流 2013 年 9 月 18 日,德国凯士比(KSB)公司技术董事、全球核电业务 和中国业务主管海尔曼教授一行莅临我院交流访问。国核电力院戴晰臣书记 等会见了海尔曼教授一行。 戴晰臣书记首先对海尔曼教授一行的来访表示热烈欢迎。随后双方就常 规岛泵类研制等有关问题进行了富有成效的交流,并共同希望在以后的工作 中继续深化交流,增加了解,优势互补,合作共赢。会议期间,海尔曼教授 一行还对凯士比(KSB)公司以及凯士比核电站业务常规岛用泵的有关情况 做了详细的介绍。 凯士比公司是世界上最大的专业生产泵、阀门和相关系统的公司之一, 在泵阀等产品的设计、生产、制造、销售、服务等方面多年以来一直居于世 界领先。在核电领域,凯士比公司是世界核电站用泵阀的主要生产厂家之一, 也是世界上唯一能为所有类型核反应堆提供主泵的厂家。同时,其业务还涉 及火电和新能源板块等领域。 国核电力院水务设计部等有关部门负责人参加会见和交流。 来源:http://www.snpdri.com

法国耐克森公司获得中国田湾核电站价值 900 万欧元的电缆合同 田湾核电站二期工程建设中所需的 K0,K1,K2(1E LOCA 类别)规格的 电缆,将由法国耐克森公司将提供。

新闻

巴黎,2013 年 9 月 26 日 - 耐克森作为一家世界知名的电缆工业企业, 最近同中国核工业集团签订了价值 900 万欧元的合同,合同中规定耐克森将 承包中国田湾核电站第二期工程 3 号和 4 号机组建设中所需的所有电缆及其 辅助配件。据悉,田湾核电站位于中国江苏省的连云港市。整个项目额外包 含了两个俄国 VVER-1000 型号的压水式反应堆的建设,其中每个反应堆可发 电 1060 兆瓦。电缆及其辅助配件将应用于核遏止区域中的一些程序中,并 预计从 2015 年开始对其进行安装。 在接下来的 3 年里,耐克森将在位于法国谢尔省的工厂对所需的电缆进 行制造生产。这些电缆的生产将严格按照国际安全标准 K0,K1,K2(1E LOCA 类别 ) 执行,该标准对电缆在核电站的安装有着严格的规定。 这次所采用的电缆技术将确保巩固加强紧急状况下的消防性能,因为隔 离护套材料通过利用零卤素材质从而具备高水准的阻燃效力和耐火性,同时 低烟低毒。 市场细分的负责人 Olivier Dervout 说道:“耐克森具备高水准的专业 技术,并且之前也曾在该项目的一期工程中为其提供电缆的供应。除此之外, 耐克森此次得到这份合同还得益 于耐克森始终秉承‘顾客至上’的理念,期间积极同中国的核管理者沟 通,以确保所供应的电缆及其配件标准符合这个项目。” 来源:http://www.nexans.co.uk

L-3 MAPPS 与 Eskom 合作的重大项目 - 科 贝赫核电站在南非顺利完工 2013 年 9 月 12 日, L-3 MAPPS 在蒙特利尔宣布其在南非投建的两个 重大项目已经顺利完工,该项目主要用于支持南非科贝赫核电站运作。目前 项目取得的成就包括于 2013 年 8 月 1 日完成的对电站模型的翻新工作与于 2013 年 8 月 1 日在施工现场投入运行的第二个全范围模拟机。 Eskom 公司在科贝赫核电站的培训主管 Christo Lombaard 称:“这两 个项目本身非常具有挑战性,但是可以非常清楚的看到,对这两个项目进行 整合将有利于整个项目的工程计划。”他还说:“考虑到 Eskom 的宗旨,其 中包括使模拟机的预备时间与我们新的培训中心保持同步,我们对 L-3 公司 的技术以及对双方的合作都很满意,现在科贝赫核电站的模拟器设备及质量 已经达到最高水准。” L-3 MAPPS 电力系统和模拟机市场销售部门副总裁 Michael Chatlani 表示:“L-3 MAPPS 对我们的表现非常满意,我们期待在接下来几年里能够 继续支持 Eskom 的项目。今年初,随着 Embalse 全范围模拟机在阿根廷投入 运转,科贝赫模拟机在南非的落成再一次充分体现了 L-3 MAPPS 是世界领先 的核电站模拟机解决方案的供应商。” 对所遗留模拟机的翻新工作分为两个阶段展开。第一阶段包括 L-3 的 Orchid® 仿真模拟平台的搭建,重建核电厂配套设施的循环处理过程,模拟 阿尔斯通新的 ALSPA CONTROSTEAM 汽轮机控制器,核心监控系统的模拟展示 和同西屋电器 Ovation 分散控制系统的界面的搭建。这些已经落建的项目使 得科贝赫能够对操作人员进行预先培训,以适应工厂在 2010 年底发生的变 化。第二阶段包括对所保留的工厂模型进行升级,内容包括容量、紧急冷却 核心管、电力系统和 L-3 的 Orchid 建模环境的公共服务,和通过翻译器向 Orchid 建模环境转移所遗留的控制逻辑。 第二个全规模模拟机所涉及的主要功能包括:复制工厂的主控制室和通 过利用 WAGO-I/O-SYSTEM 750 的硬件和 L-3 的 Orchid 输入输出的软件来控 制压缩式组装输入 / 输出系统的紧急设备。新建的仿真平台和翻新模型连同 第二个新的模拟机硬件一起用来促进 Eskom 项目的最终落建。经过后来的努


新闻

112

力,遗留模拟机的输入 / 输出系统将会代替原先的系统以用于第二代模拟机。 Eskom 控股负责支持南非将近 95% 的电力以及整个非洲 45% 的电力供应、 运输和分配工作。科贝赫核电站位于开普敦附近,是非洲大陆上唯一一个核 电站。科贝赫核电站拥有两个压水反应堆机组,同时拥有一个南半球最大的 涡轮发电机,发电量 1800 兆瓦,确保西开普的电力供应,据悉,西开普当 前是南非电力增长最快的地区。科贝赫核电站已安全有效运作超过 25 年, 并且未来有效寿命将长达 25 至 30 年。 来源:http://www.mapps.l-3com.com/

工准备工作有序展开,至 9 月 5 日开工所需的反应堆压力容器锻件、焊接材料、 焊接工艺、加工制造程序、人员和设备满足了开工制造的各项条件 . CAP1400 反应堆压力容器设备位于核岛(安全壳)厂房内,是安置反应 堆并承受其巨大压力的密闭容器,它与一回路管道相连共同组成高压冷却剂 的压力边界,主要功能是安置反应堆和防止放射性物质外溢的主要屏障。这 是继 AP1000 国产化后产品设计参数大幅提高的世界首台反应堆压力容器制 造,其设计寿命为 60 年,标志着我国 AP1000 核电技术的成熟和 CAP1400 新 技术反应堆压力容器制造工作的开始。

核电站

新闻 方家山项目 DCS 供货协调会在司召开 2013 年 9 月 4 日,中国核能电力股份有限公司总经理陈桦、秦山核电

来源:http://www.snpec.com.cn/

阳江核电站 5 号核岛主体工程开工 9 月 18 日,阳江核电站施工现场,秋风送爽,彩旗飘扬。8 时 28 分, 随着中广核工程公司阳江核电项目部总经理郝坚宣布阳江核电站 5 号核岛 FCD(第一罐混凝土浇筑)开始,伴着震耳欲聋的鞭炮声,在国家核安全局、 中广核阳江核电公司、中广核阳江核电工程有限公司和中国核建所属的中核 华兴核电工程事业部相关领导和现场员工的共同见证下,阳江核电站 5 号核 岛筏基第一罐混凝土正式开始浇筑,标志着阳江核电站 5 号核岛主体工程正 式开工。

筹备组组长李大宽一行来司就方家山项目 DCS 进展情况进行沟通交流。集团 公司核动力事业部副主任章庆华、中核运行一厂厂长马明泽,我公司总经理 刘巍、副总经理钟华、DCS 专项组组长蒋祖跃等出席会议。

今年 1 月 24 日,中核华兴阳江核电项目部收到中广核工程有限公司来函, 要求项目部以今年 8 月 15 日实现 FCD 为目标,组织开展相应的准备工作。期间,

会上,DCS 专项组主要汇报了方家山项目 DCS 设备的概况和重点问题,

FCD 预备时间不断调整。面对四岛共进的局面(1、2 号机组尾项施工、3、4

中核运行一厂介绍了方家山 DCS 设备 / 软件供货对调试的影响及建议对策。

号机组结构施工),为确保实现业主公司提出的按时实现 5 号核岛 FCD 的目

与会领导针对 DCS 供货存在的问题共同商讨解决对策,并达成共识,要坚定

标,阳江核电项目部迎难而上,精心部署,有条不紊地做好各项准备工作。

不移的以 68.5 个月总工期为目标不动摇,加强与核安全局的沟通,重视与

2 月 27 日,阳江 5 号核岛基坑通过国家核安全局验收,2 月 28 日,中广核

英维斯公司的商务谈判工作,由 DCS 专项组、工程公司设计院、中核运行一 厂三方组成谈判组,制定谈判方案并实施,各方一致认为,要继续加强合作、 共同努力,推进 DCS 设备供货工作,确保项目工期。

工程公司正式将 5 号核岛基坑移交阳江核电项目部。3 月 4 日,5 号核岛廊 道垫层开始浇筑;5 月 9 日,廊道内外侧回填完成;同日,5 号核岛筏基钢 筋绑扎工作开始;6 月 18 日,筏基 A/B/C 层模板支设完成;6 月 25 日,5 号

公司采购部、总经理办公室相关负责人参加会议 . 来源:http://www.cnpe.cc

核岛 FCD 条件全部具备。9 月 13 日,中广核工程公司发来浇筑令,项目部迅 速启动,用 4 天的时间完成了所有准备工作。

海南昌江核电全范围模拟机通过现场验收 9 月 5 日 , 海南昌江核电工程 1、2 号机组全范围模拟通过现场验收,

根据计划,5 号机组筏基共浇筑混凝土 4452 立方米,采用中国核建已 经成熟掌握的大体积混凝土整体浇筑技术,预计需要 45 个小时完成浇筑任务。

正式投入运行。 来源:http://news.bjx.com.cn/ 评审专家组对模拟机功能、综合性能进行抽测,对项目文档、测试记录 进行检查后 , 认为:模拟机总体功能及性能满足模拟机制造相关标准及合同 规定要求,具备在模拟机上开展操纵人员培训的条件,同意模拟机通过现场 验收。

辽宁红沿河核电站 1 号机组投入商运 设备国产化 率高

来源:http://www.cnnc.com.cn

东北首个核电站——辽宁红沿河核电站一期工程 1 号机组 6 日投入商业 运行,该机组每天发电量达 2400 万千瓦时,可满足大连市 1/4 的电力需求。

重大专项示范工程一号机组 CAP1400 反应堆 压力容器制造正式开工

红沿河 1 号机组设备国产化率达到 75%,进一步提升了我国核电装备制造能 力。

2013 年 9 月 5 日晚,重大专项示范工程一号机组 CAP1400 反应堆压力

红沿河核电站由中国广核集团有限公司、中国电力投资集团公司、大连

容器正式开工制造。在示范业主、供应商和公司的共同努力下,设备制造开

市建设投资集团有限公司按股比 45% ∶ 45% ∶ 10% 共同投资建设,采用的是


113

中国广核集团自主设计的改进型压水堆技术 CPR1000。由一重集团大连基地

新闻

式转变,带动少数民族地区经济发展。

制造的红沿河 1 号机组反应堆压力容器,是我国首台完全拥有自主知识产权、 来源:http://news.bjx.com.cn/html/20131012/464527.shtml 自主建造的百万千瓦级核反应堆压力容器。 来源:http://www.china-nea.cn

福清机组进入运行前测试 正在建设中的福清机组一号反应堆目前已取得新进展,随着机组反应堆 冷却剂系统成功完成水压试验,该机组即将进入试运转阶段。 水压试验已于 10 月 3 日顺利完成,该试验确定了反应堆水冷剂的完整 性。在四天的测试过程中,将冷却剂回路内的压力逐渐增至 22.8 帕,对阀门、 密封圈和焊接点进行了核查。 福清核电站建于福建省,从属中国核工业集团。该项目最终将涵盖 6 座 机组,均采用中国设计的 CPR-1000 压水堆。 福清 1 号机组的建设始于 2008 年 11 月,并计划于当年年底开始运行。

方家山核电 1 号机组水压试验圆满完成 15 日 10 时 08 分,方家山核电工程 1 号机组主系统冷态水压试验顺利 到达 22.8MPa 压力平台并成功保压,经环保部华东核与辐射安全监督站现场

2 号机组的建设始于 2009 年 6 月,并预计于 2014 年 9 月开始运行。 3 号机组和 4 号机组的地面挖掘工作已于 2009 年 6 月完成,中国核工 业集团于 2010 年 12 月为 3 号机组的建设举行了正式的开工仪式。这两座反 应堆预计分别将于 2015 年中旬和 2016 年中旬开始运转。 来源;http://www.world-nuclear-news.org

监督员认可并释放,方家山 1 号机组主系统水压试验圆满完成。这标志着方 家山核电工程取得重大进展。 方家山 1 号机组一回路水压试验取得圆满成功,为后续相关目标的实现 奠定了基础,也为随后开展的热态功能试验提供了先决条件。 核岛一回路水压试验是对核岛关键设备性能、安装工艺质量的一次综合 考验,目的是验证一回路压力边界核安全保护屏障的完整性和严密性,并在

防城港核电项目稳步推进

升压过程中进行辅助系统的冷态功能试验。

2013 年,防城港核电项目计划完成七项工程里程碑,目前已完成 1 号

方家山核电工程 1 号机组主系统冷态水压试验是方家山核电工程的重大

机组发电机定子到货、2 号机组反应堆厂房环吊可用两项工程里程碑,首台

节点,受到了各方关注。在秦山核电基地、中国核电工程有限公司、中核核

蒸汽发生器和反应堆压力容器已到货,各项配套工程及附属设施按期推进。

电运行管理有限公司等单位的共同努力下试验顺利完成,为下一步开展的热

目前,各项工程按计划稳步推进。

态功能试验工作奠定了坚实的基础。

下一阶段,防城港核电移交接产也将逐步进入高峰期,核电站配套设施

来源: http://news.bjx.com.cn

系统大部分进入调试阶段,核岛、常规岛已全面开展安装工作,部分消防、 电气系统由工程方移交至生产方并开始临时运行。 防城港核电站一期工程建成后,两台机组年发电量预计达 150 亿千瓦时,

三门一号机组主控室 OCS 设备开始安装 2013 年 10 月 5 日,依托项目三门一号机组主控室 OCS 设备开始安装。

与同等规模的燃煤电站相比,每年相当于减少原煤消耗 600 万吨,减少向环

为了实现主控可用节点目标,三门 SPMO 积极协调各方并于国庆假期期

境排放二氧化碳 1482 万吨,减少二氧化硫和氮氧化物排放约 13.6 万吨,产

间开始引入安装 OCS 系统设备,业主、西屋设计方进行了全程监督指导。此

生的环保效益相当于种植了 9.82 万公顷的森林,为减少温室气体排放作出 积极贡献。 防城港核电站一期工程建设期间,可拉动全社会相关行业总产出增长约 700 亿元。建成后每年可为广西北部湾经济区提供 150 亿千瓦时安全、清洁、 经济的电力,拉动全社会总产出增长约 140 亿元,有力促进广西经济增长方

次首台 OCS 系统设备的引入将为后续 OCS 设备的安装提供宝贵的经验。 来源: http://www.snpec.com.cn


第五届中国核电前沿高峰论坛2013 2013年12月12-13日

中国·上海

New Build Events — China Summit

——优化核电装备制造业产业链,推动第三代 核电设备国产化进程

会议亮点

历届主席委员会

1. 了解中国核电新建项目的最新动态 2. 深入解析中国核电技术路线未来发展方向 3. 剖析三代核电技术对核电装备制造业的影响 4. 知悉中国三代核电设备国产化的最新进展 5. 解析核安全设备监管体系及存在问题 6. 掌握中国核电自主标准体系建设的最新动态,提升核电装备 制造效率 7. 探寻中国核电装备制造企业走向国际核电市场的成功之路 8. 泵阀,暖通分会场,详细解析三代核电技术对泵阀,暖通设 备的影响 9. 一对一的高效客户项目洽谈机会

三人及以上报名,即享10%优惠!

Takashi SHOJI 项目总监 世界核营运者协会

François MORIN 中国区总裁 世界核协会

徐玉明 副秘书长 中国核能行业协会

Pierre-Yves CORDIER 参赞 法国驻华使馆

主办方

指导委员会成员

协办单位 普罗内 主席 法中电力协会

咸春宇 副院长 深圳中广核工程 设计有限公司

Thomas Koshy 钱天林 核电技术发展部部长 总经理 国际原子能机构 中核新能源有限 公司

王鑫 核岛系统所所长 深圳中广核工程 设计有限公司

范霁红 科研部、重大专项 办公室主任 国家核电技术公司

董瑞林 副总工程师 核工业标准化研究所

柴建设 副主任 环保部核与辐射 安全中心

李伟 建造中心主任 国核工程有限公司

饶利明 采购中心质量监 造处副处长 国核工程有限公 司

支持单位 周国丰 高旭 张增强 设计部副经理 采购部机械一处处长 工改中心副主任 中国核电工程有限公 中科华核电技术研究院 中核能源科技有限公 司 司

戴兵 核电维修中心主任 中核武汉运行技术 股份有限公司

黄萍 核电维修中心 机械室主任 中核武汉运行技术 股份有限公司


115

新闻摘要

英国

美国

  英国电网(EDF)作为英国的公用事业,是法国电力旗下的全资子公司, 于本周发布了年度可持续发展报告并透漏称,其碳排放总量增长 40%。 英国电网在 2011 年的二氧化碳排放总量为 1,510 万公吨,2012 年增长 到 2,100 万公吨。同时,2011 年公共设施所产生的碳排放量为 208.1 吨, 2012 年为 251.7 吨,每千兆瓦时增长了 21%。这就致使公司在据 2010 年 时所拟定的目标——到 2020 年,使二氧化碳排放强度降低 60%——还有 很远的距离。碳排放量增加的原因归咎于燃煤工厂的高强度运作和新建 于诺丁汉郡的一座 1,300 兆瓦的燃气电站。公共设施方面指出,计划通 过建造四座新的反应堆作为关键性的战略措施来满足 2010 定下的目标。 但是同时又指出,“随着新原子里程碑的落实,落后只是暂时的。”然而, 假如新建任务不能在 2020 年之前完成,通过对现存的核舰队,可再生能 源,投资和其它经营效率等寿命延长也可实现 60% 的缩减目标。

  上周四,美国内华达州向位于华盛顿的美国上诉法院提出要求,建 议重新考虑其在八月决定强制核监管委员会( NRC )的决议,以重新启 动关于在内华达州尤卡山有争议的永久废料储存库延迟了几十年的许可 证核发程序。多数人的意见并没有解决内华达备案中“关于诸如 [ 决定 ] 命令是否有用的考虑”。如果申请获批,在内华达州请求举行听证会的 全席将会看到由 14 名成员组成的法庭所作出的考虑会比由三人组成的法 庭小组在 8 月 2-1 日发布的决定更加广泛。奥巴马政府不支持尤卡山项 目并且国会并没有为 NRC 拨出足够的资金进行许可证核发。由于在废料 问题上的态度不明确,同一法院在 2012 裁定,NRC 将不再为核设施发放 许可证,基于人们“有信心”在未来某天建立一个永久的存储库。为了 解决这个问题, NRC 正在创建一个新的规则。   

澳大利亚   昆士兰政府本周颁布了一项行动方案,计划通过实施最优管理条例 来保证铀矿产业的安全及稳定性。这项方案的颁布时间差不多是在新任 市长纽曼提出推翻长达 23 年的铀矿禁令的决定一年之后。这项行动方案 几乎涵盖了昆士兰政府三月报告中所提及的所有建议规范。其中,政府 仅仅排除了那些关于专利税制度的建议。三月报告中曾向政府建议提出 增加 5% 的铀矿专利税率,2.5% 的新矿产专利税,此举欲同其它国家保 持一致。政府目前拒绝任何改变,声称“专利税的发展需要经过实质性 的分析并且昆士兰政府将对此进行更进一步的评估”“并会在 2014 年至 2015 年期间作出最终的国家预算决定”。在该禁令颁布之后昆士兰政府 已经开始了第一次铀矿勘探钻井项目。

法国

伊朗   美国国务卿约翰·克里和他的伊朗外交部长穆罕默德·贾维德·扎 里夫上周四在纽约会面,讨论伊朗有争议的铀浓缩计划,并且在本周举 行的联合国会议上发出了最新的积极外交信号。在大约维持了十年的伊 朗核计划的谈判后,双方希望能够在几个月内寻找到突破。伊朗总统哈 桑·鲁哈尼在本周早些时候对《华盛顿邮报》坦言,他更期盼谈判尽可 能缩短为 3 个月。在 P5 +1 会议中与扎里夫会晤后,克里表示对伊朗伊 斯兰共和国的制裁可能在几个月内得到缓解,如果伊朗迅速采取措施, 并配合更直观的国际监测方案,包括访问其在福尔道的地下铀浓缩设施。 作为伊朗最大的贸易伙伴之一,中国在伊朗问题上施加了额外的压力, 中国加入了美国,要求德黑兰积极响应 P5 +1 现有的核提案。   罗马尼亚   罗马尼亚政府在 9 月 25 日的公告中称已经完成了关于在切尔纳

  法国有关部门于本周发布了一份议会报告,指出法国总统弗朗索 瓦·奥朗德计划降低核能源在供电量方面所占的比重,此举被认为太过 强烈,很可能会对国家经济造成负面影响。议会机构相关科技评估部门 将奥朗德的目标进行量化,等于说,截至 2025 年,按照平均一周减少一 天的供电量来算,核能源在国家电力投资组合中所占比重将从 75% 降低 至 50%。然而,该部门提出了一个“合理轨迹”,计划核电从 2030 年开 始脱离现有的运作状况,到 2050 年达到现有比重的 50%,并于 2100 年降 低至 30%-40%。随着不久前法国环境部长菲利普·马丁承诺在 2016 年底 关闭费桑海姆核电站之后,议会机构于本周提出这项计划。为了达到奥 朗德设定的目标,法国可能还需要额外关闭 10 到 15 个反应堆,在那之后, 可能还需要十年时间。

沃 德 厂 房 的 两 个 新 700 兆 瓦 的 CANDU-6 重 水 堆 的 环 境 许 可 的 决 定 草

巴基斯坦

中国

  据最新发布消息称,原先欲同巴基斯坦签订对卡拉奇核电站供应两 个 ACP-1000 核反应堆的合同,该信息已被中国中原对外工程有限公司和 中国核电工程有限公司从网站上撤除,这两者都是中国核工业集团的子 公司,而核工业集团将主要负责反应堆的供应业务。该消息的撤除则证 明了这项工程的敏感程度:许多国际社会声称在核供应国集团的统治规 定下,明令禁止对巴基斯坦提供核技术,因为南亚国家并不参与签署《核 不扩散条约》,中国于 2004 年加入该集团。中国长时间坚持表示对巴基 斯坦提供反应堆属于祖父条款,并不受新法规约束,因为中国长期一直 对巴基斯坦恰希码核电站提供反应堆。通过隐藏的公告,对卡拉奇核电 站 2 号和 3 号机组提供反应堆的签约仪式将于 8 月 20 日在中国东北黑龙 江省的省会哈尔滨举行。

案。但是,尽管监管审查仍在继续,罗马尼亚政府不可能会签署任何 施工合同,除非找到一个新的项目投资商,目前此项目为国有控股的 Nuclearelectrica(85%)所持有,钢铁制造商 ArcelorMittal 持 6% 股份,意大利 Enel 公司持有 9%的股份。政府希望减少其在项目中的份 额至 40%,当其在稍早几年前的热情退却之后,现在唯一真正的兴趣似 乎是来源于中国广东核电集团。与此同时,Nuclearelectrica 在 9 月 20 日完成了 2.82 亿列伊(约合 85 万美元)的首次公开募股,筹集约 10% 的销售额。

  在迄今为止最严格的污染指令控制下,中国国务院于 9 月 10 日出台 了一项 10 种措施的行动计划,规定截止至 2017 年煤炭消耗占能源消费 总量的百分比将从 70%削减到不超过 65%。计划还要求污染严重地区, 如北京,天津,河北省,毗邻北京和天津等省市,以及长江 / 珠江三角 洲地区要努力做到 2017 年前保证减少煤炭使用量,而不是站在国家先前 的立场,只是强调强度削减,而非绝对削减。电力部门截止到 2017 年的 目标包括了 13%的贡献来自于可再生能源,核能和其他非化石能源,相 对于 2015 年公布的 11.4%目标略有增加。在针对 2017 年的装机容量达 到 50GW 的目标中,核能发挥了关键性作用,比预计在 2015 年增加 40GW 的目标略有增加。


核电词汇

116

Nuclear Glossary 核电专业词汇 English

Chinese

belt drive belvedere bench grinder bench mark bench test benchmark bend bend radius bend test bending bending brake bending critical speed bending force bending induced by thermal contraction bending machine bending moment bending press bending radius bending schedule bending strength bending stress bending table bending tensile strength bending test bentonite berm best efficiency point best estimate flow beta decay beta quench beta radioactivity beta rays beta value bevel bevel angle bevel protractor bevel washer beveling beveling machine biasing bib bibb bichromate-treated bid bifilar bill of materials bill of quantities billet bimetal bimetal thermometer bin binary cycle binary signal

皮带调节 平台、瞭望塔 台式磨床 基准标志 台架试验 基准点 弯曲 弯曲半径 弯曲试验 折弯、曲折 压弯成形机 弯曲临界速度 弯曲率 冷缩成形 折弯机 弯矩 压弯机 弯曲半径 钢筋规范表 抗弯强度 弯曲应力 弯曲(管道) 抗弯拉强度 弯曲试验 膨润土 护道、小平台 最佳效率点 最佳估算流量 β 衰变 β 淬火 β 放射现象 β 射线 β值 斜面、坡口 倒角(焊接) 斜(量)角规 斜垫块 倒棱、坡口 坡口机 偏置、偏压 活门、龙头 活门、龙头 重铬酸盐浸渍过的 报价 双股线的 材料清单 工作量清单 钢胚 双金属的、复合钢材的 双金属温度计 料斗、储存仓 双循环 开闭信号 结合、粘固

English bind v. binder binding binding energy binding fatigue binding post binding screw binding wire binoculars biological concentration biological concentration factor biological effect of radiation biological half-life biological hole biological protection biological shield biological shielding biologically equivalent single dose bird cage (shipping cask) bird screen birdproof bistable bit bite (control rods) bitumen bitumen felt bitumen solidification bituminous paint black anodized black body black plate black sheet blackened blackout blade blank blank panel blanket contract blanking plate blanking-off blast cleaning blast furnace cement bled steam bleed bleed v. bleed off v. bleed valve bleed-off bleeding bleeding point (turbine) bleed off blend blend v. blend back addition blend batch

Chinese 粘合剂 结合、粘固 结合能 结合疲劳 接线柱 紧固螺钉 困扎用钢丝 双筒望远镜 生物集结 生物浓集因子 辐射的生物效应 生物半衰期 生物洞 生态保护 生物屏蔽 生物保护 生物当量单一剂量 运输罐 防挥发屏 防禽的 双稳态的 钻子 最小插入值(控制棒) 沥青 沥青油毡 沥青固化 沥青漆 阳极氧化致黑 黑体 (未镀的)黑钢板 碳钢板 致黑 总电源中断 叶轮 毛坯、半制品 空白面板 一揽子合同 盖板 封闭 喷砂清理 高炉水泥 抽汽 抽出 抽吸 排泄 泄放阀 抽出 泄放 排气口 排出 混合物 混合 返料添加掺和 掺和配料


117

新闻摘要

Dynatom september october 2013  

Your Window to the Chinese Nuclear Market Dynatom® is the foremost market knowledge tool from Dynabond Powertech Service. As a convenien...