Page 1

Alberto Posadas

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Tratado en lo inasible pour saxophone baryton (aussi saxophone soprano), clarinette contrebasse (aussi clarinette basse), accordéon, violoncelle & contrebasse

Commande d’État du Ministère de la Culture et de la Communication


lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr durée : 16 min 7 s

© 2013 Éditions DURAND

Tous droits réservés pour tous pays All rights reserved

édition du 10 décembre 2013

DF 16129


Performance notes Placement on stage: Accordion Saxophone

Clarinet

Violoncello

Accidentals apply only for the notes they precede and for tied notes.

Double Bass

 is used as caution accidental.

Dynamics or articulations in quotes refer to the energy for the gestures, not to the actual sound level. mp (acc): Dynamic must be subordinated to the actual sound level of the instrument indicated in brackets.

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Woodwind

Tongue Ram. Resulting pitch is notated (transposed)

Breath tone without any pitch content. Fingerings are given to colour the breathy tone.

Half breathy tone. Much more breath than usual, but the pitch remains audible.

////// Beatings clearly audible.

Saxophone

Bar 35. Add the key indicated above the stave to the scored fingerings. Note in brackets indicate the resulting pitch, that will suffer microtonal or semitonal deviations according to the changes of fingerings. Bar 39. The initial note indicates the starting fingering and pitch. Diamond shape notes indicate to close lower holes corresponding to the fingering of the note, but always keeping a higher hole open. Examples:

Notes in brackets indicate the resulting pitch. Descending arrows indicate that the actual pitch will be slightly lowered. In case an additional key needs to be added, it is indicated below the stave. (See bar 52). Bar 110.

Overblowing to open the spectrum what necessary to trill with the multiphonic in brackets.

Bar 167. Very unestable multiphonic. Try to play simultaneously both pitches, but it is assumed that some alternances between them can occur. Minumum duration is 10” , that could be increased if it is necessary to achieve stability in the multiphonic or because the acoustics of the hall. Saxophonist will give a cue for starting next bar.


Selmer privilege bass clarinet R

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr 5

B

F# E Eb

G# F D

6

D E F# G#

4

C# 3

F

b bb f# eb

Eb C# C

2 Eb

1 T


Clarinet Bar 37. The initial note indicates the starting fingering and pitch. Diamond shape notes indicate to close lower holes corresponding to the fingering of the note, but always keeping a higher hole open. Examples:

In case an additional key needs to be removed, it is indicated below the stave. (See bar 37).

lle rtie ts pa cerp me ex mĂŞ as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio tĂŠ riĂŠ of E op Pr perty o Pr Accordion

Actual pitch notation.

Only air (air button)

Air slap. The air button is released very fast in such a way that a snap results.

Vibrato accelerando at th beginning and rallentando at the end.

////// Beatings clearly audible, bending the pitch of one note. Tuning of the arrival note should be applied to get the beating.

Keep press down the buttons in order to form the chors (i.e. bar 77) or the cluster (i.e. Bar 189) .

Strings

SB: Slow bowing VLP: Very light bow pressure HP: Heavy bow pressure

Bowing on side of bridge (toneless)

Bowing on side of bridge,but getting the highest possible pitch.

Strike the braided part of the string (behind the bridge) with the nail, sliding violently the underside of the last phalanx of the middle (like for a flick).

finger on the thumb

Scratch tone (pitch remains audible)

Scratch tone, bowing in the the braided part of the string (behind the bridge). Pitchless.

Vertical bowing (from sul pont to p.n.), with scratch tone and pitchless.

Push up the wooden wedge (with a finger) and release it immediately, in order to get a soft percussive sound. Let free the resonance. Push down the wooden wedge (with a finger) and release it immediately, in order to get a soft percussive sound. Let free the resonance. Play very closed to the bridge, adapting speed and pressure in order to get as high as possible partials.


To stop one string with two fingers with “harmonic pressure” and slide downward maintaining the distance of the fingers. Bow placement very closed to the bridge, trying to get the highest partials. Different overtiones series are brought out.

Multiphonics for strings: Different kind of multiphonics are used along the piece. multiphonics: the normal note indicates the left-hand fingering. The note in brackets indicates the point of placement of the bow. Some times indications for speed and bowing pressure are given. All this information is approximate and the player must experiment in his/her own instrument, as density of the strings, weight of the bow or height of the bridge can change the resulting sound. Try to get a multiphonic as rich, complex and stable as possible.

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Bow above finger multiphonic. The finger is positioned close to the end of the fingerboard or beyond the fingerboard, between bow and bridge. The location of the f ingering normally correspons to a natural harmonic, but some more pressure is requiered. This kind of multiphonic si sometimes combined with natural harmonics in a neighbor string (i.e. Bar 157). In this case bow is above the finger used for the multiphonic and below the finger used for the harmonic.

Only for double bass. Same as previous kind of multiphonic, but stopping the string with two fingers where indicated.

Only for double bass. Multiphonic on open second string when Heifezt mute is place in it (See remarks below). Bowing speed is normally and pressure is a bit heavier.

slower than

Only for cello. This artificial multiphonics is produced with the finger lightly touching the string at a distance of a fourth diminished of a quartertone from the depressed thumb. Slow bowing and heavy pressure is recommended. Another kind of multiphonics are formed when using the wooden wedge. (See remarks below).

Violoncello

Put a wooden wedge (beech wood) between strings I, II and III as illustrated.

Recommended to push down on strings I and III with the fingers at the moment the wedge is inserted, in order to avoid undwanted noises. A slit can be made in the wedge to place inside the string and to prevent to be rejected when playing. The right place for the wedge is where the tuning of the strings changes to

Dimensions of the wooden wedge:

play on the corner of the thick edge of the wedge, creating the lowest possible sound, which will be muffled


play simultaneously on string II and the edge of the wedge (on its middle point, not the corner). The resulting sound will be complex and rather noisy.

play on string II right below the wedge, applying pressure and speed bowing to get a multiphonic.

lle rtie ts pa cerp me ex mĂŞ as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio tĂŠ riĂŠ of E op Pr perty o Pr Double Bass

A violin Heifetz mute is required for the beginning of the piece. This mute will be placed straight in the string II (as illustration).

The right place to put the wedge is where the tuning of the strings changes to

At bar 202 put a wooden wedge (beech wood) between strings II, III and IV., as illustrated.

Recommended to push down on strings II and IV with the fingers at the moment the wedge is inserted, in order to avoid undwanted noises. A slit can be made in the wedge to place inside the string and to prevent to be rejected when playing.

The right place for the wedge is where the tuning of the strings changes to

Dimensions of the wooden wedge : 9 x 3,3 x 1,2 cm. (See illustration for violoncello). See cello remarks and illustration. See cello remarks and illustration. See cello remarks and illustration.


lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr


Dedicado a Accroche Note

TRATADO DE LO INASIBLE pour Saxophone baryton (aussi saxophone soprano) Clarinette contrebasse (aussi Clarinette basse), Accordéon, Violoncelle et Contrebasse

Commande d'Etat du Ministère de la Culture et de la Communication

Alberto Posadas

Transposed score

  Baritone Saxophone  

Accordión

 

      (slap)

“sfz”

  

mp (acc)

 

To put Heifetz mute in II



T.R.



  

“sfz”

 



 

 

    

 

“sfz”

mp (acc)

“f”

Bellow Shake

>

   (> )  

      toneless   

mf

mf

“f”

 mp

 



toneless

“sfz”

© 2013 Éditions DURAND

DF 16129

mp (c.b.)

3

T.R.

 







 

“sfz”

  

mf (acc)

 

toneless

 “f”

   

[C ]          mf (vlc)   mp [ 1 ]        mf (vlc)   mp

 

          mf

“mf”

mf

 

“mf”

 

   toneless    

  

T.R.

“f”

  



sfz

  D.b.  

>

T.R.

>

 mf



   

      (on wedge)   Vlc. 

Paris, France

pp

“sfz”

Accord.

T.R.

To put wedge in between strings I-II-III

T.R.

 

 

“sfz”

   Bari. Sax. 

Cb. Cl.

    

 6

mp (acc)

  

Double bass

T.R.

T.R.

  

Violoncello

  

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Contrabass Clarinet

q = 60

 

 sfz

    

5

 

“sfz”

 

       )   

(>

mp

Tous droits réservés pour tous pays


2 10

Bari. Sax.

Cb. Cl.

   

 

“f”

   

 

 H



M

mp

     mf 

(slap)

 mf

mp

|| | || |

  

>

   toneless  3

mf

mf





“f”

p





mf

[ 1 ]   

 mf 

p

p

  

p

“f”

 mf

B.Sh.

sfz

  

 

II

     mf 

mp

D.b.   

 

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Vlc.

  

 

 mf

 

Accord.

   

[C ]        5

(slap)

 

  H

M

II

mf

“f”

[C ]   flatt  6      5  A                       mf  “f” mf p mf mf 3

14

 Bari. Sax. 

Cb. Cl.

 

mf

  

   

Accord.

  

mf

simile





 

     Vlc. 

 

flatt 6             

mf

mf

simile



       mf

   

“f”

    “f”



  D.b.     mf



   

     

[ 1 ]                 mf p mf

 

        DF 16129

     





     

   

3



 





 



B.Sh

     



sfz



mf



>

   p

 mp



mf




(tk clearly audible) flatt 17

5

       Bari. Sax.               mf

Cb. Cl.

5

mf

(tk clearly audible)

    

mf

mp

mf M

mf

    3

mf

   

10

B.Sh



mp

 

mp

 flatt 19

 Bari. Sax.  

5

5

           mf

t

k

t

5

    

mp

 

     

       mf

t

5

k t

k t

t

k

5

t

k t

flatt



  

sfz

 

mf



BOF

     mf

IV M

    D.b.  

>

   toneless 

 

mf

f

“ff”

DF 16129

5

                    mf

 

t

k

  Cb. Cl.    mf

(M)

H

Vlc.

mf

[ 1 ]                     

flatt

(M)

II M

t k

sfz

mp

Accord.

5

k t k

mp

     



mf

t k t k t

                      

 (II)  Vlc.  

D.b.

  

5

3

3

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

        

mf

       

Accord.

5

t k t k t

3

[C ] (come prima)       

  


4 20

Bari. Sax.

  

3

t

 

Cb. Cl.

mf

10

flatt



simile

 

  

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

 



BOF

III

mf

(mf)

5

flatt   Bari. Sax.            21

(flatt)

5

         

t

 

k

10

flatt

f

 B.Sh  

mf

     

/M 0  

  

   

 

  

pp

 

 

BOF

D.b.

 

5

 

                             

“f”

Vlc.

 

f

mf

Accord.

  M

 

 

mf

DF 16129



mp

[ 1 ]   

            BOF

Cb. Cl.

[Tc]  

mf

5

/M 0    Vlc.    D.b.

                             

mf (flatt)

10

k

flatt

5

    


[C ]   5 flatt   5  A             

[ C ]          

22

  Bari. Sax.     mf

Cb. Cl.

p

mf

 

Vlc.

p

BOF

    

simile

 

 24

 Bari. Sax. 







 

Accord.

      



mf

      

/M 0    Vlc.   

 



 

 



   

 

 



 

 

 



 

 

 



 

 

(mf)

    

(M)

 D.b.

   



    



 

 

 

  DF 16129

  

                       t k

mf

mf

10

“f“

      mf mf        

5

t k t k t

      

“f”

p

    



 



  mp

(M)

 arco

f

        

H

II M

  



M II

  



BOF

f

 

 

p sub

mp

 

  

f

[ 1 ]      A     5 

p

 

p sub

Cb. Cl.

    



mp

 

mf

BOF

 

mf

       /M 0 



“f”



pp

        /M 0 

D.b.

mf

 

mf

“f”

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

mf

[ 1 ]  flatt 5        

   

5

3

3

 

mp


6

5   flatt                       5

10

flatt

27

           Bari. Sax.   mf

t k

Cb. Cl.

5

t

flatt

k t

pp

5

5

mp

5

flatt

5

  pp

          10

5

                         mf mp      

pp

pp

Accord.

 Vlc. 

    

(M)

D.b.

 



Cb. Cl.

sim.



 

  

 

  

Accord.

 Vlc. 

[C ]        10            3

 D.b.

5           10

10



pp

mf

[ 1 ]      p

     

   

 

 

           

mp



           flatt

(M)

10

28

Bari. Sax.

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

     

(E)

M

(II)

 

(mp)

   (M)

(mp)

(arco)

 DF 16129


7

29



 Bari. Sax. 



 

10

pp

 

Cb. Cl.

  



mf

mp

Vlc.

(M)

 D.b.

 

   

p mf

10

pp

  

 

pp

 

flatt

  

     



 

“mf”

10

mf

 





DF 16129



“ff” mp

         p

  

(M)

p

flatt

5

                  

p

 



[C ]   3

5

 

   

Accord.

   5

[  ] 1

“ff” mp

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

   

    

5

  

mf

   

 mp





mf

 

 

mp

flaut   (Non Multiphonic)  *

mf    

(mf)

*= Harmonic (III) + Open string with Heifetz mute (II)


8

 (beatings) ////////////// 31   voice   Bari. Sax.     



pp

 

(beatings)

 / / / / / / / / / / / / / / voice Cb. Cl.    

      

 Vlc.

 

    

f

mf

  M D.b.    mf

 

      

t k

       

  

p mf

 

pp

mf flatt

5



5

  

 

5

5

       

p mf

     

p



s.p. (II) flaut



    

Non Multiphonic (open string with wedge)

p

f

flaut   

 

BOF

10

flatt

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

mf

      10 

5

mf

10

5

mf

Accord.

           

(Non Multiphonic)

p

H

M

*= Pitch comes from open string with Meifetz mute (II) when bow moves towards molto sul ponticello. "B" will make as a slightly detuned octave with cello 5

33

Bari. Sax.

Cb. Cl.

               

Accord.

Vlc.

D.b.

 

flatt

5

mf

t k

5

5

                

 



5

        

mf

mf

msp

DF 16129

flatt

5

mf

t

k

5

     mf

 *

5

mf

flatt

5

                         

           

  (II)

t k

*


9 34 (flatt)

Bari. Sax.

 

 

  

(t k)

Cb. Cl.

Accord.

5

            

p

   

 

 

                 

                

        flatt

p

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

D.b.



flatt

[C ] [Tc]  []            [ ]             Bari. Sax.  3

35

mp

Cb. Cl.



(flaut)

   

bisb. bisb.     

    

mp

  Accord.  

s.p. flaut

Vlc.

  

(II)

p

flatt

36

 Bari. Sax.                                   mf

[C ] []       3

mp

flatt                                   Cb. Cl.                      

Vlc.

 



flaut II

D.b.



mf

bisb.    mp

 H

flaut (non M)



M

p

mf

DF 16129

mp


10

[Ta] (+C3)

37

Bari. Sax.

Cb. Cl.

   

  

flatt

[ ]

[  ]             

mp

mp

 

            mf

bisb.   

[ ]

 

 



 

   

6

mp

6

[ 1 ]

  

    

extreme msp

  Vlc.

IV

mp

D.b.



*

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

 



 

 

sim.

mp



* = See remarks page

[C ] [Tc] 38 [C ] ord.  []    [ ]                  [ ]              Bari. Sax.  3

5

mp

    Cb. Cl.    (bisb.)

  

Accord.

 mp   

 

[ ]

       6

3

bend

(bendings) **



///////////////////

mf

**= Downward bending. Look the necessary pitch to get clearly perceptible beatings

 Vlc.

D.b.

 

 I

 

 

mp

 * Extrememsp 

mp



*= See remarks page

DF 16129

  mp




11

              

39

  Bari. Sax.  

6

6

Cb. Cl.



 []

6

[ ]

 

             6

6

6

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

  

40

  Bari. Sax.   



6

 (dolce) 

 

 

mp

M

 



 S T

p

  

mp

10            

pp

  

p

pp

5

 non vib. 

(msp

p

mf

p

mp

         (msp )



    

pp

 )       Vlc.  

D.b.

 

  

 

 

 



 

p

molto vibrato  

  

Accord.

  —        

 Vlc.

Cb. Cl.

6

C

segue

D.b.

   

3

  

Accord.

simile

 

[]

p

mf

DF 16129

p

mp


12

   Bari. Sax.   41



 6

mp

Cb. Cl.



            

6

6

    

 

5

  

 

 Vlc.

mp 6

mf



       

3

42

 prima ( )   come     mf

mp

3

mf

3

6

p



[C ] [C ]   []          3

 





mp

       []   



6

 

p

Bari. Sax.

        

prima     come    

p

D.b.

 

6

mp

  

[ ]  

6

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

  [ ]     

(dolce)

Cb. Cl.

   

 3

     

Accord.

[ 1 ]   [ ]    

p

mf



molto vib.  mf

  

Vlc.

 M II >  p.n.

 H.p.         M S.b.

come prima



p

D.b.



non vib. p sub

mf

mp

come prima 

 

  p

DF 16129

mf

p.n. M S.b. (I) [ ] H.p.

  

mp

f


13

[C ] 3

43

 Bari. Sax. 

Cb. Cl.

(+C3)



[ ]           

    [ ][ ]  f

mf

 

   

   

6

mf

   

 Vlc.

 

msp



  



f

 (+C3)

  [ Bari. Sax.  44

 ]

[ ]

Cb. Cl.



Accord.

p

 

[ ]

mp

p

mf



[C ]     [  ]          [ ]            

6

10

p

   —          C

10

mp

  

(dolce)



 

    

mp

5

  



mp



   mp

 

msp

M

(p.n.)



mf

come prima

M

D.b.

mp

prima  come   



  

 Vlc.

  

  

    

6

mp

10

p

 

[  ]

 [ ]     

3

6

   

  6

come prima

[ ]

[  ]



6

 

mf

D.b.



lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

6

mp

f

     

 [ ]     [ ]     



  

mf

(msp)

mf

mp

DF 16129

   mp

 

mp


     5  A    

14

[C ]     5

45

 Bari. Sax.  

3

p

mp

   —     (dolce)    

  

  

sim

3

3

3

mf

R

C

Cb. Cl.

   3 

 





3

   

   

3

3

  

3

mp

   

3

 

 (open string with wedge)        mf  p    (open string) II    p.n.



 3 

   

III

ord. (III) p.n. D.b.

mp 3[ ] 1

mf

     p     

    

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Vlc.

 

p

3

Accord.

[eb]  

  p

   q = 54            

mf

—C

47

 Bari. Sax.  

 

3

    

mp

C

p

   [ ]        [ ]      Cb. Cl.   6 6 6 [ 1 ]

Accord.

Vlc.



mf

  

poco s.t. M

  

 

D.b.

 



    

(poco s.t.) col legno

 

  

         mf

3

bisbigliando [ ]      6           

p

mf

6

3

[ 1 ]

 (crini)

  M        mf

p sub (poco s.t.) col legno

          p

DF 16129

BOF (crini) M

III



mf


15 50

 Bari. Sax. 

       

 



     [ ]     

p Cb. Cl.

 

p

Accord.

D.b.



p



6

[ T ]



mp

3

 

 

  

mf

p sub (poco s.t.) col legno

mp

               6 6 [ T ] mp

 

mp



mf

[ 1 ]

6

         3

p

  []    

3

6

f

6

p

     

f

p sub

pp



  

col legno

   

(M) D.b.





     []  

      

 Vlc.

BOF M

        

 [  ]                      6 6 [] 6 f [ ]

mp

p sub

52

3

6

col legno

  

    Bari. Sax. 

Accord.

[ 1 ]

 M       

Cb. Cl.

           

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

 Vlc.



 

 

  

p sub

 

   col legno

p sub

DF 16129


     

16 54

Bari. Sax.

—C

3      



/ / / / / / / // / / / / / / / / / / //

C

mf





C

 

mp

pp (sax)

 



  Vlc.  

mf

s.p. (III open string)      

pp (sax)

mf

 

Accord.

 

II



   mp

(II)



flaut

mf (acc)



mf (acc)

f

crini flaut

   M

mp

f

f

H



M

f



mp

(II)

I* 

*= False union (lightly detuned)





sim

mp

DF 16129

mp

bend



  

mp



(open string with wedge) 

flaut (non M) D.b.

 3  

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

 

Vlc.

    

mf

pp (sax)

 

3



  

  (II open string)          D.b.  

58

mf

 

  

  

mp

 

mp

6

     

mf

       —      

pp (sax)

mf

   

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

 



/ / / / / / / // / /

bend

 

/ / / / / / / // / / /

 

 

Accord.

   

 



p

mf

Cb. Cl.

        

—C

p

 p



  p




17 61

 Bari. Sax. 

Cb. Cl.

3

  

T.R.

  3

T.R.

 



  IV 

(II)

 

*

 

 

Remove Heifetz mute



 

 

(dolce)

p

 

    —    R

mf (vlc)



  

“sfz”

 Vlc. 

D.b.

  

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

T.R.

mf (vlc)

 

Accord.

T.R.

 

  

 

*= If necesssary, press down string III in order to enable to play simultaneously II and IV If due to the curvature of the bridge this is not possible, to play simultaneously II-III and IV, playing unison between II and III

      C1

—G

64

 Bari. Sax. 

  Cb. Cl.  

Accord.

 

 

subtone



mp pp subtone

   pp



p (cl)

p (cl)

 

B.Sh

sfz

  Vlc.  

D.b.

 

  

 

 

 

I II

   p (cl)



  

 



   

pp sub

    



poco s.t. col legno



DF 16129

s.t. col legno

 

   

pp




18

[C ]  

67

 Bari. Sax. 

Cb. Cl.



 crini V.L.P. p.n.

 

 

 



p

 

pp

poco s.t. col legno

6

p

6

               





crini

poco s.t. V.L.P.  p.n. col legno               D.b.        

crini V.L.P. p.n.

msp

5

5

pp

  Vlc.

  p

 msp

6

5

 mp

mf

crini V.L.P. p.n.

         D.b.           5

DF 16129



3

     

mp

p crini V.L.P. p.n.

poco s.t. col legno

6

mf

[C ]    5  A 

 

6

            

                                      

poco s.t. col legno

6

                                

(p)

6

6

mf

5

poco s.t. col legno

msp

                         

[C ] 69           Bari. Sax.      loco  Cb. Cl.           crini V.L.P. p.n.



crini V.L.P. p.n.

5

5

3

  

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr 6

[C ]    5  A 

 

pp

    



p

(pp)

Vlc.

  

5

p

crini poco s.t.  V.L.P. col legno p.n.  msp                  5

mf

p


C]   [ 71            Bari. Sax.        Cb. Cl.   mp  3

p

 

crini V.L.P. p.n.

73

 Bari. Sax.  



   p

Accord.

mp

poco s.t. col legno

crini (II) msp

5

mf p

 

mp

9

9

              

p sub

crini p.n.



3

 



Remove wedge

mf

7

7

7

                   mp

p

[Tc] 





bisb bisb        

9

   

9

          

 

mf



p

Cb. Cl.

 

mp

msp

5

son fendu

poco s.t.  col legno             D.b.              

6

6

 

mf

[  ]

(II)col legno                         Vlc.     mf p mf p msp

  



 

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

19

 



    

7 7                                    D.b. 

mf

DF 16129

7

p

 

3



   

 7

 


20

  74   5   A     Bari. Sax.       Cb. Cl.            9

  

3

                               3



   D.b. 

 



7

7

          



7

   

 

9

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

mp

bisb             

9

    



p

mp

/ / / / / / / / / / / / /

         7

[C ]      5   A    3

75

 Bari. Sax.  

/ / / / / / / / / / / / /

mf

p

  Cb. Cl.   

   bisb

Accord.

           



 

mp

          mp

3

  Vlc.

(p.n.)

      p

            7

D.b.

   [ ]

 3 9                

9

mp

7

  

 

  

            

   

mp

7

mp

DF 16129

   

      7


76

Bari. Sax.



 



21

6

6

     

   

 

mf

  mp

smorzando

Cb. Cl.





      

 mf

 3       

 

  

 Vlc.

 

mf

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

 

                     7

       77   Bari. Sax.  

—B 

Cb. Cl.





Vlc.

7

msp

mp

f

9

  

 

   



   

7

f

mp

9

                       

 

Accord.

p.n.

                                s.p.

    mp   

s.p.

f

D.b.

7

mp

   

3  

mf

   



  

9

                                  msp

f

D.b.

     p.n.                s.p.

mf

7

mp

7

7

DF 16129

  

      

s.p.

mf

7






[Bb] bisb   78    Bari. Sax.  

22



mf



  

 

mf

 p.n.

f

7

7

      []

 

    —  



s.p.

 

6

[ 1 ]  

        9

 

      

     msp

  



7

ff

s.p.           Vlc.

6

6



  



   



7

f

bisb           []    

[ T ]

9

  

 D.b.  

6

    

mf

R

6

 

[ 4 ]            5 A  

79



mf

f

Accord.

  

9

                 D.b. 

 [ 1 ]

  

      

                 

p.n.

Cb. Cl.

3

mf

Bari. Sax.



     

 

mp

 Vlc.

 

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

mf

 

Accord.



6

bisb

Cb. Cl.



6

    msp   

9   

p.n.

            

  

ff mf

7               mf

p.n.

f

        

DF 16129

           7

s.p.

f

7

  


80

 Bari. Sax. 

  

[ 5 ] 23     A    5       10

p

      Cb. Cl.      

mf

bisb    

10

      

 

   

 

 



 





p.n.

    





f

p

  

s.p.

Vlc.

f

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

p

7

7

               

7

mp

D.b.

  

 81

 Bari. Sax.  

 

  



msp

     

ff

mf

f

[  ]

    

     

  

   

7

            

mp

Accord.

7

mp

7

mp

Cb. Cl.





p.n.

mf

B.Sh

  

mf

  

       Vlc. msp

0

 D.b.  

 



f

  

f

f

 

N.B.

7

7

    

sfz

     ff



 

      

f

7



      7





 

 7

sfz

DF 16129

7

 

sfz

msp



        f

7


24 82

 Bari. Sax.  

O 26 R [ 6 ]        A 5   

mp

f

 

[ ]

Cb. Cl.



 

mp

mf

    (msp)          Vlc.  0

7

f



msp

  D.b.  

 

7

 

 





7

           7

f



sfz

sfz

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

 

    f    

  

f

7



7

  



sfz

 

sfz

    

  

7

f

Più mosso (ca q = 60-63) 83

 Bari. Sax.  

Cb. Cl.



9

                                        p

p

   

   mf

 D.b.  

        5

  

sciolto p.n.

mf

p



5

     

 3

 



mf

sciolto p.n.

Vlc.

7

9

5

  

Accord.

7

                           p

   3

  p



5                    6

 

       mf

DF 16129

5

p

mf

p

s.p.      mf

3




25 9

84

9

7              Bari. Sax.                  9

Cb. Cl.

7

                 

   

Accord.

 

  

6

3

mf

9

         

     

msp

6

      

f

s.p.     

mf

7

       

9

7

       

3

7

                 

  

9

B.Sh

     

  

f

     p.n. msp   

   s.p.

3



mf

 

mp

 

s.p.

p.n.

3               5 sfz  mp  msp            p.n.

6

        3  

s.p.



        

    

 

7

                 

5

f

D.b.

 

mp

  Vlc.

7

mp

p

 Bari. Sax.              mp

 

p

9

85

           

                    

    

        

5

 

p.n.

s.p.

mf

Accord.

     

p.n.     5       D.b.  

Cb. Cl.

5

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Vlc.

 

    

6

f

DF 16129

sfz

           p.n.

mf

5


26

         Bari. Sax.       

9

86

f

9 7

   Cb. Cl.              10      

Vlc.

mp

    

               7

D.b.

6

mp

87

 Bari. Sax.  

           mf

Accord.

6

p.n.

 

f

s.p.

3    

   

p.n.

sfz

 

f

    

msp

mf

ff

s.p.

mf

  

9

   

    

 

7

      9

         mf

9

         

             

s.p.

3

sfz

       5

p.n.

f

 msp p.n.        ff

DF 16129

f

3

f

6



       

  

3

f

      



sfz

      

            

3           p.n.   s.p.              Vlc.        3

 D.b.  

  

9

               

f

f

9

9

mf

      





     

B.Sh.



 

            9

   

9

mf

Cb. Cl.

  

               

9

                        

f

       

  

      

9

lle rtie ts pa cerp me ex mê as ite ven erd e int den  pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

5

   

7                         7

f

    6

  6

 

 

 

        s.p.


27 88    Bari. Sax.    f

Cb. Cl.

 

 

f

                        f   

     

 

 

    f 7     

 f

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

   10

7

                 f

7

9

 

    

7                                            p.n. msp s.p. msp             3               Vlc.     5  7

 

  D.b.  

p.n.

 89

 Bari. Sax. 

9

          9

Cb. Cl.

6

   

ff

f

f

 

 

                

Accord.

Vlc.

 

p.n.

 . .      

ricochets a 3

f

  ..

  

         

7

sffz

msp

9

        

     

9



   7

ff

      DF 16129

        ff

9

        

9

f

D.b.

f

             

 

 

ff

 

 f

3

     ff

7

              

  s.p.

  



ff

f

3





  

  

3



p.n.

  msp

ff

sfz



 

   

     

6

9

                

  

      

           

9

f

  3

  

 


28 9 9                                     9 f

90

 Bari. Sax. 

Cb. Cl.

ff

f

        



9

             

      

ff

Accord.

  

sffz

D.b.

ff

  

    

ff

 



p.n.

f

ff

msp

 

ff

Cb. Cl.

       

Accord.

 f

    Vlc.

 

       ff

ff

 

ff

 

 

msp

f

ff



 

p.n.

msp

f

ff

9

          

  

9

     9

   

   

9

   

10

 

     

 

7

7 ff  (msp) s.p.            D.b.  

 

  

DF 16129

     9

          

p.n.        

 3

7

 p.n.

     

7



ff

ff

s.p.

ff



 

  

      

ff

 

 msp p.n.      

3

f





    

 

msp

ff



        

5

   

  



ff

9

 

6

p.n.

msp

f

 9               

91

6

       

  

 Bari. Sax.  





f

  





 p.n. p.n. msp 9                ff

ff

   . .

 Vlc.

9

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

 . .   

   

 7


29

5

92

 Bari. Sax.  

          

              9

Cb. Cl.

5

 

          

    

   

Accord.





6

      Vlc.  

D.b.



 



6

      7

         

 

  

6

   



 

    



  

p.n.

msp

 

  

 

msp

 

8

  

  

 

   

 

3

   

msp

  



  

 

msp

 

—B

93

 Bari. Sax. 



     



mf

 

Accord.

  

ff

f

p.n.



  Vlc.

pp



ff

 IV      

  

     —   

  

pp

   

 

f

p





mp

   



msp

p

R

msp



 3    D.b.  p.n.

 

C

pp

 

  

     

mf



mf

 Cb. Cl.



mp



 DF 16129



msp p.n.

p.n.



6  



6

        

       



9

9

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

    

       

10                    

    

10

9

9

9

    

   

       

   5

   A p

 p


30

 96      Bari. Sax.        Cb. Cl.      Accord.

D.b.

p

   

p

  



 

  

 

pp

   



 

 



  

                                         

p

 

crini V.L.P. p.n.

poco s.t. col legno

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Vlc.



 

98

5

5





6

                                       

  

pp

Cb. Cl.

        

crini V.L.P. p.n.

poco s.t. col legno

p

 Bari. Sax. 

3

3

6

3

poco s.t. col legno

pp

5

5

voice



voice



crini

poco s.t. V.L.P.   p.n. col legno msp msp            Vlc.                                6 6 6 crini V.L.P. p.n.

6

 

p

mf

     s.p.

5

mf

mf

crini   V.L.P.  poco s.t. (msp)  p.n.  msp col legno                                                      5 mf 5 5



6

crini V.L.P. p.n.

poco s.t. col legno

D.b.

6



msp

100

mf

p

5

5

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /   Bari. Sax.   

 

 

mf

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

    mf    Accord.           Vlc.       Cb. Cl.

5

    D.b.  

     

    5

 

         s.p.

mf

 

 

     5

       

mf

DF 16129

mf

   mf

   

 

mf

      

5

       


31 101

 Bari. Sax.  

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /



f

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Cb. Cl.

Accord.

  

     

mf

   

f

5

    

 

 

 

5

 

   



  

 

f

f

102

  f

  f

    

    

mp

mp



 

 f    

         9

mp

p.n.

(f)





3

                           Vlc.

    

mp sub

                          p.n.

D.b.

f

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr





   

f

                                        

 Bari. Sax.  

Accord.

  

 

Cb. Cl.

    

mf

  Vlc. 

D.b.



(f)

mp sub

DF 16129

     7


32 bisb 103               Bari. Sax.       f

mf



 [ ] Cb. Cl.       

  

mf

   



    mf

 





3

  



f

5

    

 

(MII)

    Vlc.

 

  

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

9  

    

                    f

D.b.

  



 

7

 104





      Cb. Cl.     9

Accord.

 

 ///////////////////////////////////           mp

     

mf

mp

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

   

mf



       

 

               Vlc.

D.b.

    

f

      Bari. Sax. 

                 

           

       

mf

   

mf

DF 16129

 mf


      

105

 Bari. Sax.  

                         f      

         Vlc.  f

  D.b.  

 



  



   

D.b.



 

  

 







6

   



 

mp

9

        —

C

[ C ]    

mf



  

mp

mf

                              9

9

mp

   

 

 Vlc.

 

                

 

Accord.



              9

Cb. Cl.

f

3

f

Bari. Sax.

  

   

   

106

          9

9

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

   

f

Cb. Cl.   

33

             mf



               

       7

  

 

 

7

  mf

  mf

DF 16129



         

           mf


 107         Bari. Sax.   

34

Cb. Cl.



        

 

      

 





  f

  D.b. 

                   

       7

sfz

     ff

9





 3

3

msp

   

9

9

f

 

 Vlc.

        

6



lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

f

f

  

Accord.

  

   

3

7

 

msp





  

 

7

f

  

   

sfz

 

   

   (msp)     Vlc.

  

f

 (msp)   D.b.  

sfz

    

7

7



 

                           

   

Accord.

 

f

108                Bari. Sax.          

 Cb. Cl.  

7

sfz



 

 

 

7

f

 

3

   7

 

 

B.Sh.

N.B.

 



7



sfz

f

 f

 

           7 

7

sfz

   

 

7

 

sfz

DF 16129

 7

 f

 

f

     

 7


  Bari. Sax.   109

35

 

7

   

     

 Cb. Cl.   

f

  

 p.n.

7

         

mf

mp



 

 3  

110

 Bari. Sax.  



f

        

p.n.

5

mf

 

mf

B.Sh.

f

 

 

6

 

3    

s.p.

sfz

p.n. 6

 

       

mp

 s.p. msp 3    p.n.               5

f

sfz

f

[ 4 ] overblowing       A 5    f



  

  

3



10



3

[  ]

[  ]

 f

            

  

   

          

  

   

    



s.p.  3 msp p.n.                       Vlc.          f

7

  6           





 [ ]

mp

    

mp

  



f

  D.b.  



     

s.p.

msp

p.n.           D.b.  

Accord.

mp

mf

f



mf





   

     

        Vlc.

Cb. Cl.





lle rtie ts  pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

9

 

Accord.

 

  

6    

 

sfz

 

f

DF 16129

f

 msp       mf

p.n.                    mf

B.Sh.

f

 

ff

3

    f


36

9 [ 4 ]                        7

111

Bari. Sax.

  

f

 [  ] Cb. Cl.





 

mf







 Vlc.

10

   

3    

p.n.

   

f

 mf



 

  

 [ ]

 [ ]

 [ ]

3

 

 

ff f

           6

 

6

 

 

f

  

 

    

   

     s.p.

    

      

 

  

  

          

 

        

  

7

7

 

msp

p.n.

f

6

 

mp

f

f

 

  

       3     Vlc. p.n.

3

         

 

f

7

f

msp s.p.

  D.b.  

    

ff

ff

   Bari. Sax.   112

 

            . .  s.p. p.n. p.n. 3           6                           5 sfz f 6  msp p.n.               

sfz

  

       . .

3

   . . 

    

s.p.

f

Accord.

             . . Ric. à 3

  D.b. 



9

ff

mf

f

Cb. Cl.

             

lle rtie ts pa cerp me ex mê as  ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr erty op  Pr

 

7

f

   

Accord.



   f

DF 16129

f

5

 

ff

 ff

      


9

113

 Bari. Sax.            

    

ff

Vlc.

f

 

3



9

f

7

f

ff

 



114

  

  Vlc.

ff



 

7

f

3

 msp   

sfz

   

 

 

 

ff



f

 

s.p.         

msp

  

Accord.



f

ff

  3

   

 

[ 4 ]       A 5    

 Bari. Sax.   

     

        



3

          D.b. 

Cb. Cl.



9 9

   

3



 

            

9

       

           p.n.

     

f



3

37

9

lle  rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

9 9

  Cb. Cl.      

        

  

f



 

 msp      ff

 [ ]

  



p.n.

p.n.

9

             

f

 D.b.    

 

ff f

DF 16129







3

msp



ff

    

msp

ff f

p.n.

  f

ff

   

  



3

msp p.n.

 



[ ]

 

    

  

 [ ]

ff

p.n.



f



 

msp

ff



 

msp

ff


38 9

115

  Bari. Sax.         

        



        

  

(f)

Vlc.

mf

 

 

  

 

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

 

p.n.

  

ff

mf

p.n.

 

9



      

    

sim.

ff

f

ff

f

   

   

           

Accord.

    

  Vlc.

D.b.

  

ff

    f

   ff

     

f

ff

 

  

 

      

 

     

     f

9

     



  

9

        

    

  

    

ff

f

9

9

ff

f

sim.

ff

   

3

     

ff

  Cb. Cl.  

  

  

    

ff

mf

  

     

  D.b.      

116

 

3

 

 Bari. Sax. 

9         

3



  

9

      

    

9

        

9

9

[ ]



         

9

(f)

Cb. Cl.

9

     ff

DF 16129



msp

 



msp

 

  

   

    



 

msp

p.n.

 

9

3



 

msp

p.n.

3

p.n.

    

p.n.

 

  



msp

  



msp

  




117

 Bari. Sax. 

Cb. Cl.



son fendu

 

D.b.



3

   

sim.

p.n.

mf p.n.

       

118

ff

9

      ff

9

9

 

          

9

Accord.

 



 3

  Vlc.  

  

  

  



  

msp

      

msp

ff

 D.b.  

 



f

    

f

ff

               

   

 

  

    



 

 

msp

3



 

msp

p.n.

3

ff

DF 16129

ff

f

fff

9

p.n.

ff

f

       9

 



3

9

fff

      

3

p.n.

  

  

p.n.

3



  fff

ff

3

9

     

ff

        

6

    

   

  

              

    

  

9

 



f sim.

ff

  

ff

    

mf

Cb. Cl.

          

f

  Bari. Sax.  

  

f

9

 

mf

    

 Vlc.



lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

f

[ ]

    

Accord.

mf



39 [ 4 ]  

 

msp

 



   

msp

 

 

 fff

fff


40 119

 Bari. Sax. 

Cb. Cl.



(q = 60) 

    

    

mp sub

 mp sub

 Vlc.



Take Bass Clarinet

III

  

 

 

    

     IV

        



p



—B

 Sop. Sax. 





124

Take Soprano Saxophone

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

D.b.

  

    

p



Double tonguing as fast as possible

 

p

       mp

    —    



R

Bass Cl.



 

 

mp

   

   

Accord.

ppp

mp

    Vlc.

[  ] M

mp

D.b.



 

  ] M

[

mp

mf

vibrato

 

p

       mf   [F#]  — bisb       

  non vib.

  

mp

  

(non Multiphonic)

p sub Multiphonic) (non  

  

DF 16129

     

 

[ ] M



mf

 

p sub

 

   



 ] M

[

mf


41

[C ]  ] 129   [C                Sop. Sax.         p bisb [ 5 ]      [bb]               /0     Bass Cl.           3

3

p

 

Vlc.



 p



 

[ ]

 

pp

D.b.



 —  132       Sop. Sax. 

C1 B

 

mp

  

  

mp

     



p

    

Accord.

    

mp

 Vlc.      D.b.  

 

p

 

 III II    





    

 —        

Tc

    



 

   

(p)

 

 

(p)

 

—B

[b§ ]           

 



 



  Bass Cl.            (dolce)

  

   

 

p sub

   





 ]

  

p sub [

  

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

molto vibrato      

  

mf

O bbb§ R (dolce)  





mp

mf

 

      mf

  

III

[ ] M

mp

mf



   mf

DF 16129



      




   135     Sop. Sax.        

42

           p

          C1

C1

—B

 

C

          

C

C

mp

 

 

     

p

 

 

 

 [ ] Vlc. 

(M)

p sub

D.b.   

I

mf





lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.



[ ]

mf    mp              

p

    

   

  



mp

mf

        

Bass Cl.

[Tc ]    

C2 C1



 

[ ]



M

[ ]

mf

BOF



p

M II   



*

mf

pp

 

II

 

mp sub

 mp sub

*= BOF Multiphonic on II. Harmonic on I

[C ] [C ] [C ] [C ]   [ ]             []            [ ]           [ ] [ ] [] 5

138

Sop. Sax.

 

5

3

p

pp

p

pp

p

    —      R

Bass Cl.

Accord.



    



p

 

 I     Vlc.  p

 D.b.    I

  II



p

DF 16129

6

    —     R

pp


43 [Ta] [Ta] [C ] [C ] [C ] [Ta] 139          [   ]                 [  ]       S  T S T [  ]    [ ]    Sop. Sax.  3

5

p

Bass Cl.



pp

5

p

pp

    —    R

  

p

pp

 

      Vlc.  (II)

D.b.



  

msp

 140

  Sop. Sax.        —     Bass Cl.    R

Vlc.

     

  D.b.   

  

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

(II)

msp

  [  ]              6

6

p [ 8]

[  ]

  

 















  —       B

142

mp (B.cl)

 Bass Cl.    

mp

Accord.

     

 Vlc.

 p

D.b.

    p



p

pp

  

p



col legno p.n.

  

poco s.t. mf

pp

poco s.t.





mf

p

pp







p

 

 [ ]           [ R ] 5     

5

 

pp



mp

 crini IV s.p.

   

mp



C

col legno p.n.

       

 







p

p





C

    



   —    

p

3

8

 Sop. Sax.  

]



C

6

[

      —B

       

6

[ 8 ]

  

 III 

 



 

p



crini s.p.

 

p

DF 16129

  


     145   Sop. Sax.   

44

Tc

  

C

3

  Bass Cl.   

 Vlc. 

 

             7

pp

  

(underblown)



  

3

 



C

6

p

 



         [ ]      6

 

 

  

 

Bow vibrato     

Bow      



pp

Bow vibrato        D.b.   

 Sop. Sax.  

mp

mp

Bow      



pp

[C [C ] ]          3

147

mp

 

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

       

—B

p

  

Accord.

Tc

6

3

C] [         3

      

  [bb]                  [  ]  3 3 3 3                    Bass Cl.       6 6 mp [ 1 ] 

 

Accord.

mf

 

Vlc.

 

S.B.

 

mp

D.b.







p m

mf

mf

   d

 

p

mf

p

  

mp

 

  

p

mp

p

DF 16129

mp

     

  

mp

  







 


[C ]    149      Sop. Sax.      

           

3

mf

7

p

45 [C ]                   5

       mf

  O R  —                    Bass Cl.  

3

7

6

p

mp

R

b§ bb

3

mf

Vlc.

 

  p

D.b.

mf

           pp mf  mp pp       

p

mp

p



mp

  

p.n.

Bow



p

  —   

   

 4  p.n.         

mf

3

 

6

[ T ]

 4*      

mp

  

 

3

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

3

p

   [ ]     

p

mp

3

mf

  Bow



mp

p

mp

*= Glissando and trill. Trill alternates normal stopped note and perfect fourth artificial harmonic.

8

[C ]          

E C

151

  [  ]            

 

 

 

 Sop. Sax.     3  —  dolce   Bass Cl.   

5

mp

 

Accord.

Vlc.

D.b.

3

p

p

 

mp







  

 

p

 



mp

p



  

s.p.





 



6

[ T ]

mp

mp

 4     

mp

  mp

DF 16129

3

  

 s.p.



    []    



pp

    



  

mp

mp


46

  153      Sop. Sax.           p

mf

 Bass Cl.        

  

[ 5 ] 

   

p

      pp   7   

      Vlc.  

p.n. D.b.



155

     

[ bb] 3     



3





pp

  



s.p.

ord.        p mf p sub M    [ ]  mf

 Sop. Sax. 

p sub

p

 

7

p.n.

p

[Tc]   [  ]  

5

         

mf

 

d

5

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

mf

C] [C ] [     5                 5 A 5 A S T A

[C ] [C ]    S  T        S  T     5

  5

p sub

5

[Ta]      [  ]  

 

O bbb§ R         

Bass Cl.

 

   

Accord.

3



 

p





M

  Vlc. 

D.b.



   p  m d  

 









M

[ ]

DF 16129


47 [ [C ] C] [Ta] [C ]    156                []  []       Sop. Sax.     3

3

5

5

mp

 

Bass Cl.

   

3

   

[b§ [ b§] ] [bb ]        [ ]                                    6 6 [ 1 ] [T ] mp p mf mp mf

mp

 

  Vlc. 

pp

mp

       

   

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

 

M



mp

III

 

p

3

 BOF

M

II

 

p

BOF

D.b.







M

[ ]

 [C ]   158      Sop. Sax.   3

f

O b§bb R      Bass Cl.    f

Accord.





mp

p

 

 Vlc.  

  (I harmonic)

mp

C] [        

     

B.Sh.





       — — —                

   —    

simile

II

3

                             f

M

ff

 ff

      d   m

ff





f poss.

D.b.



 

simile

f poss.

DF 16129


       

   

C2 C1

48 160

 Sop. Sax. 

      

C

C

 

  

  

mp sub

 

   smorzato   Bass Cl.    p sub

 mp

Tc

   

  

   —      



      

      

E

G

p

mp

B.Sh.



 mp         s.t. Bow

—B



lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

 

Accord.

         

C1

p

 mp

     mp

    D.b.    mp

Vlc.

s.t. Bow

    Sop. Sax.       162

  Bass Cl.    p

  

Accord.

  pp

       

      

               

            

  

  

mp

p

 

 



7 7 d

mp



pp

BOF

II    M

 III  Vlc.   p

 

mp

    

              C1 B

   mp

     

mp

 

simile

p

mp





simile

mp

p

mp

BOF

 III  D.b.   p

M

II

DF 16129



    

pp


164

          —B

  Sop. Sax. 

tenuto

p

Bass Cl.



 

Accord.

p

p

mp

p

mp

p



 

pp

mp

  



 

         

      

       

 

ten.

III

D.b.

 

  —     p



IV

 

  

C1

—B C

    *

(10'' at least)

p

p

  

(follow saxophone)

 

(-R)

*= Very unestable multiphonic. Try to play simultaneously both pitches, but it is assumed that some alternances between them will occur. Minimun duration 10'', that could be increased if it is necessary to achieve stability in the multiphonic or because the acoustics of the hall. Saxophonist will give a cue for starting nex bar. (follow saxophone)

  

mp

 

pp

 

  



  III 



 

mp

Vlc.

 

pp

mp

pp

Accord.

pp

IV

R



 

pp

166

Bass Cl.

  

 



Sop. Sax.





ten.

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

 

  Vlc.  

D.b.

      

      

 

49



 



  DF 16129

(follow saxophone)

(follow saxophone)


50 168

 Bari. Sax. 

Bass Cl.



Take Baritone Saxophone Bari. Sax.

Take Contrabass Clarinet

coll legno poco s.t.

6

Vlc.

6

6

6

6

6

crini p.n. flaut

s.p. sempre flaut

                                                                     pp

p

crini p.n. flaut

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

coll legno poco s.t.

s.p. sempre flaut

                                  7          D.b.  5

5

pp

   Vlc.  

5

7



flaut

                

             

 sfz

p

p

              

   D.b.  

flaut 7

sfz

 171

5



flaut

sfz

 Bari. Sax. 

5

p

 170

5



7

          

flaut 7

sfz

7

p

p

Cb. Cl.

 

Accord.

  

 sfz

p



B.B.

p

 

flaut                            Vlc.    

sfz

  D.b.  

 sfz

p

p

7



7

DF 16129

sfz

sfz p



flaut

sfz

p

             

flaut

flaut

flaut

     



         7



sfz

mp

   

flaut 7

mp


51 172

 Bari. Sax. 



 

sfz Cb. Cl.

sfz

p

 

  p

Accord.

sfz



flaut

mp

               7 7  

173

mp

 Cb. Cl.    sfz

  

Accord.

mp

(secco)

 

 sffz

mp

 

sffz

sfz

7

7

mp

 

 sffz

sfz

 



mp

  / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 

mp

flaut

f

     

          

mp

flaut

         

 sfz

sfz

  Bari. Sax. 

sfz

flaut

flaut

                 

   D.b.    

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

(secco)

p



mp

 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

bend

 

 Vlc.



sfz

 



 

 

sffz / / / / / / / / / / / / / / / / /

mf

 

(s.p.) ord

                     Vlc.      sffz

 D.b.        

7



 

sffz

mp

(s.p.) ord 7

   mp

sffz

ord

          mp

             7

DF 16129

sffz

ord

7

     mp


52 174

 Bari. Sax. 

 

sffz

mp

Cb. Cl.



 

sffz

mp



 Vlc.

D.b.

sffz

 

ord

                

 sffz

mp

ord

    

      7

mp

 175

Cb. Cl.

mp





sffz

 Bari. Sax. 

 sffz

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

sffz

sffz



lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr



 sffz

 sffz



  





 

mp

Accord.

 sffz

 

 sffz

 

sffz

 

             

mp

          f

 

6

ord

 

 sffz

 

sffz

 

ord

7

7

          

mp



 sffz



mp



sffz



  

sffz

 

 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Accord.

 

 Vlc.

 

ord

                      sffz

sffz

 sffz

mp

7        D.b.  

ord

mp

   

 

6

    DF 16129

    

p.n. ord

 

 

sffz

6

   

   

mp

       7        6



ord

sffz mp


53 176

 Bari. Sax.    Cb. Cl.

 

sffz

 

sffz

 

sffz

s.p.

6

177

 

sffz



 sffz

 

sfz



mp

s.p.



sffz

 

 

mp

 

 sffz

 

 

   

  

 

sffz

(s.p.) ord

sffz

7

sffz

mp



s.p.

         

 

7

mp

sffz

ord

p.n.



mp

 

 

f

 

 



 

 

7

   



f

sffz

sffz

sffz

mp

 

sffz



sffz

mp



/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /



  

  

p.n.

(L.V.) f

 

mp

6

         

s.p.

                    7 7 p.n.

D.b.

sffz

 

mp

       

  D.b.  

p.n.

 Vlc.



f



Accord.

sffz



         Vlc.

Cb. Cl.

 

 sffz



/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

  

 Bari. Sax. 

sffz

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

sffz

   

f

DF 16129

sffz

7

 

sffz



s.p.



     

sffz mp p.n.

  

mp

 

     

6

mf


[Tc]    178 A   5   Bari. Sax.     54

mp

Cb. Cl.



 

mf



 



sffz

sffz

mp

 



 sffz

5

  

sffz

mf

  f

 

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

mf

 

                                                         6   6

      Vlc.

6

mf

D.b.

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

 

sffz

mf

  

  

s.p.

mf

  

sffz

mf

Cb. Cl.

  

5

 

 

  

 

5

  

  

6





sffz

 



sffz

5

     mf

Vlc.



   

    p.n.



mf

[C ]   



 sffz

sffz

5

    

f

mf

mp

f

f

 



 sffz

f

   mp

  / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /  

Accord.

 

3

179

Bari. Sax.

 

   

f / / / / / / / / / / / / / / / / /

  (III) 6                    

s.p.

p.n.

mf

f

              D.b.  f

6

 

 

mp

 

mp

DF 16129

6

mp s.p.

      

6

                          

5

 

       

5

      f


55 180

 Bari. Sax.   

 



    mf

  

  Vlc. 

sffz

 D.b.  

3

f



mp

mf

s.p.

           

mf

sffz



mp

 5

mp

  Vlc. 

p.n.

mp

  

s.p.

 sffz

sffz

   



s.p.

     



3

sffz

sffz

mp

6



5

f 3







       

sffz

mf

f

       

  

p.n.

6

f

mf

      —   

mf

                     7

6

 

 



[Tc]      

 

3

    

 

f

  





mf

3





 

 

                             



 

s.p.

6

f

s.p.

 5

 

 

  

mp

DF 16129

6

 

 





   D.b.    mp





3

f

f

  

mp

mf

181

Accord.

f

mf





         

      

5   Bari. Sax.       

  

 

p.n.

p.n.

 

mf 5           5

f

   





p.n.





  

sffz

Cb. Cl.

mf

3

      

   

f

5

5

lle rtie ts pa cerp   me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.





      mf

   

3

sffz 5

f

 

mf

5

 

 

sffz

mf

Cb. Cl.

5

5

     

f



  

   

 

 

6

   





  5

   

 

  

f

 

f


       

56

[C ]    

C

182

 Bari. Sax. 

Cb. Cl.



 

[ ]

  

mf

    

 



sffz



f

 

 

 Vlc.



sffz

   



sffz

sffz

  

3

sffz

sffz

fff

    

      

 3   





 

  





sffz

  

sffz

  

sffz

sffz

               f f simile                 

     





f





sffz



sffz 3

   

   sffz

sffz

  



Accord.

ff

simile

 Bari. Sax.  Cb. Cl.

sffz

sffz

 183

  

(s.p.)

sffz

              





   





 D.b.  

sffz

3

      

ff



   



 Vlc.



(s.p.)

mf

    

  



lle rtie ts pa cerp me ex mê as  ite ven  erd e int den pie bid co for oto on Ph cti --- du nd pro  ura --re s D d - ion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

f

ff

 [ ]

sffz

           

 

p.n.

                               

ff

D.b.

p.n.                                        ff

DF 16129


57 184

7 7         Bari. Sax.                 f

  Cb. Cl.   f

          6

 Vlc.

       

     simile           

3

f

3

f



 

ff f





3





mf

 

 

s.p.

                                f

p.n.

mf

         s.p.

6

f

                  

mf

D.b.

f

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

9

mf

Accord.

 

simile              

7

mf

ff

         7

mf

f

                          

p.n.

ff

ff

   7 185 7                       Bari. Sax.                   f                   3

Cb. Cl.

 

Accord.

 

Vlc.

9

mp

9

              

mf

f



mp

 

                                 msp

f

mf

mp

f

  msp msp                                   D.b.  mf

7

f

DF 16129

7

mp

7

f


58

[C ]    3

voice right after attack-mf-

186

 Bari. Sax.     

 

ff/mf

voice right after attack-mf-

Cb. Cl.

       ff/mf

          

 

ff

    

   

mf

f

                             

p.n. D.b.

ff

tremolo as fast as possible 187

Bari. Sax.

 

    

ff

 

      

3              

tremolo as fast as possible Cb. Cl.



3

ff

Accord.



  

ff

  

  

       



          

         

      

6

          

 

6

mp

6

mp

9                

mp

ff

mp

ff

p

              

   

mp



sffz

      D.b.  

7

 

mp

sffz

DF 16129



     

sffz

p



   

p sub

mp

 

6   msp                                 





     Vlc.  



 

   

      

  



                   Vlc.   ff p.n.

            

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.



sffz

mf

p

6

sffz

mf

p

6

6

6    msp                       6


59 189

  Bari. Sax.  

5

    

 

mf

Cb. Cl.

5

  

mf

  

Ricochet ff

      . . 



     

f

*

5

       f   

  mf

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

   

 

 

Accord.

f

mf

f

mf

*= Sustaine the buttons, getting a cluster.

                               Vlc.           p.n.

6

f

6

190

5   Bari. Sax.       

Cb. Cl.   

f

     

mf

      mf

f

   

     

mf

f

 

           Vlc. 7

  D.b. 

    

(s.p.)

3

ff

5

    

         (s.p.)       3

      f

5

    

ff

f

ff

ff

5

      

f

  

5

 

     

ff

        7

7

sffz

           p.n.

6

DF 16129

       

f

f

7

5

    

f

5

ff

     7

     

f

mf

5

 



5

f

f

  Accord.

5

5

7

7

6

7

6 s.p.                              D.b.        f

p.n.

mf

     

s.p.

ff

 

 

f

    

 6

f


60

9

191

 Bari. Sax. 

    

f

Cb. Cl.



5

    

ff

f 5

    

f

  

9

5

              

        f



5

 



7

  D.b.  

9

ff

  ff

(loco) B.Sh.



                   ff f ff f ff       

 

  ff

       

6

f

5

    

Cb. Cl.



  

Accord.



f

     

       

ff

arpeggiato **

6

ff

             

  



        

  

 [ ]

 

Ricochet

f



   ff

 

   Vlc.    

   

 D.b.     

 

    6     s.p.

  6             

(ff) s.p.                   (ff)

DF 16129



[  ] (son fendu)

 . .  

   

**: arpeggiato= III-II-I-I-II-III

[ 2]     A 5  

f

9

B.Sh.

    

9

9

  

   

arpeggiato *

9

        

  

        

6

*: arpeggiato= IV-III-II-I-I-II-III-IV

192      Bari. Sax. 

     

ff

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

 Vlc.

5

f

            

ff

ff

  Accord.

9

5


61

   Bari. Sax.   193





[  ]

Cb. Cl.





[ ]



9

[ ]



3

 

     

              Vlc.  

 194

Cb. Cl.



         9

      9

 

Accord.

       p.n.

B.Sh.

           

    





sffz

9

            

   



9

  

         

   

  

sffz

s.p.

   



 

sffz

    

p.n.

  



s.p.



sffz

DF 16129

    

 





sffz

(s.p.)

p.n.



sffz

s.p.

        

     

  

  

9

          



s.p.

    

       

   

   

p.n.

9



   



9

  

      



  

9



     Vlc.     D.b.

                                      

 Bari. Sax. 

  

B.Sh.

sffz

6

D.b.

            

   

ff

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

3

(ff)

9



                  

Accord.

                

ff





[ ]

9

9

sffz

   

(s.p.)

  


62 195

Bari. Sax.

  

 

 

sffz

Cb. Cl.



sffz

 

  

sffz

sffz

Accord.

Vlc.



f

 

sffz









f

D.b.

 



        

sffz

        

[ 2] 



f





[  ]

  

      

        

[  ]





[  ]



f

vibrato              mf

9



[  ]

3

        

9

(ff)

 

9

s.p.

ff

Vlc.

9



mf

ff

ff

ff

mf

(ff)



196



  vibrato        

sffz

s.p.





[  ]

s.p.



 Bari. Sax.  

Accord.



[  ]

 







mf

[  ]

f sub

sffz

Cb. Cl.

3

sffz

D.b.

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

 

[ 2 ] (come prima) 

ff

  

3

(ff)

       

9

       9

DF 16129

 


197

Bari. Sax.

Cb. Cl.

  

D.b.





 

3

mf

         

ff

9

9

198

 Bari. Sax.  

9

 Cb. Cl.   

mf

 3

  

p.n.

f

                                

[ ][][ [] ]  mf

f

fff

6

[  ]

[  ]

        

3

E

5

6

6

   —           [  ]       [ T ] R

6

6

mf

mf



 

  





mp

 mp

DF 16129

mp

mp

   



  

9

(q..)

D.b.

p.n.

fff

         

3

Vlc.

        

[C ]

mf

sffz

Accord.

     

 

 Vlc. 

mf

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.



ff poss.

  

63

  


  

64

 200   Bari. Sax.  

Cb. Cl.

    —        



G

mp

 [  ]  





   

mf

 

    



[  ]

(son fendu)

(only fundamental)

 

mf

  

Vlc.

D.b.

 mp     

 mf



   



 

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Accord.

 









mf



mf

C ] [        5 A  Bari. Sax.       3

202

p

Cb. Cl.

 

Accord.

 



p

mp

      

mp

 

 Vlc.

D.b.

p

mp

5

p

 



   [ ]      

mp

 

Put wedge in between strings I-II-III

Put wedge in between strings II-III-IV

DF 16129

p

6

6

p


   Bari. Sax.    



[C ]   

3

204

Cb. Cl.

65

[C ]    



p

3

mp

      

     

(slow trill)





mp

p

Accord.

207

  Cb. Cl.  



 

Accord.

Vlc.

D.b.

 

/ / / / / / / / / / / / / / / / / /



 

  



 



/ / / / / / / / / / / / / / / / / /

 







mf

   



 



mf

p

  p

6

mp





 

 

mp

mf

mp

p



 

 

mp

mf

mp

p

DF 16129

 

         

pp

mf

mf

p



mf

 

 



mf

 

 Cb. Cl.



*= beatings disappear and reappear according to the dynamics up to the end of the work

 210



 Bari. Sax.  

/ / / / / / / / / / / / / / / / / / / / / / / / (segue*)

mp

 Vlc.

D.b.

  

 

Accord.

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

pp

6


8

  

—B

66

  Bari. Sax. 

C

214

 

Vlc.

D.b.





 

 

 

 

217

D.b.

mp

  

 

 

 

 

 mp

 

 

     Bari. Sax. 

 mp



D.b.



 

   pp sub

 

 mf

pp sub

 / / / / / / / / /                         





mf

  

C2

6

3

  

// / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

p



mp

mf

  

 

(III) M

 

mf

M

(II)

mf

/ / / / / / / /

/ / / / / / / / / / / / /





        

—G

mp

mp



[ ]

    

 

mp

 

(/ / / / / / segue...)



mp

  

IV

 

 

 Vlc. 

  



  

Accord.

p

 



p

pp

 



6

mf

 

220

Cb. Cl.

mf

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

  Bari. Sax. 

p

p

 —  // / / / / / / / / / / / / / / / / / / / / / / / / / / /         

C

Vlc.

6

 

 

C3

mp

mf

A

Accord.

      

 

8

C3

mp

Cb. Cl.

3

C

6



A

5

[  ]

p

Cb. Cl.

  — [C ] [C ]      [ ]         []     

[Ta]





  

[  ] M

I

 

] M

[

   mp

DF 16129

f

mp

 

 ]

M

[



] M

[

[

II

 ] f

 

flaut

mp


223     Bari. Sax.  

   

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / /

f

3

3

      “f” 

  

f

     

Accord.

     

5

k

t

k

t

k

t

5

flatt k

t

k

                 mf

5

    

“f”

B.Sh.



mp

“sfz”

 Bari. Sax.  

 

t k

224

 

mp

5

t

k t

k t

5

flatt

k t k

                     mf 5

         

mp

Vlc.

mp

p

t

 ]  D.b.   

Accord.

         



[

Cb. Cl.

5

f

 

5

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Vlc.

67

“f”

flatt

Cb. Cl.

flatt

t k

5

t

k t

flatt

           

“f”

mf

“f”

5

             

mf

    

5

mf

t k

5

mp 5

flatt

3

5

                         

mf

 

  

mf

D.b.   

mf

 p



mp

B.Sh.

“sfz”

 pp

mp

 

 

mp

mf

DF 16129

pp


   —  225      Bari. Sax.           68

         C

C

6

Cb. Cl.







sotto voce

         

D.b.

mp

 

  



pp

  

 

 

mf



 

 

mp sub

mf

 

 

pp

mp sub

mf

   

   

/ / / / / / / / / / /...



      mp

 

 228    Bari. Sax. 

mf

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Vlc.



/ / / / / / / / / / / // / / / / / / / / / / /

     

pp

p

p

Accord.

C1

—B

C

M

  M

 

/ / / / / / / / / / / // / / / / / / / / / / /

Cb. Cl.

Accord.

     

 

  



 

 

pp



 Vlc.  

 

IV

mp

[  ] M

[

     

mp

      

 



 



    

M

 ]

 

mf

BOF

M

(III) D.b.



BOF

*

M

M

 

*= Multiphonic, fingering A on III string and bowing in between bridge and wedge.

DF 16129

M

 

M

[

 ] 


 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /           231        Bari. Sax.  

69

C2

—B

E

mf

Cb. Cl.   

f

  

 f

Accord.

  



f

 

   M



D.b.





M

mf

 





mp

     C



mp

mp

p



mp

 p



 

p

BOF



M

mp

poco s.t. col legno





mp





mp

BOF

mf



 





  

M

mf

p

BOF

p

  Vlc.  

 

    

(IV)

—C

234

Accord.

 mp

f

 Bari. Sax. 





mf

Cb. Cl.

mp



BOF

D.b.

 



 [] Vlc.   

mf sub

     

lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

/ / / / / / / / / / / / / / / / / /

 



mp

p

M

  

   

mp

DF 16129

  

 

     

   

mp

 


70 237

  Bari. Sax.    Cb. Cl.

Accord.

 



 

p

mp

  mp

  D.b.       p  240

  Bari. Sax.    

Vlc.



D.b.

  

ppp



mp

mp

mp

       

 



ppp

 

  





mp



Cb. Cl.

 



lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Vlc.



   

p

mp

 

 p

  

pp

crini

      

    

 

 p    

pp

     Duración: 16' 07''

Madrid, París, Colonia, Madrid 8 de Julio de 2003

DF 16129


lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr


lle rtie ts pa cerp me ex mê as ite ven erd e int den pie bid co for oto on Ph cti --- du nd pro ura --re sD dion ran dit Du s E ns de ditio té rié of E op Pr perty o Pr

Profile for Durand Salabert Eschig

Alberto Posadas - Tratado en lo inasible  

Partition disponible en lecture auprès des Editions Durand Salabert Eschig Score available on perusal from Editions Durand Salabert Eschig

Alberto Posadas - Tratado en lo inasible  

Partition disponible en lecture auprès des Editions Durand Salabert Eschig Score available on perusal from Editions Durand Salabert Eschig

Advertisement