Issuu on Google+

FOLKLORE CANONS

IMPORTANT NOTICE The unauthorised copying of the whole or any part of this score is illegal

Suite for wind quintet

I Blagoj Canev

Largo q = 50

    

Flute

 



  

  

   

Clarinet in Bb

Horn in F

    5

Fl.

Oboe

mp

   

Bassoon

 

Cl.

Hn.



 

   









 

  



 

Cl.

Hn.

 

Ob.

Bsn.

9

Fl.

p

Ob.

Bsn.

  

mp

 

mp

 

 

 Copyright©Borjan Canev 2004

  

 


4

  







  

Cl.

Hn.

 

13

Fl.

Ob.

Bsn.

 

 

   

  



p

Cl.

Hn.

Bsn.

mp

17

Ob.



p

 Fl.

mp







 



 

 







  

 



 



    21

Fl.

Ob.

 





Hn.

 

 

Cl.

Bsn.

  

 

mf





 mf




5

Fl.

25   

Ob.

  



mf

Cl.

Hn.

Bsn.

mf

    





Fl.

Ob.

  



Cl.

Hn.



Bsn.

Ob.

  

  

f

Cl.

Hn.

Bsn.

33

  

  









f

 















 



 

f

     





f

 

 





  

 Fl.

 



 29   



 





 

 



 


6

 

   37

Fl.

Ob.









Cl.

Hn.

 

Bsn.

 



 

41   

mf

Ob.

mf



mf

 

 

Hn.

Bsn.

   

Cl.



mf

 Fl.

 



   







 





 

mf





 Fl.

45    

  

Ob.

 

Cl.



Hn.

 

Bsn.

 

 mp

 

 

 



 

 

 

 





mp

mp


7

   

  



49

Fl.

Ob.

mp

Cl.

Hn.

Bsn.







mp

 

  

   

  

 

 

  



 53

Fl.

Ob.

Cl.



Hn.

 

  

Bsn.



p

 



p



 

p

57

Fl.

Ob.

Cl.

Hn.

Bsn.

   

     

 

p

    



pp

pp



pp

pp

pp

         

 

 


II

8

   

  

Cl.

 

Hn.

 

Bsn.

    

Fl.

Ob.

pp











  

 

Hn.



 p



   

   9



Cl.

Hn.



mp

 











    

   

Ob.



p

Bsn.

  



Cl.

Fl.





Ob.

Bsn.



   5

Fl.

Presto h=92



 



 

  mp    mp







  





 













    

 





 







  

 

 

 











   







 

 


Fl.

13         

mf

Ob.

Cl.

Hn.

Bsn.

     



  

 





  

 

mf

mf

Fl.

mf

Ob.

Cl.

Hn.



f

Bsn.

3

3

        

Hn.

 

3











 





  

3

3

   



 





 

3

      

     

3

3

3

3

  



3

      





 

 

3

3 3

3

 

3

      

 3

3

     

             cresc.



3

                  3

cresc.

3

3

                   cresc.  

 

3



3                        

       3

  

3

3

3



f

         

   

Cl.

Bsn.



     

3

f



     

        

21

Ob.

3



  

  



  

f

 Fl.

 

    







f

  



3

  





  

  

3

 17    



      





9

3

3

3

  cresc.

cresc.

3




10

   26

Fl.

sub p

sub p

Cl.

 

    30

3

3

3

3

3

3

sub p

sub p

   3

mp

Cl.



Hn.

 

  

3

mp

mp

   34

  

3

3

Cl.



Hn.

 

3

mf

  

mf

mf

mf

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

 3

3

3

3

3

3

            mf

3

3

3

3

           3

3

3

3

3

3

3

                             

Ob.

3

3

 3

3

3

            3

3

mp

mp

3

3

           3

3

3

 3

3

3

3

3

3

 3       3                 

Ob.

Bsn.

3

            

sub p

3

Fl.

3

3

 

Hn.

Bsn.

3

                            

Ob.

Fl.

3

3

Bsn.

            

 

3

3


11

Fl.

38      

Ob.

Cl.



Hn.

 Fl.

Ob.

Cl.

Hn.

Bsn.

 Fl.

 

Hn.

3

3

3

3

3

f



 f



3

3

3

3

   

3

3

3

3

 

3

 

3

3

3

            

3

3

   

3

3

3

3

3

3

3

3

 

 

 

      

3

3

3

3

3

3

3

mf 3

3

3

   

mf

3

3

3

3

3

            

3

3

3

                          

mf3

46                               3

3

3

3

3

 

                           3

3

f 3

3

3

3

  42                 3

3

3

3

f

3

                   

mf

Bsn.

3

3

  

3

Cl.

3

f

mf

Ob.

f

3  3                            3

3

Bsn.

                     

3

3

 

 

 


12

Fl.

50                               3

3

mp

    

Ob.

Cl.

 

Cl.

Hn.

Bsn.

Ob.

mp3

3

3

3

3

            

3

3

3

mp

3

3

3

3

3

mp

 

3

3

       

3

3

3

3

3

3

3

3

3

3

p



p

   

3

 

p

3

p

 





  

 





Hn.

 

   



  



3



  



3

            

                         3

 3

3

 3

3

3

3

3

3

3

3

Cl.

Bsn.

3

54                            

58

Fl.

3

                          

p

Ob.

3

mp

 Fl.

3

 3

 

Hn.

Bsn.

3






   62

Fl.

Ob.

  





mp





mp











  

 



 















  

Cl.

Hn.



Bsn.

  

    66

Fl.

Ob.

Cl.

  



Hn.



Bsn.

  



mf







mf









 

Ob.

Cl.

Hn.

Bsn.



 

  

3

3

f













 

   

  

  

3

3

3









  











 

   









   

        







      3







f













 

 









f



   

 

 







 

f

 

  

70       







mf

 Fl.



 



 

13


14

Fl.

Ob.

Cl.

Hn.

Bsn.

74        

      

   78

Ob.

3

mf



 



  









mf

Hn.

Bsn.

3

3

         3

      

   

Hn.

Bsn.

 

 

   

3



3



p

3

3

3



 





 

3

   3   3











   

3

     





 

   



 

   

                         mp 3

3

mp 3

 

3



3

mp

    

  

    

       

        

 

3 3

3

3

3

    3        

mf

     

mp

       

          p

Cl.

 

mp

83

Ob.

   

 Fl.

mf 3

            

3

Cl.

   3  

  mf

     



 

   

 Fl.

3

  

p

        

3

           

       

       

p

  

       

       

3

      

   p

       


   87

Fl.



mf

Cl.

  



f

Cl.



 

Hn.

f

mf

  

       

  

      

       

                                     

f

  

        

 

   

sffz

       

     

       

       



mf

 

f



 

 

       

     

Hn.

     

       

    

Cl.



       

       

       

f

Ob.

Bsn.

                                     

         

95

Fl.

mf

          

Ob.

Bsn.

       

           mf

91

Fl.



 

Hn.

Bsn.

       

         

Ob.

15

  

       

       

                        

  

        

      

 

ff

 

ff

 

    

     ff      ff     

ff

 

       

   

 

 

      

    




III

16 Lento q=56

Fl.

       f

     

Ob.

mf

    

mf

    

mf

Hn.

Bsn.

Ob.

Cl.

Hn.

Bsn.

   

mf

   

 

   

 

   

9

Fl.

f

Ob.

Cl.

Hn.

Bsn.

     

 

   

mf

  

mf

   

mf mf

 

 

  f

 

 

f

 

f

     

  f

     

 

 

 



     5

Fl.

   

Cl.

 

   

  

  

    

 

   

     

    

 f

 f

 f

 f


17

    

   

 

13

Fl.

Ob.

Cl.

Hn.

Bsn.

 

   

Ob.

    

p

mp

Cl.

Hn.

Bsn.

        

 

 

 

 

     

p

p

p

17

Fl.

p

     

 

  

 

 

   

 

 

 



  

 

 Fl.

21     

mf

Ob.

Cl.

Hn.

Bsn.

 

   

 

      



 

 

 

  

 

 

mp

mp

mp


18

    25

Fl.

Ob.

Cl.

Hn.

Bsn.

      

Ob.

Cl.

Hn.

Bsn.

p

   

Ob.

Cl.

     

p

29     

 

Bsn.

 

 

  

   

         

p

 

  

 p

p

p

mf

mf

 

cresc.

mf

mf

 

cresc.

 cresc.

 



cresc.

cresc.

 

 

 

 

 

 

 

p

   

 



p

f

Hn.

33     

   

 Fl.

p

  

  

 Fl.


     37

Fl.

Ob.

Cl.

Bsn.

   





ff

     

ff



Cl.

Hn.

Bsn.

Ob.

Cl.

Hn.

Bsn.



dim.

 

dim.

dim.











dim.

ff

dim.

          

 

   

mf

mf

    

 

   

  

mf

mf

   

 

 



 

   

 

 

   

  

  

  

     45

Fl.

19

A tempo

f

Ob.



41

Fl.

 

   

ff

ff

Hn.



rit.

     

 

  

 

f

f

  f

 

f


20

      49

Fl.

f

Ob.

Cl.

Hn.

Bsn.

     

Ob.

Cl.

Hn.

Bsn.

   

mf

mf

   

mf mf

   

 

   

 

 

   

Ob.

    

p

mp

Cl.

Hn.

Bsn.

        

  

 

 

 

 

     

p

p

57

Fl.

p

     

 

  

 

 

   

 

p

 

     

  

 



     53

Fl.

  

 

   

  

 

 f

 f

 f

 f

 

 

  


21

     61

Fl.

Ob.

Cl.

Hn.

Bsn.

 

   

 

    

 

mf

     65

Fl.

Ob.

Cl.

Hn.

Bsn.

      

  

  

   

 

 

 

mp

 

 

mp

 

 

mp



 

 

 

 

 

   

 

 

 

    

rit.

69

Fl.

Ob.

Cl.

Hn.

Bsn.

   

 

 

    

 

   



   

  

    

         

pp

pp

pp

pp

pp


IV

22 Prestissimo q.=80

Fl.

Ob.

Cl.

Hn.

Bsn.

            f         f     

      p 

p

f

               mf            5

Ob.

 

Hn.

 Fl.

   9         

      

Cl.

 

Hn.

Bsn.



p

          p        

f

         

                 

            

p

                

         

                

          

          

mf

Ob.

f

                                 

                     mf

Bsn.

p

                 

mf

          mf           

Cl.

f

                         p f f                        

 Fl.

     p 

                 

          

                 

                        

         

                 

        

        

                 


Fl.

   13         f

        

Ob.

 

Cl.

 

Hn.

Bsn.



f

 f

  

  

f

f

    17

Fl.

  

     

mf

             

     

                           

            

 

       mf

       

Ob.

       

 

   

                 

Hn.

mf

Bsn.

 Fl.

                     mf

  21      

Cl.

 

Hn.

Bsn.

      

Ob.



  

 

  

 

                    

 

             

               

                     mf

Cl.

23

         

   

      

                                                    

  

                              

        

  

                                   

                                   


24

Fl.

25      

 

Cl.

 

Hn.



p

p

     

     

p

f

   

Cl.

Hn.

Bsn.



Ob.

Cl.

Hn.

Bsn.



    

  

f

           

     

 

     

     

           

             

   

               

3

 

    

      

     ���      

                 

 

                      

           

 

 

            

 

mf

    



     

  

      

             

         

  

    

                         

    

                 

                   

33

Fl.

mf

    

     



mf

   

    

           

    3        

p

               

29

Ob.

     

p

 Fl.

        

Ob.

Bsn.

     

                    



   

                 


       37

Fl.

Cl.

Hn.

 

p

 

p



p

  

p

Ob.

Cl.

 

Hn.

Bsn.



p

                  

     

    

     

    

     

          f        f    41

Fl.

       

Ob.

Bsn.

     

f

p

f

p

         3

     

   

     

   

   



     

                  f

p

f

p

                 

      p 

                 

     

      p 

25

                 

          f      p     

        

 

p

f

                       mf                            45

Fl.

Ob.

Cl.

Hn.

 

mf

          mf            mf

Bsn.

                

                     mf

                

                    

               


26

Fl.

   49         

Cl.

 

Hn.

Bsn.

 Fl.

    

Ob.



             

         

  

        

        

        

f

             

Cl.

 

Hn.

Bsn.



f

 f

  

  

f

f

    57

Fl.

Ob.

Hn.

   

        

        

        

                           

            

 

       

 

   

  

 

  

 

                    

 

             

               

                  mf

        

     

       mf

  

             

                     mf mf

Bsn.

 

        mf

Cl.

  

         

        

        

    53       

Ob.

             

     

         

   

      

                                         


Fl.

  61      

Ob.

Hn.

  

          

  

                 

                 

 

                 

                 



                 

                 

          

Cl.

Bsn.

     

27

              

      

     65

Fl.

Ob.

 

Cl.

 

Hn.

Bsn.



      

p

  

  

  

p

p

p

      

       

f

                 f

  

   

  

   

  

   

  

  

   

  

  

f

f

  

    

f



              


Фолклорени напеви за дувачки квинтет