Page 29

3.7. Consumo, incertidumbre y precios de activos*

89

la informaci´on disponible en t. El individuo maximiza la utilidad esperada, sujeto a la siguiente restricci´on presupuestaria intertemporal: Yt +

Yt+1 Ct+1 = Ct + 1+r 1+r

Usando esta restricci´on y reemplazando Ct+1 en la funci´on de utilidad, tenemos que el individuo maximiza la siguiente expresi´on28 : u(Ct ) +

1 Et u(Yt+1 + (1 + r)(Yt ° Ct )) 1+Ω

(3.24)

La condici´on de primer orden de este problema es: u0 (Ct ) =

1+r Et u0 (Ct+1 ). 1+Ω

(3.25)

Hemos sacado r fuera del valor esperado, ya que es una tasa libre de riesgo. Ahora bien, si suponemos que r = Ω, y al mismo tiempo que la funci´on de utilidad es cuadr´atica, donde u(C) = °(C¯ ° C)2 , se llega a29 : Ct = Et Ct+1 Es decir, el consumo en valor esperado en el per´ıodo 2 es igual al consumo cierto del per´ıodo 1. Dado que el valor esperado ha sido tomando en consideraci´on toda la informaci´on disponible en t, el u ´nico origen de desviaciones ser´an shocks inesperados al consumo, es decir, Ct+1 = Et Ct+1 + ªt+1 , donde el valor esperado en t de ªt+1 es 0. En consecuencia, la condici´on de primer orden implica que: Ct+1 = Ct + ªt+1 (3.26) Es decir, C sigue un camino aleatorio (random walk)30 . La caracter´ıstica importante de este proceso es que todos los shocks al consumo tienen efectos permanentes; es decir, no se deshacen. En otras palabras, si Ct+1 = ±Ct + ªt , con ± < 1 —es decir, si es un proceso autorregresivo de orden 1— un shock tendr´a efectos transitorios. Si el shock es unitario, Ct+1 sube en 1, luego Ct+2 28

Se puede maximizar con restricciones y despu´es despejar para el multiplicador de Lagrange, como se hizo en la secci´ on 3.3.3. El resultado es exactamente el mismo. La condici´ on de primer orden es la misma que en horizonte infinito, pero visto en dos per´ıodos resulta m´ as simple de resolver. 29 ¯ es algo as´ı como consumo de m´ El par´ ametro C axima felicidad (bliss point), y se postula para asegurar que u0 > 0 y u00 < 0. No se puede suponer que la utilidad es u(C) = C 2 , puesto que esta utilidad es convexa (u00 > 0) y, por lo tanto, el individuo no suavizar´ıa consumo. 30

En rigor, este proceso es una martingala, que no es m´ as que un caso m´ as general de camino aleatorio, ya que basta que el error sea no correlacionado serialmente y con media 0, pero no impone restricciones sobre la varianza, que en el caso del camino aleatorio es constante. Aqu´ı sacrificamos un poco de rigor para adaptarnos al uso com´ un de las expresiones y no ocupar mucho tiempo en detalles t´ecnicos.

Macroeconomía Teoría y Políticas parte II  

Macroeconomía Teoría y Políticas parte II

Advertisement