Page 1

Universidad Fermín Toro Faculta de ciencias económicas y sociales Análisis de Problema y Toma de Decisiones

Autor: Diana Arrieta. Barquisimeto 21 de Julio 2012


Introducción Es el proceso durante el cual la persona debe escoger entre dos o más alternativas. Todos y cada uno de nosotros pasamos los días y las horas de nuestra vida teniendo que tomar decisiones. Algunas decisiones tienen una importancia relativa en el desarrollo de nuestra vida, mientras otras son gravitantes en ella. Para los administradores, el proceso de toma de decisión es sin duda una de las mayores responsabilidades. La toma de decisiones en una organización se circunscribe a una serie de personas que están apoyando el mismo proyecto. Debemos empezar por hacer una selección de decisiones, y esta selección es una de las tareas de gran trascendencia. Con frecuencia se dice que las decisiones son algo así como el motor de los negocios y en efecto, de la adecuada selección de alternativas depende en gran parte el éxito de cualquier organización.


Articulo 1:

1. Métodos deterministicos

Los modelos deterministicos, las buenas decisiones se basan en sus buenos resultados. Se consigue lo deseado de manera deterministica, es decir, libre de riesgo. Esto depende de la influencia que puedan tener los factores no controlables, en la determinación de los resultados de una decisión y también en la cantidad de información que el tomador de decisión tiene para controlar dichos factores. Aquellos que manejan y controlan sistemas de hombres y equipos se enfrentan al problema constante de mejorar (por ejemplo, optimizar) el rendimiento del sistema. El problema puede ser reducir el costo de operación y a la vez mantener un nivel aceptable de servicio, utilidades de las operaciones actuales, proporcionar un mayor nivel de servicio sin aumentar los costos, mantener un funcionamiento rentable cumpliendo a la vez con las reglamentaciones gubernamentales establecidas, o mejorar un aspecto de la calidad del producto sin reducir la calidad de otros aspectos

1.1Programación lineal La programación lineal muchas veces es uno de los temas preferidos tanto de profesores como de alumnos. La capacidad de introducir la PL utilizando un abordaje gráfico, la facilidad relativa del método de solución, la gran disponibilidad de paquetes de software de PL y la amplia gama de aplicaciones hacen que la PL


sea accesible incluso para estudiantes con poco conocimiento de matemática. Además, la PL brinda una excelente oportunidad para presentar la idea del análisis what-if o análisis de hipótesis ya que se han desarrollado herramientas poderosas parael análisis de post optimalidad para el modelo de PL. La Programación Lineal (PL) es un procedimiento matemático para determinar la asignación óptima de recursos escasos. La PL es un procedimiento que encuentra su aplicación práctica en casi todas las facetas de los negocios, desde la publicidad hasta la planificación de la producción. Problemas de transporte, distribución, y planificación global de la producción son los objetos más comunes del análisis de PL. La industria petrolera parece serel usuario más frecuente de la PL.

U

Un

gerente

de

procesamiento de datos de una importante empresa petrolera recientemente calculó que del 5% al 10% del tiempo de procesamiento informático de la empresa es destinado al procesamiento de modelos de PL y similares. Cualquier problema de PL consta de una función objetivo y un conjunto de restricciones. En la mayoría de los casos, las restricciones provienen del entorno en el cual usted trabaja para lograr su objetivo.

1.2Método Simplex El Método Simplex es la solución algorítmica inicial para resolver problemas de Programación Lineal (PL). Este es una implementación eficiente para resolver una serie de sistemas de ecuaciones lineales. Mediante el uso de una estrategia


ambiciosa mientras se salta desde un vértice factible hacia el próximo vértice adyacente, el algoritmo termina en una solución óptima.

Articulo 2.

2. Métodos Probabilísticos Modelo probabilístico, es la forma que pueden tomar un conjunto de datos obtenidos de muestreos de datos con comportamiento que se supone aleatorio. Un modelo probabilístico es una representación matemática deducida de un conjunto de supuestos con el doble propósito de estudiar los resultados de un experimento aleatorio y predecir su comportamiento futuro, cuando se realiza bajo las mismas condiciones dadas inicialmente.


El modelo permite conocer la distribución de probabilidades de los valores que toma la variable aleatoria, de ahí que también se mencione con el nombre de Distribución de Probabilidad.

2.1 lógica Bayesiana. La teoría Bayesiana se encarga de estudiar y analizar al consumidor, se observan las características y los atributos que describen el comportamiento del potencial cliente. Consiste en aislar los atributos que la persona en cuestión le asigna al determinado producto, y una vez hecho esto aislarlo, y estudiarlo y analizarlo. Se dejan de lado todos los otros factores, como características del producto, del cliente, etc., y se centra simplemente en este atributo encontrado. La teoría Bayesiana les da la libertad a los investigadores de estudiar la complejidad del comportamiento humano de una forma mucho más realista, de lo que era previamente posible. Aunque ningún método es 100 % exacto ya que la psiquis humana es demasiado compleja como para simplificarla en una teoría. El razonamiento bayesiano proporciona un enfoque probabilístico a la inferencia. Está basado en la suposición de que las cantidad de interés son gobernadas por distribuciones de probabilidad y que se pueden tomar decisiones óptimas razonando sobre estas probabilidades junto con los datos obtenidos. Este enfoque está siendo utilizado en multitud de campos de investigación, de los que cabe destacar la robótica móvil y la visión computacional, ambas relacionadas con el contenido de esta tesis. En este apéndice queremos definir dos de las herramientas utilizadas en el desarrollo de esta tesis: el teorema de Bayes y el principio de longitud de descripción mínima.


2.2 Teoría de Juegos La teoría de juegos es un área de la matemática aplicada que utiliza modelos para estudiar interacciones en estructuras formalizadas de incentivos (los llamados «juegos») y llevar a cabo procesos de decisión. Sus investigadores estudian las estrategias óptimas así como el comportamiento previsto y observado de individuos en juegos. Tipos de interacción aparentemente distintos pueden, en realidad, presentar estructura de incentivo similar y, por lo tanto, se puede representar mil veces conjuntamente un mismo juego. La Teoría de Juegos se desarrollo con el simple hecho de que un individuo se relacione con otro u otros. Hoy en día se enfrenta cotidianamente a esta teoría, en cualquier momento, tenemos por ejemplo cuando nos inscribimos en un nuevo semestre en la universidad, cuando la directiva toma la decisión sobre el monto que se va a cobrar, la directiva está realizando un juego con sus clientes, en este caso los alumnos. Para el hombre la importancia que representa la Teoría de Juegos es evidente, pues a diario se enfrenta a múltiples situaciones que son juegos. Actualmente la Teoría de Juegos se ocupa sobre todo de que ocurre cuando los hombres se relacionan de forma racional, es decir, cuando los individuos se interrelacionan utilizando el raciocinio. Sin embargo, la Teoría de Juegos tiene todas las respuestas a los todos problemas del mundo.


Articulo 3.

3. Métodos Híbridos. Tienen que ver con los métodos deterministicos y probabilisticos como la teoría de inventarios. La metodología híbrida de investigación, es decir, la combinación de métodos cuantitativos y cualitativos en el mismo trabajo, es una aproximación muy utilizada en varios campos, por ejemplo en educación y en sociología. Sin embargo, la atención dedicada a la aplicación y a los beneficios de los métodos híbridos en dirección de empresas es muy baja con relación a otras áreas

3.1 Modelo de trasporte y Localización


El modelo de transporte busca determinar un plan de transporte de una mercancía de varias fuentes a varios destinos. Los datos del modelo son:

1.

Nivel de oferta en cada fuente y la cantidad de demanda en cada destino.

2.

El costo de transporte unitario de la mercancía a cada destino.

Como solo hay una mercancía un destino puede recibir su demanda de una o más fuentes. El objetivo del modelo es el de determinar la cantidad que se enviará de cada fuente a cada destino, tal que se minimice el costo del transporte total. La suposición básica del modelo es que el costo del transporte en una ruta es directamente proporcional al número de unidades transportadas. La definición de “unidad de transporte” variará dependiendo de la “mercancía” que se transporte.

3.2 Técnica de MonteCarlo. Los métodos de Montecarlo abarcan una colección de técnicas que permiten obtener soluciones de problemas matemáticos o físicos por medio de pruebas


aleatorias repetidas. En la práctica, las pruebas aleatorias se sustituyen por resultados de ciertos cálculos realizados con números aleatorios. A lo largo de varias páginas se estudiará el concepto de variable aleatoria y la transformación de una variable aleatoria discreta o continua. El método de montecarlo es muy usado es los lenguajes de programación ya que se usa para hallar la probabilidad de un suceso, el trabajo que les presento explica el Método Monte Carlo , usado en la simulación de la mecánica estadística.

tecnicas e instrumentos para la toma de decisiones  

metodos para tomar decisiones