Page 33

UNIDAD 5 Ejemplo 11 En la actualidad la edad de Elena es el triple de la edad de Roxana. Dentro de 4 años será solo el doble. ¿Qué edad tiene cada una?

Solución: x: edad de Roxana en la actualidad; x + 4 edad dentro de 4 años. 3x: edad de Elena en la actualidad; 3x + 4 edad dentro de 4 años. Como dentro de 4 años la edad de Elena será el doble que la de Roxana. Entonces: la edad de Elena = 2 veces la edad de Roxana. Planteas la ecuación y resuelves: 3x + 4 = 2 (x + 4) 3x + 4 = 2x + 8 3x = 2x + 8 – 4 3x = 2x + 4 3x – 2x = 4 x = 4

La edad de Elena es el triple de la edad de Roxana, es decir: 3(4) = 12

R: Edad de Roxana 4 años. Edad de Elena 12 años.

Actividad Resuelve los siguientes problemas: a) El perímetro de un rectángulo mide 72 cm, si su largo es el

doble de su ancho, encuentra las dimensiones.

b) Encuentra un número que aumentado en 5 equivale a su

triplo disminuido en 13.

3

c) En una sección de octavo grado hay 4 hombres menos que el

doble del número de señoritas. Si se sabe que en esa sección hay 22 hombres; ¿cuántos estudiantes hay en total?

d) Pedro invitó a Berta al estadio a ver un juego de fútbol; durante el

cual compraron dos bolsas de palomitas de maíz de $2.00 cada una y 5 latas de jugo (todas del mismo precio). Si Pedro gasta en total $10.00, ¿cuánto pago por cada lata de jugo?

Resumen Para resolver ecuaciones, se trasladan a un solo miembro de la ecuación los términos que contienen a la incógnita y en el otro todos los valores numéricos. Se efectúan las operaciones aritméticas indicadas y se despeja la variable para determinar la raíz de la ecuación.

En una ecuación, puedes pasar un término de un miembro al otro, cambiándolo de signo. Un factor de un miembro puede pasar a dividir a todo el otro miembro. Además puedes cambiar los signos de todos los términos de ambos miembros de la ecuación.

Octavo Grado - Matemática 87

Mat 8u5  
Advertisement