Page 1

L SA U R

PE

SE U

O

LY N


U R PE

L SA

SE U

LY N O


U

R

PE

RUN. (2019) FOR WOODWIND QUINTET

SA

(Approximate Duration | 9’05’’)

L SE

U CODY RAY (1996)

LY

N

O


PROGRAM NOTES

U

R

PE

RUN. is a programmatic work for woodwind quintet. Competitive in nature, this piece gives listeners a lens into the experience of participating in a full-length 26.2mile marathon. With the tedious nature of running a long-distance race, the composer attempts to portray the excitement and energetic spirit associated with the initial moments after the pop of the starting gun. With an eighth-note C drone serving as a constant reminder of the runner’s feet hitting the pavement, the work challenges the musician’s endurance and technique. As the piece progresses, brief accented syncopated gestures represent lingering aches and pains arising from overlooked and unstretched tendons. Written in a modified rondo, the returning A section brings the audience’s focus back on the endless asphalt. The proverbial “wall” eventually hits the quintet accompanied with added dissonance and slowed tempo before bringing the ensemble and composer to a brief halt.

L

SA

SE

U

- Cody Ray

LY N

O


COMPOSER BIO

U

R

PE

CODY RAY is a freelance composer, conductor, performer, and educator. Currently serving as a Graduate Teaching Assistant at Western Michigan University, Cody performs in the Aero Brass Quintet and is a regular substitute musician for Kalamazoo College. In the spring of 2019, he received a Bachelors of Music from the University of Akron. During his time at UA, he performed with the University of Akron Symphony Orchestra, Jazz Ensemble, Symphonic Band, Chamber Orchestra, Brass Choir, New Music Ensemble, The Cleveland Philharmonic, and the Avenue Brass Quintet.

L

SA

In addition to these capacities, he performed with the University of Akron Faculty Brass Quintet during their 2019 UA Brass Seminar. He has competed as both a quarter and semi-finalist in the National Trumpet Competition. Cody’s primary trumpet instructors have included Dr. Joshua Ganger, Mark Maliniak, Jack Schantz, Scott Johnston, and Dr. Mark Dulin. He has also had the pleasure to participate in numerous masterclasses with world class artists such as Justin Emerich, Michael Sachs, Jack Sutte, Mark Hughes, and Hunter Eberly.

SE

U

Cody is the founder and Executive/Artistic Director of N.E.O. SOUND, a new music organization in North East Ohio focused on performing new music, collaborating with local artists, and creating a strong community. An avid composer, his works have been read and performed by numerous ensembles including the Grammy Award winning Cleveland Chamber Symphony, Western Michigan University Wind Symphony, Arizona State University Wind Ensemble, The Oberlin Conservatory Brass Ensemble, The University of Akron Brass Choir, and The University of Akron Symphony Orchestra. He has enjoyed the pleasure of receiving numerous commissions throughout his undergraduate and graduate career by both student and professional groups. Cody was the winner of the University of Akron's Composition Competition and recipient of the James P. and Maureen C. Kovach Scholarship for the Performing Arts. His primary composition teachers have included Dr. Richard Adams, Dr. Nikola Resanovic, Dr. Robert Brownlow and Dr. Daniel McCarthy. In addition, he has participated in masterclasses with guest artists including Dr. Anthony Donofrio, Dr. Andrew Boysen, and Mark Camphouse.

LY

N

O


Score

RUN.

CODY RAY (1996)

FOR WOODWIND QUINTET 

Oboe



Clarinet in B 



U

Light and brisk 



Flute

SA

Bassoon

R

PE Horn in F

  

                                 

Bsn.

            

       



 

 





    



 



  

 

© CODY RAY 2019

 

 

 

     

3



  

     

       







3

LY N

Hn.

O

B  Cl.

SE

Ob.

  

U

Fl.

       

L

7

 





3












  

RUN. | pg. 2

 

12

Fl.

Ob.

 

3

 

Bsn.

  

 

R

Hn.

    

PE

B  Cl.

    



      

              

 



 



 

 



                                                       

 

        



   

   

   





         



LY N

Bsn.

  

   

          

O

Hn.



        

SE

B  Cl.

 

                  

U

Ob.

   

L

Fl.



SA

17



   

                            

U



        

 

     



   

       




22

Fl.

Ob.



  

 



   









 

 

     

 















  

   

   

   

 

    

      



    

                

 







LY N

Bsn.

 

               



O

Hn.

 

SE

           

   

U

B  Cl.

 



L

Ob.





SA

27

Fl.



U

Bsn.

 

R

Hn.

             

PE

B  Cl.



RUN. | pg. 3


RUN. | pg. 4

 

Fl.

Ob.

   

 

PE

B  Cl.

 

     





 

   

   

 

3



     

 



 





          

   



  

         

            

LY N

 

   

   

       

O

  

SE

Ob.



U

Bsn.



    

     

L

Fl.

Hn.

   

   

SA

 

36

B  Cl.





                          

U

Bsn.

 

33

 

R

Hn.

 

32

 

 


RUN. | pg. 5 42

Fl.

 

B  Cl.

  

 

49



           

  

 



        



                         

    

 

       

 



  

 

 

                   

            

                           

     

LY N

      



  

          

    

O

                

    

SE

Bsn.

U

Hn.

L

B  Cl.

  

 

SA

Ob.

48

Fl.

 

U

Bsn.

with anger

                    

R

Hn.

PE

Ob.

             


RUN. | pg. 6 Fl.

Ob.

Hn.

   

 

 

    



 

   

 

 



  

 



 





             









LY N

 

 

O

        



  



SE

  

 

     

                       



U

Bsn.

   

L

Hn.

   

       



SA

B  Cl.







U

Ob.





57

Fl.

 



  

R

Bsn.

        

 

PE

B  Cl.

   

 

53




60

Fl.

Ob.

 





   

PE

B  Cl.

     

Hn.

   

R

 



Bsn.

  

   

                                                                                                  









  



                            

 

 



   

LY N

Hn.



65

O

B  Cl.

 

SE

Ob.



      

U

Fl.

 

                



        

  

L

64





      

SA

U

Bsn.

         





RUN. | pg. 7

                    


RUN. | pg. 8

69

Fl.

Ob.





 







                            

 

 

   

 

 



             

  

        

      

          

   

   

    

                  

  3

   3

LY N



  

                

O

Bsn.

     

 

SE

Hn.





              

U

B  Cl.



         

L

Ob.

 

SA



                      

72

Fl.

U

Bsn.

     

R

Hn.



    

PE

B  Cl.



                   


RUN. | pg. 9

77

Fl.

Ob.

   

   

   

   

PE

    3

B  Cl.

 

                                        

   

  

  

 

 

 

    

LY N

O

Hn.



SE

Bsn.

  

         

B  Cl.



  

U

Ob.

  

 

    

L

Fl.



             



SA

 

83

U

Bsn.



3

R

Hn.

     

81

 




RUN. | pg. 10

89

Fl.

Ob.

        

PE

B  Cl.



                 

 

Hn.



        

 

 

      

   

    

      



   

LY N

97

O

Bsn.

B  Cl.

 



 



SE

Ob.

        

U

Fl.

 

L

95

   

SA

   

U

Bsn.

R

Hn.

  



    



    


RUN. | pg. 11

101

Fl.

Ob.

 

   

PE

B  Cl.



          

U

   

 

   

 

 

   

   

    

  

 

 

  

L

SA

Bsn.

 

 

   

R

Hn.



Fl.

Bsn.

 

 



                                           

 

    

    

LY N

Hn.

    

O

B  Cl.



  

SE

Ob.

U

107

   

 


RUN. | pg. 12 113 Fl.

Ob.

 



             

   

 

 

  

   

 

  

        

Hn.

Bsn.



       

     



   

 

 

 

 

 

 

  

   

 

 

  

   

 

  

 

 

   



   

   





     



LY N

 

O

B  Cl.

  

 

   

SE

Ob.

   

 

 

U

Fl.

 

L

119

  



    

  

SA

  

U

Bsn.

R

Hn.

  

   



   

PE

B  Cl.

   

   

 

  

 


125

Fl.

Ob.

         

PE

B  Cl.

        



 

 

    





 



  



  



               





   







  

   

 









                        

 









                

   





    







          

 

  



LY N

Bsn.

O

Hn.

          



       

SE

B  Cl.

   



U

Ob.

   



L

Fl.



SA

129

  

U

Bsn.

 



R

Hn.



RUN. | pg. 13

    




RUN. | pg. 14 Fl.

 

Ob.

 

133

   

PE

B  Cl.

   

Hn.



 

  

R

    

                     

 



 





   









U

Bsn.

 

          



  



 



      



  

   



LY N

O

Bsn.



       

SE

Hn.

   

U

B  Cl.

     

L

SA Ob.

   

                                                                                    3                                             

136

Fl.

 


RUN. | pg. 15 140

Fl.

Ob.

 

 

               

 

      

       

    



 





            





  



  

    

  

   

    

                           

     

  

     

     

 

  

   

      



 

   

LY N

Bsn.

O

Hn.

SE

B  Cl.

U

Ob.

L

145 Fl.

SA

U

Bsn.

R

Hn.

        

PE

B  Cl.



   

   


RUN. | pg. 16

   

   

     

   

151

Fl.

Ob.

PE

B  Cl.



  



 

 

    

Fl.

Bsn.

   

  

 

 

 

  



                    

                  



  



  



  

LY N

Hn.

        



O

B  Cl.

   



SE

Ob.

   

               

  

   

U

157

 

L

SA

 

U

Bsn.

 

R

Hn.

 

                  



 



 

    

   


RUN. | pg. 17

          

  

Fl.

Ob.

PE

B  Cl.

        

 

 

 

 





3

 

                   3  3  

  

                   



 

     

            

 

 



 

         

   





    

  

3

3

LY N



3

O

         

 

  

   

 

SE

Bsn.

    

U

Hn.

 

 

                  

L

B  Cl.

  

SA

Ob.

     

168

Fl.

 

U

Bsn.

     

R

Hn.

163

162



 

 


RUN. | pg. 18

173

Fl.

Ob.

 

 

PE



                                       

B  Cl.

  

 

   

3 

3



 

 



 

 

  

L

SA

U

Bsn.

 

R

Hn.

     

U

179                                                               3      3                     3

178

Fl.

Bsn.

  

 



 



   

   

LY N

Hn.

O

B  Cl.

SE

Ob.

 

 



 


RUN. | pg. 19

182

Fl.

Ob.



        

      



PE

B  Cl.

            

        



 



   

        

  

    

                          3 3                3                       

 

 



          

 

LY N

 

         

 

O

Bsn.

 

SE

Hn.



     

U

B  Cl.



              

L

Ob.

 

SA

187

Fl.

U

Bsn.

 

R

Hn.



  

 


RUN. | pg. 20 191

Fl.

Ob.



   

         



PE

B  Cl.



Bsn.

 



 

U

R

Hn.





 

 

  

       

  

    

 

                

 

    

 

   

195

 

 

 

 

      

L

SA

          

U

Ob.



B  Cl.



Hn.



Bsn.

      

   

        

                                



  

     

LY N

O



SE

Fl.

196

   

 

 


202

Fl.

Ob.

     

     

     

PE

 

B  Cl.

  





   

 

                   

 

              3              

                  





              





211

 

     3     

 

  



LY N

                      

O

Bsn.

   

  

SE

Hn.

    



      

3

    

U

B  Cl.

 

L

Ob.

SA

207

Fl.

3

U

Bsn.

         

R

Hn.

                    

  

RUN. | pg. 21

  



        


RUN. | pg. 22

 

212

Fl.

Ob.

 

Hn.

 





R   

       

  

 









   





   

SA

   

U

Bsn.



  

                                      3   

       

PE

B  Cl.

 

    

  

   

  

L

                                        

Fl.

Bsn.

 

  







  



  



  



  



     



   

     









 3       

 

 

   

3

LY N

Hn.

            

O

B  Cl.

     

         

SE

Ob.

U

216



  

 

 


RUN. | pg. 23

220

Fl.

Ob.

 3



    

  

3

3

B  Cl.

 



     

          3 



   

   

 

 

          

       

 

  

 



3



    

     3

   

LY N

Bsn.

  

  

O

Hn.

      

SE

B  Cl.

  

U

Ob.

      

227

L

Fl.



SA

 

226

     

U

Bsn.

R

Hn.

3

  

PE

 



  


RUN. | pg. 24 232

Fl.

Ob.

         3

  

Hn.



3



         

Hn.

Bsn.

  





  



    3     

   

   

   

3

 



243

   

   

LY N

       

3

O

B  Cl.

 

3

3

SE

Ob.

U

      

   

L

Fl.

  

     

 

SA

238

U

R

Bsn.



    



PE

B  Cl.

  

 

 




 

244

Fl.

Ob.

Hn.

 

 



 

    

L

SA

U

                    

R

Bsn.

 





                

PE

B  Cl.

RUN. | pg. 25

Fl.

       

Hn.



Bsn.

  

   

   

   



 

   

   

   

LY N



O

B  Cl.

SE

Ob.

U

251

 




RUN. | pg. 26

Fl.

Ob.

257

Hn.

   







   

   

   

  

 

 

 



Hn.

 

   













3

    3

 



 

LY N

 

O

 

 

 

SE

B  Cl.

 

 

   

Bsn.

   

 

Ob.

   

U

   

   

L

Fl.

 

SA

263

 

   

U

R

Bsn.

   

PE

B  Cl.

   

259

 



 


269

Ob.













 



 

Hn.

 





     









          



Hn.

 







          



 

 

 

     

LY N

 

O

B  Cl.

                    

275

 

Bsn.



SE

  

U

Ob.



L

Fl.





SA

274

R

PE

B  Cl.

 

Bsn.

 

                                            

U

Fl.

   

RUN. | pg. 27

 

 


RUN. | pg. 28 280

Fl.



        

        

B  Cl.

 

Hn.

 

Ob.





  sim.

  sim.



     

    

     

 

 

   

   

 

 

     



291

          

   









 

LY N

Bsn.





 

 

O

Hn.



sim.

   

   

SE

B  Cl.



 

U

Ob.



L

Fl.

SA

286

    



U

R

PE Bsn.



   

 

   

   






292

Fl.

        

B  Cl.

 

   

    

Hn.

 

Bsn.

 



 



 

      

  

 

 

 

  

    



 

   

           

 

                                                 



LY N

 



 

O

B  Cl.



SE

Ob.





       

U

Fl.

         



L

296



SA



U

Bsn.

   

R

Hn.



        

PE

Ob.

 

       

RUN. | pg. 29

    




RUN. | pg. 30 301

Fl.

Ob.

        

    

PE



B  Cl.

 

Hn.

 

Bsn.

   

 

R

Bsn.

  



 

   



    

  

 

 

   



     





              307 

 

 

  

                                             

LY N



     

O

Hn.

 

SE



     

           

 

          

U

B  Cl.

 

 

L

 

  

SA

Ob.





 

U



305

Fl.

 




RUN. | pg. 31 309

Fl.

Ob.

 



         

 

3



   

  

        

   



3

3

  

3





   

   

 3

 

   

3   



  



  



 

   



   









   

3



3



LY N

 



 

O

Bsn.

SE

Hn.



U

B  Cl.

3

L

Ob.





SA

315

Fl.

U

Bsn.

 



R

Hn.



PE

B  Cl.

   

   


RUN. | pg. 32 321

Fl.

Ob.

  

  

PE

B  Cl.

        

   

 

3

     

   

    



    

  3



 

   

3

  3

     

   

   



LY N

  

   



O

Bsn.

   

    



  



3

3

SE

Hn.



 

U

B  Cl.

L

Ob.

  



SA

 

327

Fl.



rit.

U

Bsn.

R

Hn.

323


333

Fl.

Ob.

  

 

Bsn.

         

 

 

 

   

   

   

   

   

   

 

    

    

     

    

    

LY N

Hn.

   

3

O

B  Cl.

   

SE

Ob.

U

Fl.



 

L

339

SA

U

Bsn.

    

rit.

R

Hn.

3

PE

B  Cl.

RUN. | pg. 33


RUN. | pg. 34 345

Fl.

Ob.

                

   







                   

  

 



 

  

         

  

      

 

            3 3 3                  

LY N

  

   



3

O

Bsn.



3

SE

Hn.

U

B  Cl.

 

      

L

Ob.

  



                     

SA

350

Fl.

  

U

Bsn.

       

R

Hn.

        

        

PE

B  Cl.

    


RUN. | pg. 35

355

Ob.

B  Cl.

 

Fl.

PE 

  

           

  

 

SA

Ob.

B  Cl.

  

Hn.

  

Bsn.

        

  

 

            

    

     

      

  

      

3  3               

   

 

   

   

 













  

LY N

O

 

SE

 

 

U

Fl.

L

361

    

    

U

Bsn.

 

R

Hn.

   

       







 


RUN. | pg. 36 366

Fl.

Ob.

 

 



 



 

        

   



Hn.

  

 

 

3

 

 

   

   

   

   







3



 

 

LY N

 

 

O

B  Cl.



   

SE

Ob.

   

U

   

371

           

L

Fl.

   

SA

372

Bsn.

  3           

U

Bsn.



3

R

Hn.

  

PE

B  Cl.

 


   

   

   

 





   

   

   

   

 





   

         

    

    

  





    

378

Fl.

Ob.

 

PE

B  Cl.

                                                                                   

U

Bsn.

R

Hn.

RUN. | pg. 37

Ob.

Bsn.

 

 

   



  

 

 



 



387

    

                                                                                        

                               

    

LY N

Hn.

  

O

B  Cl.



SE

   

U

Fl.

L

SA 383

           

 

  

       


        

RUN. | pg. 38

388

Fl.

Ob.

     

    

 

3



                                        

PE

B  Cl.

                         

Bsn.



 













     



          

    

 



     

3





          3

   

        

  

 

  

 

     

     

       













 







  

LY N

Hn.

  

 

O

B  Cl.

3

  

SE

Ob.

    



      

U

Fl.

                 

L

393

 

sim.

SA

    sim.



             

U

Bsn.



                           

R

Hn.

 

  

      

       

       


RUN. | pg. 39

     

        



  



  

   

     

 

  



  

   

   

397

Fl.

3

Ob.

PE

B  Cl.

        

                     

Bsn.



 

             



   

  

     

    

 

   

       

LY N

    

 

    

O

B  Cl.

 

SE

       

                                               

403

U

   

Ob.

Hn.

            

L

        

SA

 

402

Fl.

    

U

Bsn.

R

Hn.

 



    

   


RUN. | pg. 40



408

Fl.

Ob.

          

 

   

PE

B  Cl.

  

   

     

    

  



         

  



     



  

  

  

  

          



    

        

     

   

   

 



   

   

   

 

 

       



 

 



 

 



       



 

 

  

 

      

  

        

     

 

 

 

   



      

 

 

 

   



 

      

           

LY N

 

 

O

  

     

SE

Bsn.



U

Hn.

  

L

B  Cl.

 

SA

Ob.

         



414

Fl.



   

U

Bsn.

           



R

Hn.

  




419

Fl.

Ob.

  

   



































 













 















PE

B  Cl.

 

    

U

Bsn.

     

R

Hn.









 



  

 





 



 



  



 









 































L

SA





RUN. | pg. 41

Ob.

Bsn.

         



 

















































 































 

















LY N

Hn.

  





O

B  Cl.





SE

Fl.

 

U

423


RUN. | pg. 42

Fl.

Ob.

B  Cl.

Hn.

426

                                   

3  







      

  

         3

3





  

 

 

   

   

                    

L

SA



U

R

3

3

3

                

PE Bsn.

3



SE

U LY N

O

Profile for Cody Ray

RUN. | Woodwind Quintet (2019)  

RUN. is a programmatic work for woodwind quintet. Competitive in nature, this piece gives listeners a lens into the experience of participat...

RUN. | Woodwind Quintet (2019)  

RUN. is a programmatic work for woodwind quintet. Competitive in nature, this piece gives listeners a lens into the experience of participat...

Advertisement

Recommendations could not be loaded

Recommendations could not be loaded

Recommendations could not be loaded

Recommendations could not be loaded