Lectures 9 and 10 Directional Derivatives and Gradient. Taylor Expansions Calculus II Topic 1: Differential Calculus in Several Variables

Calculus II

Santiago de Vicente

1

Paths of Steepest Descent

Calculus II

Santiago de Vicente

2

Directional Derivatives (I)

Calculus II

Santiago de Vicente

3

Directional Derivatives (II)

Calculus II

Santiago de Vicente

4

Directional Derivatives (III)

Calculus II

Santiago de Vicente

5

Finding the Directional Derivative using the Definition

Calculus II

Santiago de Vicente

6

Directional Derivative: General Notation

Calculus II

Santiago de Vicente

7

Calculus II

Santiago de Vicente

8

Calculus II

Santiago de Vicente

9

Calculus II

Santiago de Vicente

10

Directional Derivative as the Slope of the Tangent Line in direction of u

Calculus II

Santiago de Vicente

11

Directional Derivative as the Slope of the Tangent Line in direction of u

Calculus II

Santiago de Vicente

12

Properties of Directional Derivatives and Gradients

Calculus II

Santiago de Vicente

13

Directions of Steepest Ascent and Descent: General Case

Calculus II

Santiago de Vicente

14

Directions of Steepest Ascent and Descent: Example

Calculus II

Santiago de Vicente

15

Gradient is normal to Level Curves: Example

Calculus II

Santiago de Vicente

16

Gradient is normal to Level Curves

Calculus II

Santiago de Vicente

17

Why the water flow paths are perpendicular to contour lines ?

Calculus II

Santiago de Vicente

18

Path of Steepest Descent: Example

Calculus II

Santiago de Vicente

19

Application: Tangent to a Plane Curve

Calculus II

Santiago de Vicente

20

Tangent to a Plane Curve

Calculus II

Santiago de Vicente

21

Gradient in Physics: Conservative Fields. The Gravitational Force is a Gradient or Conservative Field

Calculus II

Santiago de Vicente

22

Gradient in Physics: Conservative Fields. The Electrical Field is a Gradient or Conservative Field

Calculus II

Santiago de Vicente

23

Gradient and Directional Derivative in 3D

Calculus II

Santiago de Vicente

24

Gradient is normal to Level Surfaces in 3D

Calculus II

Santiago de Vicente

25

Example in 3D

Calculus II

Santiago de Vicente

26

Calculus II

Santiago de Vicente

27

Tangent Plane revisited

Calculus II

Santiago de Vicente

28

Tangent Plane revisited: Example

Calculus II

Santiago de Vicente

29

Building Tangent Plane from two Curves on the Surface ( without knowing the Surface !!!! )

Calculus II

Santiago de Vicente

30

Tangent to a 3D Curve

Calculus II

Santiago de Vicente

31

Directional Differentials

Calculus II

Santiago de Vicente

32

Directional Differential: Example

Calculus II

Santiago de Vicente

33

Jacobian Matrix

=

=

=

πΌπ π = 1 π πππππ ππ’πππ‘πππ , π‘βππ π«π = (ππππ π)π = Calculus II

Santiago de Vicente

ππ ππ₯1

ππ

β¦ ππ₯

π

34

Hessian Matrix

If Δ?&#x2019;&#x2021; has continuous second partial derivatives, then Schwarz (Claireaut) Theorem holds and Hessian Matrix Δ?&#x2018;Ε» Δ?&#x2019;&#x2021; is symmetric.

Calculus II

Santiago de Vicente

35

Taylor Expansions: The 1D Case

Calculus II

Santiago de Vicente

36

Taylor Expansions of sin(x)

Degree 1, 3, 5, 7, 9, 11, 13 Calculus II

Santiago de Vicente

37

Taylor Expansions of exp(x)

Calculus II

Santiago de Vicente

38

Taylor Expansion: Multidimensional Case

Calculus II

Santiago de Vicente

39

Taylor Theorem

Calculus II

Santiago de Vicente

40

Error in Taylor Expansions

Calculus II

Santiago de Vicente

41

High Order Taylor Expansions

Calculus II

Santiago de Vicente

42

Local Approximation of Function by a Plane (first order) or a Paraboloid (second order)

Calculus II

Santiago de Vicente

43

2D Example

Calculus II

Santiago de Vicente

44