Page 19



Vehicle Emissions • A hydrogen-powered FCV emits zero tailpipe emissions. Methanol or petrol FCVs emit traces of emissions from the reformer but far less than a similar petrol-fuelled ICE. • Greater efficiency of FCV’s drive train and engine partly accounts for improved emissions. Energy efficiency and Greenhouse Gas emissions • No GHGs from hydrogen FCV during operation. Lifecycle emissions depend on method of hydrogen generation. • Methanol from biomass consumes and produces GHGs. Natural gas (NG) produced methanol produces more GHGs than biomass-produced methanol. • Petrol FCV GHG tailpipe emissions are half of ICE vehicles but higher than other FCVs. • Compared to a conventional petrol passenger vehicle, fuel cell vehicles can reduce lifecycle GHG emissions by 39% (methanol), 53% (hydrogen from NG) or 85% (hydrogen from renewable power sources). However this is considered by one study to be the least cost effective way to reduce GHGs from vehicles.74 • Compared to a single decker bus running on ULSD, fuel cell buses can reduce lifecycle GHG emissions by 24% (methanol), 40% (hydrogen from electrolysis) or 44% (hydrogen from NG). 75 Costs • Conventional petroleum engine now costs US$2,000-3,000 (HK$16,000-23,000), a comparable prototype fuel cell stack costs about US$35,000 (HK$273,000). 76 • Fuel cell and car manufacturers both expect 10 fold drop in fuel stack prices over next decade with economies of scale. Economies of scale will also lower operating and maintenance costs to levels comparable with CNG within 20 years. Once FCVs are available, maintenance costs should be low due to simpler engine design and fewer parts. • Fuel economy will be higher, so operating costs will be lower, irrespective of the fuel. • Methanol in US cheaper than petrol but 47% higher costs per unit of energy. Infrastructure Requirements and Costs Hydrogen • Cost of producing and distributing hydrogen in United States by 2030: US$230-400 billion and US$175 billion respectively (if FCVs get 80 miles/ gallon of hydrogen) Per vehicle investment in hydrogen infrastructure: US$3500-5000, but higher if FCV fuel efficiency is lower.77 This assumes a hydrogen pumping network. • Cheaper alternative: ship hydrogen-rich fuels (eg natural gas) in existing gas pipelines to end-users, with small-scale reformers to convert to hydrogen on-site.


See footnote 8. ibid 76 Environmental and Energy Study Institute (EESI) (2000). Fuel Cell Fact Sheet. 77 Stork K et al. Assessment of Capital Requirements for Alternative Fuels Infrastructures. Argonne National Laboratory Report No. ANL/ESD/TM-140. Source for all infrastructure costs on this page. 75


Final report Appendix 1 typeset  
Final report Appendix 1 typeset  

Table A1 Costs (HK$) of ULSD compared to standard diesel Diesel standard Import price ($/L) Duty ($) Retail price ($/L) Regular diesel (350p...