chalkdust producers almost had to sele on a lion cub, since cubs have rudimentary stripes on parts of their body. Eventually, however, a living tigress, Nikka, was found. She was six months old and two burly men had to hold onto her with chains, with the front two rows of chairs used as a barrier. A live tiger is certainly one way to keep an audience aentive during a maths lecture! Given his vast experience we asked Stewart to share his thoughts about how best to popularise maths to the masses. He believes that there are two messages that need to be conveyed to the general public. The first and most important is that maths is not stuck in the Dark Ages, that there is still lots of new research still taking place. The second is to then explain to the public what this new stuﬀ actually is, and applications of mathematics are not necessarily the best way to get people interested. Esoteric subjects such as 17-dimensional manifolds, the Big Bang, quantum The tiger’s distinctive paern can be theory, catastrophe theory, fractals, the Riemann hypothunderstood using group theory. esis and Fermat’s Last Theorem are all examples of complicated abstract mathematics that have captured the public’s aention without needing to be reduced to everyday applications. On the other hand there are areas of maths that he Esoteric subjects such as 17tries to avoid popularising. Despite this, he was asked dimensional manifolds, fractals to write a book about the famous Millennium Prize and the Riemann hypothesis Problems, a collection of seven unsolved maths conhave all captured the public’s jectures with a correct solution to one of them worth aention. $1m. Only one, the Poincaré conjecture, has been solved so far (although the winner, Grigori Perelman, did not claim his prize). One of the problems is the Hodge conjecture, a major unsolved problem in the field of algebraic topology, which asks “which cohomology classes in H k,k (X) come from complex subvarieties Z?”. This is a very technical piece of pure mathematics that is hard enough to explain to your average maths professor, let alone the general public! He believes that some areas of maths are easier to popularise than others and diﬀerent techniques can be used to capture diﬀerent types of audiences. History interests a certain class of people and telling stories about the mathematicians involved oen works: who did what and what sort of person were they (think of the recent films about Alan Turing and Stephen Hawking). And, of course, another good way to interest people is by using links to physics, biology, economics and financial markets (although in the laer case Stewart points out that the global financial crisis shows that these links are not always good advertisements for mathematics). Perhaps unusually for a modern day mathematician, Stewart’s own mathematical research has been broad, crossing the infamous pure/applied dividing line. He started out his career as a pure mathematician, working in abstract algebra and group theory. However he later began to work increasingly in applied maths, oen in the field of dynamical systems, and produced influential work in animal locomotion and paern formation. Does he think working in many diﬀerent areas of maths is something more mathematicians should do? “Well there are some deep thinkers who stay in one area for seven years, such as Andrew Wiles when he was proving Fermat’s Last The7

spring 2016

Advertisement