Page 56

chalkdust was stable. Similar techniques have been used from the Gothic period well into the 20th century, when a textile fabric was used to design the roof structure for the Olympic stadium in Munich. As powerful as this approach is (as another example, think of using soap films when determining a minimal surface), it is quite limited in its application as you are restricted to the same physical principles as those in the full problem. This is where the second technique comes into play: comparing the potentially very complex system under study to a different, but behaviourally similar, physical system. In other words, this similar, probably simpler, physical system is an analogy of the first: hence the creation and naming of analogue computers—computers that are able to study one phenomenon by using another, such as looking at the behaviour of a mechanical oscillator by using an electronic model.

Sagrada Família, licensed under Creative Commons BY-SA 3.0

Antoní Gaudi’s structural analysis model of the Colònia Güell.

Analogue computers Analogue computers are powerful computing devices consisting of a collection of computing elements, each of which has some inputs and outputs and performs a specific operation such as addition, integration (a basic operation on such a machine!) or multiplication. These elements can then be interconnected freely to form a model, an analogue, of the problem that is to be solved. The various computing elements can be based on a variety of different physical principles: in the past there have been mechanical, hydraulic, pneumatic, optical, and electronic analogue computers. Leaving aside the Antikythera mechanism—which is the earliest known example of a working analogue computer, used by the ancient Greeks to predict astronomical positions and eclipses—the idea of general purpose analogue computers was developed by William Thomson, beer known as Lord Kelvin, when his brother, James Thomson, developed a mechanical integrator mechanism (previously also developed by Johann Martin Hermann in 1814). chalkdustmagazine.com

54

Chalkdust, Issue 03  

Popular mathematics magazine from UCL

Read more
Read more
Similar to
Popular now
Just for you