Page 1

Hospital Level  Resistance  Data   The  Cape  Town  Perspec7ve   Andrew  Whitelaw  


The Hospitals  

•  Groote Schuur   •  Ter7ary  level   –  893  beds   –  28  ICU  beds   –  Oncology,  transplant  

•  Red Cross  Children’s   •  Ter7ary  level   –  –  –  – 

240 beds   22  ICU  beds   Burns  unit   Oncology,  transplant  


The laboratory   •  Na7onal  Health   Laboratory    Service   •  SANAS  accredited  (ISO   15189)  since  2002   •  3  microbiologists,   24-­‐28  technologists  /   technicians   •  2000  BC  /  month   •  800  resp  /  month  


AST •  Vitek  II  (BioMerieux)   with  expert  system   •  Disc  diffusion  (backup)   •  Etest  (S.  pneumo)   •  CLSI  criteria,  updated   annually   •  EQA  –  NHLS  and  NEQAS   •  IQC  on  all  reagents,   cards,  media  etc  


The Laboratory  Informa7on   System   •  DISAlab  (SA    product)   •  All  samples  and  results  captured   •  Scope  for  inter-­‐laboratory  varia7on   –  Confusion…  

•  All results  stored  centrally  (data  warehouse)   •  Searchable  –  within  reason   –  Locally   –  via  CDW  

•  NO link  to  hospital  informa7on  system   •  NO  admission  /  outcome  data   •  NO  reliable  clinical  data  


The new  LIS   •  Trak  Care  (LabTrak)   •  Run  off  central  server   •  A`empt  to  standardise  na7onal  repor7ng   –  Wait  and  see…  


Available Data  –  Rou7ne  Lab   •  Suscep7bility  summaries   –  By  ward  (dependent  on  data  capture)   –  By  specimen  type  (dependent  on  data  capture)   –  By  organism  type   •  Genus,  group  (Enterobacteriaceae,  non-­‐fermenters  etc)  

–  By month,  quarter,  half,  year   –  Duplicates  excluded  (same  pa7ent,  specimen,   organism,  within  2  week  window)  

•  Individual pa7ent  level  data  extracts  more   difficult  (need  more  manual  cleaning  up)  


Available data  –  Rou7ne  Pharmacy   •  Usage  /  ward   •  No/limited  individual   pa7ent  data  (as  yet)   –  Dura7on   –  Dose     –  Indica7on   –  Prescriber  


Available data  –  Hospital  system   •  Admission  /   discharge   •  Death   •  Diagnosis   •  No  case  notes    


Available data  -­‐  Other   •  Research  studies   –  HAI  surveys   –  Bacteraemia  surveys  

•  Surveillance –  respiratory,  meningeal,  enteric   pathogens   –  S.  pneumoniae,  H.  influenzae,  N.  meningi7dis   –  Salmonella,  Shigella   –  Cryptococcus  


So how  do  we  use  the  data?   •  •  •  • 

Monitor current  /  emerging  resistance   Guide  empiric  choices   Review  interven7ons   Monitor  an7bio7c  usage  

•  Present  /  publish  


Monitor Resistance   P.  aeruginosa  BCs   100   90   80   70  

% R/I  

60 50  

2008_01-­‐06 (13)   2008_07-­‐12  (14)  

40

2009_01-­‐06 (7)  

30

2009_07-­‐12 (7)  

20 10   0  

2010_01-­‐06 (7)   2010_07-­‐12  (15)  


Monitor Resistance   K.  pneumoniae  from  BCs   100   90   80   70  

% R/I  

60 50   40   30  

2008_01-­‐06 (61)   2008_07-­‐12  (42)   2009_01-­‐06  (68)   2009_07-­‐12  (47)   2010_01-­‐06  (69)  

20 10   0  

2010_07-­‐12 (54)  


Guide empiric  therapy   Enteric  GNB  from  BCs   100   90   80   70  

% R/I  

60 50   40   30  

2008_01-­‐06 (121)   2008_07-­‐12  (93)   2009_01-­‐06  (135)   2009_07-­‐12  (113)  

20

2010_01-­‐06 (164)  

10

2010_07-­‐12 (95)  

0


Monitor an7bio7c  use   Defined  daily  dose   1200  

1000

800

DDDs

B wards   ICU  

600

D wards   E  wards  

400

G1

200

0 Amikacin  

3rd gen   cephalosporin  

Ertapenem

Meropenem

Piptazobactam

Vancomycin

Defined daily  dose  calculated  using  dose  for  a  10kg  child,  assuming  no  wastage  


Interven7on Ceph  R  and  use  at  GSH  

Oliver S,  Poster  1291,  ECCMID  2008  


Oliver S,  Poster  1291,  ECCMID  2008  


Surveillance Classifica7on  of  Bacteraemia   •  Pos  BCs  no7fied   telephonically   •  Manually  entered   onto  excel     –  Demographics   –  Organism   –  Site  of  infec7on   –  Key  an7bio7cs  


Org and  resistance  by  site  (2000)   Ward isolates

ICU isolates

Community isolates

Total

ESBL pos AmpC pos Quin Res Amik Res Gent Res Piptazo res Mero Res

19 19 14 14 32 10 6

20% 20% 15% 15% 34% 11% 6%

32 31 31 43 0 18 24

24% 24% 24% 33% 0% 14% 18%

15 19 9 4 26 3 2

7% 8% 4% 2% 11% 1% 1%

66 69 54 61 131 31 32

15% 15% 12% 13% 13% 7% 7%

MRSA Meth R Coag neg Staph E.coli K. pneumonia Enterobacter spp Klebsiella spp Proteus spp Serratia spp Citrobacter spp A. baumanii S. maltophilia P. aeruginosa Salmonella spp Pantoea spp Other Acineto Other Pseudomonas Total GNB S. aureus Coag neg Staph

19 6

44% 50%

7 6

47% 75%

9 4

15% 50%

35 16

30% 57%

17 13 12 0 5 8 1 15 4 9 0 2 6 1 93 43 12

5 29 20 4 0 10 2 24 16 14 2 2 2 1 131 15 8

108 38 17 4 14 4 5 3 1 5 29 0 0 2 230 59 8

130 80 49 8 19 22 8 42 21 28 31 4 8 4 454 117 28


Future plans   •  Link  HIS  to  LIS   •  Ac7ve  surveillance  for  Klebsiella,  S.  aureus   bacteraemia   •  Capture  community  vs  health  care  associated   on  LIS  (bacteraemia)   •  Be`er  use  pharmacy  data  /  pharmacists  


THE END   THANK  YOU  


Monitor Resistance   A.  baumannii  from  BCs   100   90   80   70  

% R/I  

60 50  

2008_01-­‐06 (17)   2008_07-­‐12  (28)  

40

2009_01-­‐06 (38)  

30

2009_07-­‐12 (32)  

20 10   0  

2010_01-­‐06 (38)   2010_07-­‐12  (45)  


Enteric GNB  from  BCs  

In-­‐pa7ent wards,  oncology  (2010,  n=124)   80.0   70.0   60.0   50.0   40.0   30.0   20.0   10.0   0.0  

/dr_andrew_whitelaw  

http://www.cddep.org/sites/cddep.org/files/dr_andrew_whitelaw.pdf

Read more
Read more
Similar to
Popular now
Just for you