Quadratic Functions Angry Birds Flight Path By Chris Chuang

Flight Path #1

Flight Path #2

Model #1 Steps (-4,4)(-18,0)(0,4) Vertex Form 1. find the vertex and x & y Y=a(x-h)^2+k intercepts 2. plug in numbers to find 4=a(0+4)^2+4 vertex form 4=16a+4 0=16a 0=a Vertex form = 0(x+4)^2+4

7 points of the graph (-12,3) (-9,3) (2,3) (6,2) (-4,4) (-18,0) (0,4)

Standard Form Y=ax^2+bx+c (-18,0) 0=a(-18)^2-18+c 1. Plug the vertex, x & y intercepts 0=324a-18b+c individually to (-4,4) find what a, b, and c equals to 4=a(-4)^2-4b+c 2. 2. Then plug into 4=16a-4b+c the standard (0,4) form equation 1=a(0)^2+0b+c C=1 A=-0.06 B=-0.1 Standard form=-0.06x^2-0.1x+1

Model #2 Steps (-14,0)(-2,5)(0,5) 1. find the vertex and x & Vertex Form y intercepts Y=a(x-h)^2+k 2. plug in numbers to 5=a(0+2)^2+5 find vertex form 5=4a+5 0=4a 0=a Vertex form = Y=0(x+4)^2+3 7 points of the graph (-12,1) (-7,4) (2,5) (6,3) (-14,0) (-2,5) (0,5)

Standard Form Y=ax^2+bx+c 1. Plug the vertex, x (-14,0) & y intercepts 0=a(-14)^2-14b+c individually to 0=196a-14b+c find what a, b, and (-2,5) c equals to 2. 2. Then plug into 5=a(-2)^2-2b+c the standard form 5=4a-2b+c equation (0,5) 5=a(0)^2+0b+c 5=0a+0b+c C=5 A=-0.03 B=-0.06 Standard form = y= -0.03x^2-0.06x+5