Issuu on Google+

Joan  Chiao     Northwestern  University  


¡  Compassion   §  “A  feeling  that  arises  in  witnessing  another’s  

suffering  that  motivates  a  subsequent  desire  to   help.”  (Goetz,  Keltner,  Simon-­‐Thomas,  2010)    

¡  Empathy   §  “…[responses]  that  are  more  other-­‐focused  than  

self-­‐focused,  including  feelings  of  sympathy,   compassion,  tenderness  and  the  like”  (Batson,   1991)  


culture   cultural  psychology mind      social  /  cognitive  /  affective  neuroscience brain   neurogenetics  genes   situation  /  development  /  evolution   (Chiao  &  Ambady,  2007;  Chiao  et  al.,  2010;  Chiao,  2011)  


Integrated  Model  of  Human  Behavior   B1,  B2…  

Culture   Ecological   Pressure   A1,  A2…  

Behavior   E1,  E2…  

Gene  

Neuroscience  

C1,  C2…  

D1,  D2…  

(Chiao  &  Immordino-­‐Yang,  in  press,  Perspective  in  Psychological  Science)  


Integrated  Model  of  Human  Behavior   Culture   Ecological   Pressure  

Prosociality   Gene  

Neuroscience  

Amygdala   ACC   Bilateral  AI   Somatosensory  cortex   MPFC   TPJ  

Compassion   Empathy   Sympathy   Concern  for  others    


How  does  culture  influence  neural     processes  underlying  emotion  recognition?    

(Chiao,  et  al,  2008,  J.  Cog.  Neurosci.)  


¡ 

Facial  Expressions  in   Blind  and  Deaf   Children     §  despite  no  sensory  

input,  they  can  smile,   cry  and  laugh  

(Eibl-­‐Eibesfeldt,  1973)  


fear  

happy  

contempt  

disgust  

anger   (Ekman  &  Friesen,  1971)  

surprise  

sadness  


¡  Ingroup  advantage   ¡  Display  rules   ¡  Emotional  sensitivity   ¡  Ideal  affect   ¡  Emotion  regulation   (Elfenbein  &  Ambady,  2000;  Mesquita  &  Leu,  2008;  Tsai,  2007;  Grossman  &  Kross,   2010;  Butler,  Mauss,  Gross,  2008)  


Ingroup  advantage  in     emotion  recognition   ¡ 

People  recognize  fear  facial  expressions  better   when  expressed  by  members  of  their  own  culture   (Elfenbein  &  Ambady,  2002).  

¡ 

People  infer  nationality  better  from  emotional   expressions  relative  to  neutral  expressions  (Marsh,   Elfenbein  &  Ambady,  2003).  

¡ 

Ingroup  bias  likely  akin  to  phonetic  and  facial   recognition  biases  observed  as  a  result  of  critical   periods  in  development  (Kuhl  et  al  1992;  Pascalis,  De  Haan,  Nelson,   2002).  


Number  of  Publications

Caucasian  

7 6 5 4 3 2 1 0

non-­‐Caucasian  

8

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

Date  of  Publication   (Phan,  et  al,  2002,  Neuroimage;  pubmed  search  post-­‐2002)  

2003


¡ 

Fear  expression   §  Adaptive  social  signal   §  Warns  others  of  threat   §  Solicits  help  from  others  

¡ 

Amygdala   §  Subcortical  brain  region   §  Evaluation  and  response  to  

threat  cues   §  Orients  attention  to  eye  region   of  fear  expressions    

  (Adolphs,  et  al,  2005;  Davis  &  Whalen,  2001;  Phelps  &  LeDoux,  2005)  


Method:  Cross-­‐cultural  neuroimaging   10  Japanese 10  Caucasians

(Chiao,  et  al,  2008,  J.  Cog.  Neurosci.)  


Method:  Cross-­‐cultural  neuroimaging  

(Chiao,  et  al,  2008,  J.  Cog.  Neurosci.)  


(Chiao,  et  al,  2008,  J.  Cog.  Neurosci.)  


¡ 

Cultural  Psychology   §  Cultural  specificity  in  ingroup  biases  of  emotion  

recognition  are  reflected  as  neural  tuning  of  amygdala   response.  

¡ 

Brain  Sciences   §  Cultural  specificity  in  amygdala  response  to  fear  faces.   §  Amygdala  may  be  part  of  larger  neural  network  that  

facilitates  group  selection  in  empathy  and  altruistic   behavior.  


How  does  culture  influence  empathic  neural   response  to  emotional  scenes?    

(Mathur,  Harada,  Lipke,  Chiao,  2010,  Neuroimage)  


¡ 

Affective  empathy  (ACC/AI)   §  Affect  sharing   §  Empathic  resonance  

Experience   Self-­‐  and   Other-­‐pain  

•  Cognitive  empathy  (MPFC)   –  Self  evaluation   –  Perspective-­‐taking  

Imagine  Self-­‐ pain  

Imagine   Other-­‐pain   Singer,  et  al.  (2004),  Jackson  et  al,  (2006)  


Method   14  African-­‐Americans   14  Caucasian-­‐  Americans


Method   Study  Task  

Rate  empathy  for  target   (1  =  not  at  all;  4  =  very  much)   Post-­‐scan  measures   -­‐Altruistic  motivation  indices  (Money  &  Time)   -­‐Interpersonal  reactivity  index  (IRI)   -­‐Social  dominance  orientation  (SDO)   -­‐Implicit  racial  bias  (IAT)  


(Mathur,  et  al.,  2010,  Neuroimage)  


(Mathur,  et  al.,  2010,  Neuroimage)  


(Mathur,  et  al.,  2010,  Neuroimage)  


Discussion   •  Empathic  neural  response  for  emotional  pain  of   humankind  differs  from  empathic  neural  response   for  emotional  pain  of  group  members   –  Affective  empathy  (ACC/AI)   –  Irrespective  of  group  membership   –  Automatic   –  Cognitive  empathy  (MPFC)   –  Enhanced  for  ingroup  members   –  Ingroup  identification  


r

r

Racial Identification and the Default Network

Racial Identification and the

r

[Northoff et al., 2006: ACC: #3, 11, 44; PCC: #3, #59, 31; MPFC: #2, 50, 10]. Parahippocampal gyri ROIs, for which we did not have a priori predictions, were functionally defined as a 4-mm sphere centered on peak voxels identified by our main effect analysis [Fig. 3: L PHG: #33, #47, #3; R PHG (PHG-specific subcluster of large cluster centered on peak voxel 62, #34, 21): 30, #44, #8]. Small volume correction for multiple comparisons was performed using 6 mm spheres centered on the peak voxels of a priori regions of interest r within the default network, namely Default Network MPFC, ACC, and PCC. MNI coordinates were converted

[Northoff et al., 2006: ACC: #3, 11, 44; PCC: #3, #59, 31; MPFC: #2, 50, 10]. Parahippocampal gyri ROIs, for which we did not have a priori predictions, were functionally defined as a 4-mm sphere centered on peak voxels identified by our main effect analysis [Fig. 3: L PHG: #33, #47, #3; R PHG (PHG-specific subcluster of large cluster centered on peak voxel 62, #34, 21): 30, #44, #8]. Small volume correction for multiple comparisons was performed using 6 mm spheres centered on the peak voxels of a priori regions of interest within the default network, namely MPFC, ACC, and PCC. MNI coordinates were converted Figure 2. African-American participants display increased activity within cortical midline regions of the default network when viewing same-race others. (a) Whole-brain two-sample comparison [AA participants > CA participants], x ¼ 0. Red circles highlight independently defined regions submitted to region of interest analyses. (b) Percent signal change extracted from regions of interest [PCC sphere centered on peak voxel: #3, #59, 31; ACC sphere centered on peak voxel: #3, 11, 44; MPFC sphere centered on peak voxel: #2, 50, 10]. Signal change within ROIs extracted from the [Ingroup > Outgroup] contrast image. **P < 0.001; *P < 0.01. contrast [Ingroup (Pain þ No Pain) > Outgroup (Pain þ No Pain)] with a threshold of P < 0.005, extant threshold ¼ 10 voxels (Tables I and II and Figs. 2 and 3). Whole-brain regression analyses were performed on the contrast images [Ingroup (Pain þ No Pain) > Outgroup (Pain þ No Pain)] and [Outgroup (Pain þ No Pain) > Ingroup (Pain þ No Pain)] using racial identification (MEIM score) as the covariate of interest. To test hypotheses about Figure 2. region-specific covariate effects, the estimates were comAfrican-American participants within pared usingdisplay a linear increased contrast withactivity significance levels at P < 0.005, thresholdnetwork ¼ 10 voxels (Tables III and IV and cortical midline regions of extant the default when viewing 4 and 5). same-race others. (a) Figs. Whole-brain two-sample comparison [AA Region of interest (ROI) analyses were performed on participants > CA participants], x ¼ Red circles regions-of-interest0.using MarsBarhighlight toolbox indein SPM2 [Brett

Figure 3. Caucasian American participants display increased activity within bilateral parahippocampal gyrus when viewing same-race others. (a) Whole-brain two-sample comparison [CA participants > AA participants], z ¼ #3. Red circles highlight functionally defined regions submitted to region of interest analyses. (b) Percent signal change extracted from regions of interest [L PHG sphere

(Mathur,  Harada,  Chiao,  2011,  Human  Brain  Mapping)  


When MEIM scores were entered as a covariate in this model, these effects were attenuated. The target race by target pain interaction was no longer significant F(1,17) ¼ 1.15, P ¼ 0.30. Controlling for ethnic identification appeared to control for the effect of target race on MPFC response as well, F(1,17) ¼ 3.56, P ¼ 0.08. ACC. Within the ACC ROI, only the main effects of target race [F(1,18) ¼ 9.81, P ¼ 0.006] and target pain [F(1,18) ¼ 16.39, P ¼ 0.001] were significant. Paired sample t-tests revealed that, on average, participants showed a significantly greater signal change within the ACC ROI in response to AA (M ¼ 0.55, SE ¼ 0.07), relative to CA (M ¼

Figure 5. Racial identification negatively predicts activity within medial temporal regions of the default network viewing same-race others. (a) Whole-brain regression analysis of group contrast image [Outgroup (Same race Pain þ Same race No Pain) > r Racial Identification and the Default Network r Ingroup (Same race Pain þ Same race No Pain)] with individual differences in racial identification as the covariate. (b, c) Inderesponse to AA targets in pain, relative to AA targets in pendent regression analyses [(b) L PHG regression centered no pain [t(19) ¼ 1.60, P > 0.05]; and greater MPFC activity around peak voxel: "33, "47, "3; (c) R PHG regression cenin response to CA targets in no pain, relative to CA targets tered around peak voxel: 30, "44, "8]. Signal change within in pain [t(19) ¼ "0.69, P > 0.05]. There was also a signifi- ROIs extracted from the [Ingroup > Outgroup] contrast image. cant main effect of target race, F(1,18) ¼ 24.92, P < 0.001. Paired sample t-tests revealed that, on average, participants showed a significantly greater signal change within the MPFC ROI in response to CA (M ¼ "0.45, SE ¼ 0.12), relative to AA (M ¼ "0.09, SE ¼ 0.11) scenes (Pain þ No Pain), t(19) ¼ 5.01, P < 0.001. No other comparisons were significant (all Ps > 0.05). When MEIM scores were entered as a covariate in this model, these effects were attenuated. The target race by target pain interaction was no longer significant F(1,17) ¼ 1.15, P ¼ 0.30. Controlling for ethnic identification appeared to control for the effect of target race on MPFC response as well, F(1,17) ¼ 3.56, P ¼ 0.08.

0.35, SE ¼ 0.06) scenes (Pain þ No Pain) [t(19) ¼ 3.18, P ¼ 0.005]; and in response to Pain (M ¼ 0.68, SE ¼ 0.10), relative to No Pain (M ¼ 0.22, SE ¼ 0.06) [t(19) ¼ 4.12, P ¼ 0.001]. No other comparisons were significant (all Ps > 0.05). Controlling for ethnic identification suppressed these effects [Target Race: F(1,17) ¼ 0.46, P ¼ 0.51; Target Pain: F(1,17) ¼ 0.05, P ¼ 0.38].

PCC. Within the PCC ROI, only the main effect of target race was significant, F(1,18) ¼ 29.68, P < 0.001. A paired sample t-test revealed that participants showed a signifiACC. Within the ACC ROI, only the main effects of target cantly greater signal change within the PCC ROI in 4. and target pain [F(1,18) ¼ Figure 5. race [F(1,18) ¼ 9.81, Figure P ¼ 0.006] response to AA (M ¼ 0.37, SE ¼ 0.17), relative to CA (M ¼ Racial 16.39, identification positively predicts activity cortical P ¼ 0.001] were significant. Pairedwithin sample t-tests Racial identification negatively predicts activity within medial SE ¼regions 0.16) scenes No Pain)viewing [t(19) ¼ 5.37, P < temporal of the (Pain defaultþ network same-race average, participants showedsame-race a signifi- 0.08, midlinerevealed regions that, of theondefault network when viewing other comparisons significant (all Ps > others. No (a) Whole-brain regressionwere analysis of group contrast greater signal change analysis within ofthegroup ACCcontrast ROI in 0.001]. others.cantly (a) Whole-brain regression (Mathur,   et  atol.,   2011,   uman   Brain  M apping) 0.05). image [Outgroup (Same race  Pain þ Same race No Pain) > AA (M 0.55,þSESame ¼ 0.07), CA (M ¼ H image response [Ingroup to (Same race¼Pain racerelative No Pain) > OutControlling for ethnic attenuated the effect Ingroup (Same race Pain þ identification Same race No Pain)] with individual group (Other race Pain þ Other race No Pain)] with individual ofdifferences target race, though it remained in racial identification as the statistically covariate. (b, significant c) Indedifferences in racial identification as the covariate, x ¼ 0. Red F(1,17) 5.33, P ¼ analyses 0.03. [(b) L PHG regression centered pendent¼ regression


How  does  culture  influence  empathic  neural   response  to  emotional  scenes?    

(  Chiao,  Harada,  Mathur,  Lipke,  2009,  NYAS;  Cheon  et  al,  2011,  Neuroimage)  


Cultural  variation  in  hierarchy  preference  

  ¡  ¡ 

Culture  vary  in  preference  for  hierarchy   Hierarchical  relationships  may  maintain  social  harmony  in   some  cultures  


Method:  Cross-­‐cultural  neuroimaging   13  Caucasians

14  Koreans


Cultural  variation  in  hierarchy  preference     predicts  empathic  neural  response  

(  Chiao,  Mathur,  Harada,  Lipke,  2009,  NYAS)  


fMRI  study  design  

(  Cheon  et  al,  2011,  Neuroimage)  


Cultural  moderators  of  empathy   •  Social  Dominance  

–  Social  Dominance  Orientation  Scale  (SDO;  Pratto  et  al,  1994)  

•  Dispositional  Empathy  

–  Empathic  Concern  (Davis,  1983)  

•  Individualism-­‐Collectivism   –  Self-­‐Construal  Scale  (SCS;  Singelis  et  al,  1995) ��   •  Ethnic  Identity  

–  Multigroup  Ethnic  Identity  Measure  (MEIM)  

•  Display  Rules  

–  Display  Rule  Inventory  (DRAI;  Matsumoto  et  al,  2008)  

•  Explicit  Attitudes   –  Feeling  Thermometer  towards  Koreans  and  Caucasian-­‐Americans   (  Cheon  et  al,  2011,  Neuroimage)  


Cultural  moderators  of  empathy   •  Social  Dominance  

–  Social  Dominance  Orientation  Scale  (SDO;  Pratto  et  al,  1994)  

•  Dispositional  Empathy  

–  Empathic  Concern  (Davis,  1983)  

•  Individualism-­‐Collectivism   –  Self-­‐Construal  Scale  (SCS;  Singelis  et  al,  1995)     •  Ethnic  Identity  

–  Multigroup  Ethnic  Identity  Measure  (MEIM)  

•  Display  Rules  

–  Display  Rule  Inventory  (DRAI;  Matsumoto  et  al,  2008)  

•  Explicit  Attitudes   –  Feeling  Thermometer  towards  Koreans  and  Caucasian-­‐Americans   (  Cheon  et  al,  2011,  Neuroimage)  


(  Cheon  et  al,  2011,  Neuroimage)  


Social  dominance  orientation  predicts   ingroup  empathy  bias  

(  Cheon  et  al,  2011,  Neuroimage)  


Cultural  variation  in  neural  basis  of   intergroup  empathy  

(  Cheon  et  al,  2011,  Neuroimage)  


Cultural  variation  in  neural  basis  of   intergroup  empathy  

(  Cheon  et  al,  2011,  Neuroimage)  


Discussion   •  Social  dominance  orientation  is  the  only  predictor  of   ingroup  empathy  bias  due  to  neural  activity  in  L  TPJ.   •  Cultural  variation  in  social  dominance  predicts   ingroup  empathy  bias  due  to  cultural  variation  in  L   TPJ.   –  Greater  response  in  L  TPJ  among  Koreans  for  ingroup   empathy  bias  may  represent  greater  conceptual   processing  of  ingroup  members’  pain  (i.e.  theory  of  mind)  


Hierarchy-­‐based   cultures:     Conceptual   processing   Egalitarian   cultures:     Simulation   processing  

(Hein  &  Singer,  2008,  Current  Opinion  in  Neurobiology)  


Integrated  Model  of  Human  Behavior   SDO,     Ethnic  ID  

Culture   Ecological   Pressure  

Behavior   Prosociality  

Gene  

Neuroscience  

Amygdala   ACC   Bilateral  AI   Somatosensory  cortex   MPFC,  TPJ  

Compassion   Empathy   Sympathy   Concern  for  others    


¡ 

Population  variation  in   mental  health  provides  a   natural  window  into   questions  that  can  be   addressed  cultural   neuroscience.  

¡ 

Two  approaches  to  closing   the  disparity  gap:   §  Basic  mechanisms   §  Access  to  treatment  


¡ 

Group  selection  theory   of  intergroup  conflict  

¡ 

Understanding  how   and  why  groups  differ   in  how  they  think   about  themselves  and   others  is  key  to  conflict   resolution  


¡ 

Mission   §  To  promote  the  sophistication  of  theoretical  and  

methodological  approaches  in  cultural  neuroscience  

¡ 

Membership  (over  50  scientists  from  5   continents)   §  Anthropologists,  psychologists,  neuroscientists,  

geneticists,  epidemiologists,  public  health  experts   ¡ 

Funded  by  NIH  


¡  ¡  ¡  ¡  ¡  ¡ 

Tetsuya  Iidaka   Ahmad  Hariri   Tokiko  Harada   Hide  Komeda   Norihiro  Sadato   Nalini  Ambady  

¡  ¡  ¡  ¡  ¡  ¡ 

Dong-­‐mi  Im     Ji-­‐Sook  Kim   Jason  Scimeca   Todd  Parrish   Hyun  Wook  Park   Moshe  Bar  

¡  ¡  ¡  ¡ 

Heather  Gordon   Junpei  Nogawa   Elissa  Aminoff   Mary  Helen   Immordino-­‐Yang  



ChiaoCCARE_2012 PDF