Issuu on Google+

The Valley of Unrest for String Orchestra

by Cavan Carson


The Valley of Unrest

2 Once it smiled a silent dell Where the people did not dwell; They had gone unto the wars, Trusting to the mild-eyed stars, Nightly, from their azure towers, To keep watch above the flowers, In the midst of which all day The red sun-light lazily lay. Now each visitor shall confess The sad valley’s restlessness. Nothing there is motionless— Nothing save the airs that brood Over the magic solitude. Ah, by no wind are stirred those trees That palpitate like the chill seas Around the misty Hebrides! Ah, by no wind those clouds are driven That rustle through the unquiet Heaven Uneasily, from morn till even, Over the violets there that lie In myriad types of the human eye— Over the lilies there that wave And weep above a nameless grave! They wave:—from out their fragrant tops External dews come down in drops.

They weep:—from off their delicate stems Perennial tears descend in gems. - Edgar Allan Poe, 1845

Duration: 11 minutes, 30 seconds


3

The Valley of Unrest Grave, Pesante q=92

Violin I a

Violin I b

  

 

 3   

      

 3    

      

 

 

 3    

      

 3      

      

mf cresc.

mf cresc.

Violin II

Viola

Violoncello I

Violoncello II

 

 

 

sffp

sffp

 

 

mf cresc.

              ff

 Double Bass II  

mf cresc.

ff

Double Bass I

simile

  

sffp





 

sffp

   ff



mf

 

 

mf

 2

C. Carson

 



sfp

sfp

mf

3

 

  

 



 4


4

             

          

             

 3            cresc.

     

 

 

 

 

            

 3              

     

           

 3              

     

f

mf

f

mf

 

f

mf

f



 

   mf

 





sfp





sfp

mf

 

sfp

6

cresc. 3

cresc.

cresc.











sfp

mf



mf

7

  

 

  

   

mf

5

  

  

  

   

mf

     

8

 

  

sfp

9


5

             

             

mf

cresc.

 3  

            

            

f

  

3

3

f

      

mf

 

 

3

      

cresc.

 

 

            

 3   3             

     

            

 3   3             

      

f

mf

f











  

  

sfp

mf

    mf



10



mf





  

sfp

mf

11

cresc.





  

    sfp

  

cresc.

mf

 12



    sfp   

 

sfp

mf

13





14


6

                 

      

          

3                

      

  

 

             

f

mf

f

mf

 

cresc.

3

cresc.

 

 

            

     3         

     

            

          3  

      



f

mf

    mf

f



 





 mf







  

  

sfp



 mf

  

   

sfp

15

    mf sfp 16

cresc.

cresc.



 



  

 

sfp

mf

 mf

17



18

 

    sfp

19


         

          

      

rall.

fff

     

fff

fff

     

        

     

fff

fff







  

 

sfp

  



 mf



  mf 20

 

 

sfp

21

7

A tempo

poco accel.         3

f



cresc.

     3

f

cresc.

 

 

divisi

 

        

A

f

sfz

sfz

          

f

  f

 

3

     cresc.  

divisi

fff

f

sfz

fff

 

f



sfz

fff

 





f

sfz



22

 sfz

 sfz

 sfz


8

  

   

 



 



 

   

 



 



 

 

 

  

sfz

 sfz

sfz

 sfz

                            

 

   

sfz





sfz



 23

sfz

   sfz

 sfz

 sfz

 

 

sfz





sfz



 24

sfz

  sfz

 sfz

 sfz


9

 



 

 

   

  

    f

sfz

 sfz

 

   sfz

 

  sfz

                          

  

f

  

  

f

sfz





sfz



 25

sfz

 

 sfz

 sfz

 sfz

 sfz





sfz

sfz

26

 sfz

 sfz

 sfz


10

  

 

 

 

 



 

 



 

  

3

cresc.

  3

cresc.

  

  

 

sfz

  sfz

 

 

sfz

sfz

                         

 

3

cresc.

 

 sfz





sfz

sfz

27

 sfz

 sfz

 sfz



 

sfz





sfz

sfz

28

  sfz

 sfz

 sfz


   



 





 

  



 





 

  

  

 

 

 

sfz

sfz

  

 

sfz

11

  sfz

                                 





 

sfz





sfz

sfz

29



 sfz

 sfz

 sfz

 





sfz





sfz

sfz

30

 sfz

 sfz

 sfz


12

 

f 3

3

cresc.

            3

cresc.

                                         f

f 3

f divisi

          





 

 sfz

 

 

sfz





sfz

sfz

31





sfz

  sfz

 sfz

 sfz

 

sfz

 sfz

         f 3

3

cresc.







 sfz





sfz

sfz

32

 sfz

 sfz

 sfz




 



 





 

 



 



 





 

 

13

                           



  







 

sfz

 

 

sfz





sfz

sfz



33

sfz



  

 sfz

 sfz

 sfz







  sfz





 

sfz





sfz

sfz

34

 sfz

 

 sfz

 sfz

 sfz


14

 

 

  

    f

 

 

    f

    cresc.

   

cresc.

                       

   

  sfz

  

 sfz

f

 sfz

 

 sfz

     f







 sfz





sfz

sfz

35

 sfz

 sfz

 sfz



 sfz

 

 

sfz

sfz

36

 sfz

 sfz

 sfz

     cresc.


 



15

 

   



 





 



3

  

 

    3

                           

     



sfz

 

 sfz

   



 



 sfz

 

 

sfz

sfz

37

 sfz

 sfz

 sfz



sfz

3

  sfz

 





 





 



sfz

sfz



38

sfz

  sfz

 sfz

 sfz


16



   

f

             f

fff

 

sfz



 sfz

   

             f

fff

sfz

39

f

3             

sfz

f

3             

sfz

fff

f

fff

40

41

     

s.

sfz

fff

sfz

glis



3             

mf

s.



3

glis

sfz

fff

   

solo

s.



3

glis



 

             f



3

gliss.

 



fff

 

3

                           f

 

gliss.

   

gliss.



3

 

gliss.

  

fff

gliss.

 

 

              A tempo

42


B

17

Flowing, free q=92

pizz.     

mp

pizz.

   

mp

 

pizz.

 

pizz.

 

   

mp



mp







  



  

   

  

    

43

pizz.

mp

pizz. mp

 

 

 

 

 

 

       

            

espressivo









   

  



  

      

  

  

  

      

  

44

45

46

47

48


18

    

 

   

  

  

   

   

 

   

  

  

   

 

 

  

  

  

   



     

 

      

           

 

          

    

   

      

  

  

   

    

      

  

  

   

52

53

49



50

51

54


19

    

   

   

  

  

  

  

  

  

  ���

  

  

    

arco

arco

    

arco

 

 

                      (solo) mf                              arco

(tutti) mp

cresc.

mp

   

  

  

     

    

  

  

55

56

57

58

arco

arco

59


20

                              

    

      

 

 

       

    

        

    

                  

                                                        

 

  

60

61

                           



      

      

62

63

64


21

C

  

 

 

 ss. espressivo     i l   g

  s. espressivo   glis    



f

f

cresc.

    

     

    

mf

    

    

     

    

    

    

mf

 

 mf

          

   

mf

 



    

mf

 



65

tutti

   

66

           

cresc.

           

mf

67





     

 





68

  

 

69





    

 





70

 


22

  

  

           



 

 

  

           



 

 

  

     

  

     

   

 

 

  

 

    

    

    

     

    

    

    

    

     

    

 

  





   





71





 





72

 





73





 





74

 

75




           



  



  

           



    



 

    

    

           

     

      

     

           

     

    

23





     





76

 

 

     

77

 

 





   

    

   

    

 





78

 

79

 





     





80

 










 

  







 







 

24

 

 

 

  





 

  







 









































 







 





cresc.

 

cresc.

cresc.

cresc.

 



cresc.

 

 cresc.

 



cresc.

cresc.



81





82


 

 



  



  

    

 

    

 



  

     



  

     

ff

  ff

25

                

             

                 

                 

ff

ff

                                   ff

                                   ff

  ff

  ff

 

       

83

     

      84







         

           85 86


  

26

   

  

fff

  

 

  

     

fff

            

  

  

             fff

fff

               

           

fff

  fff

  fff

p

          p

pizz.

ppp

     

         

pizz.

ppp

             

pizz.

ppp

fff

D With feeling q=72

     

         p

 

 

 

 

  

 

 

  

 

ppp mp

ppp mp

ppp mp

 

     

87

                       

88

89

  



  



ppp p

ppp p

90

91


27

           

         

         

         

         

         

        

          

        

 

 

  

   

    

  

  

   

    

  

  

   

    

 

 

 



 



 



 



 



 



92

93

94


28

                                             cresc.                                    cresc.                                           cresc.

     cresc.

 

  

    

 

  

    

 

  

    

    

     cresc.

     

  

    

     

  

cresc.

     









   

  

    

 







   

  

    

96

97

cresc.

cresc.

95

98


29

         

         

         

        

         

         

        

       

          

p

p

p

 

  

     

  



  

  

    





  

  

    



 

mp

mp

mp

 

 



 



 



  



 



 



p

p

99

100

101


30

  arco           pp

 arco          



      

mf



      

pp

        

mf

arco

   





pp

    

mf

                           mf



                           



                           

 



            



            

mf

mf



 



102









103





104

mf

mf

105

106


E

31

Transparent (q=72)

                  

         

  

          

         

  

    

  

mp (sub.)

mp (sub.)

               

 

p (sub.)

mp (sub.)

p

 

mp (sub.)

p

 

mp (sub.)

p



mp (sub.)

mp

p



mp (sub.)

p

107

108

109

110

111


32

           

          

    

         

          

    

 

     

            



mp

       

 

       

       

 



    

   

   



    

   

   



  

mp

 

mp



 

112

113

114

    

mp

 mp

115

   

116


33

F      

        

   

   

    

mf

    

mf

   

 



mf

  



 

  

mf



    



  

  

  

  

 



    



  

  

  

  

 

 

  

     



 

 

       

117

 

  

 

  

118

mf

mf

   

   

mf

   

   

mf

119

120


34

 

      

    

  

     

    

      

    

  

    

    

 

 

  



    

       

   

    

    

    

  

 

 

 

 

121

122

123

124

125


35

 



           

  

   

  

    



          

  

   

  

    

       

 

     

  mf

  mf



  

  

   

mp (sub.)

mp (sub.)

     mp (sub.)

 



 



 



   

mp (sub.)

   

mp (sub.)

   



 

   

mp (sub.)



    

mp (sub.)

126

127



    

mp (sub.)

128

129


36

  

   



  

 

 

   



  

 

  

  

    

 



 

 

  

 

 

  

 

           

 

 

 



 

 

 

 

 



 

 

130

131


37

  

 

  

   

    

    



   

    

    



   

  

    

    

 

 

 

  

 

 

  

          

 

   



 

 

  

   



 

 

132

133


38

                         mf

 

       

       

                           

 

                       

       

                     

      

mf

mf

mf

                            mf

                           mf

 

 

     

              

     

              

     

mf

  

 

     

mf

134

135

136


G   

   



Triumphant q=100

  

  

   

  

  

   

 

  

39

ff

 ff



ff stacc=pizz divisi

   

   3    3    3    3                                   f

 

3

3

 

f

   

pizz.

f

  

3

 

arco

 

arco

pizz.

3

  

arco       pizz.

pizz.     

    

ff

137

 

arco

3

  

pizz.

3

3

arco

pizz.

3

   

ff

3

 

arco

3

3

    pizz.

arco        pizz.

3

138


40

 



  

 



  

 

 

  

   3    3                  3

3

pizz.        arco

 

3

  

pizz.

 

arco

  

arco

pizz.

3

  

pizz.

3

 

  

139

3

3

pizz.     

arco

  

arco

   3    3                 

3

 

pizz.

3

 

arco

  

arco

pizz.

3

  

pizz.

3

  

arco

3

140


 

 



molto rall.

41

    

mf

 



     mf

 



 



    

mf

   3             3

3

 3    3    3                          3

   pizz.         arco

arco

3

3

    pizz.

   arco

3

   pizz.

pizz.

  arco

3

3

pizz.

3

arco

3

          pizz.

pizz.

arco

arco

mf

3



arco

pizz.

3

        mf

 





 





 

  





 





 

141

mf

                  

arco

142

 

 

143


42

 

H A tempo

                              3

mp

3

   

3

3

3

3

3

3

3

3

3

3

3

3

                                      3

mp

          

3

3

3

3

 

3

3

    

 

  

 

  

       

f

 

  

145

146

144

3

f

 

3

                              mp



3


                                      

43

 

3

3

3

3

3

3

3

3

3

3

3

3

                                       3

3

3

3

3

3

3

3

3

3

3

3

                                     3

  

3

3

3

3



3

 

3

 

 

 

3

3

    

3

3

     f 3

    

 

    

 

f

     f

3

147

148

149


44

 

    3

    3

  3

    

                       3

3

3

3

3

3

3

                       3

3

3

3

3

3

3

                      3

3

3

  

3

  

3

3

      3

3



   



    

 



   



    

 

150

151


 

    3

    3

  3

                                  3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

 

3

3

3

3

3

3

       3                         



     

3

3

3

3

3

                 



3

3

 

                                   

3

3

                                 

  

3

45

3

3

3

3

3

 

 

 

152

153

154


46

  

         

  ff

  ff

 ff

 

ff

ff



ff

      

   



3

   



3

   



3

    3

    3

    3

  

I 

 

         



 



 

    

ff

 ff



3

f divisi

3            3 mf (sub.) arco  pizz.     

3

 

pizz.

3

mf (sub.)

 

      3

  

pizz.

3

mf (sub.)

  ff

 

ff

155

   

 f

 f

156

3

 pizz.    

arco

 3     arco   


 

 



 

 



 

      3   

pizz.

 3     arco   

3

    

     3  

pizz.

 3     arco   

     3  

pizz.

3

 pizz.    

arco

3

 3     arco   

3

 

pizz.

3

 pizz.    

arco

     3 

 3     arco    3

 pizz.    

arco

3

157

3

3

 pizz.       arco

  

  

 

47

158


48

 

 

 

  

  

pizz.

 3     arco   

     3  

pizz.

3

 pizz.       arco

 

arco

3

     3

  

Pushing forward

 3     arco    3

  

pizz.

3

 

 

3

3            3 arco  pizz.     

 pizz.    

arco

3            3 arco  pizz.      3

 

arco

3

3

159

160

  

pizz.


J

 













cresc.

49

 cresc.

 cresc.

             3

3

3

3

             3

3

3

3

            3

cresc.

3

 

3

3

3



3

3

3

3

3

3

3

3

            3

cresc.

arco

            

3

            3

cresc.

cresc.

  



 cresc.

161

162


50

 

 







 

 







  







 

   

             3

3

3

           

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

                                                



 



163

164


molto  rall.

 

 

fff

 

fff



fff





fff



fff





fff

  

  

fff



 

mf

fff



 

mf

fff

 

mf

fff

 

mf

fff

 

mf

fff

 

mf

fff



mf





fff

166

ppp

ppp

ppp

ppp

ppp

ppp

  fff



mf

165

51

ppp

  fff

167

ppp

168


52

K With Energy, Momentum q=88 

 

  



 



  

 

mp



mp

              mp

             

              mp

             

169

170

171

172


53

   

  

 

    

 



3     

 



3       

 

 

    

                                                       

174

175

176

173


54

  

 

 

 

 

 

 

3

 

 

     

  

 

     

3

                                                       

177

178

179

180


55

   

    



   



  

    



   



   



    

mf

mf

 

 

mf

    

mf

              

    

              

mf

181

182

183

184


56

   

  

   

     

      





     

      





   

       





  

3

3

3

                   

                   

185

186

187

188


57

     



    



     

   

     

   

     

3

 3

f

 3

f

   

     

f

             

              

             

              

      

mf

              

      

              

mf

189

190

191

192

3





f

   

  

   


58

     

   

   

   

L Più mosso (q=100) poco accel. 

          cresc.



          cresc.

     

   

     

   

 

          cresc.



           cresc.

                                     mf

cresc.

                                   cresc.                                    cresc.                                     cresc. 193 194 195 196


59

                         

                       



  

      

            

                   

 

 

 

     

     

     

       

                                 

                                                                                    197 198 199 200


60

 

             3

gliss.

 

 

gliss.



3

 

gliss.

 

 

 



 3

 



 3

     

 3

 

  

 3

         

        

       



      

        

             



      

        

              



       201

         202

             

  

 

3

         3

 

3

        3

gliss.

3

             3

 

203


 

 

  

  

     

     

         

    

  

  

   

  

  

   

     





61

 

      3

      3

    3

     3

                                         

                            

                        

                             204 205 206


62

 

 



          

          







          

          







         

         

          

      



3



3

3



3

3

3

3

3

           

                 

            

           

       

         

             

        

         

             207

       

         

208

209


molto rall.

 









63

M







 









                   

                 

        

210

3

3

3

mf

                       3 3

fff

poco accel.

                       3

fff



(q=88)

3

3

mf



                       3 3

fff

3

3

mf

3 3                      3

3

fff

mf

fff

                  

mf

                  

3

3

3

3

3

3

3

3

fff

mf

                   3

3

3

3

fff

mf

                   3

fff

3

3

mf

211

212

3


64

  3                                              3 3 3 3 3 3

mf

mf

3

3                                          3 3 3 3 3 3

mf

mf

3

3                                         3 3 3 3 3 3

mf

mf

3

                                   3 3

3

3

3

3

mf

mf

3

3

3                                                   3 3 3 3

3

3

mf

mf

3

3                                                  3 3 3 3

3

3

mf

mf

3

3                    ���                   3 3

3

3

3

mf

mf

3

3

3                                                    3 3 3 3

3

3

mf

mf

213

3

214


65

                                                            molto rall.

3

mf

3

3

3

mf

3

3

3

3

mf

                                                             3

mf

3

3

3

mf

3

3

3

3

mf

                                                   3

mf

3

3

3

mf

3

3

3

3

mf

                                                   3

3

3

3

3

mf

3

3

3

3

mf

3

mf

                                                             3 3 3 3 3 mf

mf

3

mf

                                                 3 3 3 3 3 3

mf

3

mf

3

mf

                                                             3 3 3 3 3 3

mf

3

mf

3

mf

                                                                        3 3 3 3 3 3

mf

3

mf

215

3

mf

216

217


66

 

    

Pronounced q=112  N Heavy,        

    

  

f

    

  

  

    

 

  

  

   

  

f

   



f

 

    

    f

  

    

    

    

     f

  

   

   

    

     f

  

   

   

    

    

219

220

221

222

218


67

  

  

  

    



  

  

    

 

  

  

   

  

   

 

   

 

   

 

  

    

        

 

  

   

        

 

  

   

        

 

   



   



f

223

224

225

226

f

227




   

  



   

  

 

   

  

68

 

   

  

 



   

  

 

   

  

 

   

 



228

 



   



 



   



  

   





  



   

   



   

   

 

  



      

 

  



      

 

229

230

231

232


69  

   

                                  

 

   

                               cresc. ff

 

   

                 

 

   

Più mosso

ff

cresc.

ff

cresc.

     

      

                     ff

     

                    ff

   

ff

                        

    cresc.

233

                         ff 236 234 235

   

   





 

   

 

    

ff

cresc.

O

                      

 

  

237


molto rall.

                     

loco pizz.

                 

loco pizz.

                 

pizz.

70

fff

fff

fff

                 fff

    

pp mp

    

pp mp

pp mp



pizz.

pp mp

 

   

   

 

 

 

 

 

 

arco

 

   

                               

 

                               

 

fff

mf

fff

mf

               fff

                fff

238

239

pizz.

       

pp mp

pizz.

       

pp mp

240

241

242

 

 

243


P Expressive q=54   

solo

molto vibrato

 

mp

71

   

  

  

  

             

            

              

              

              

              

arco

pp

pp

pp

 

244

245

246

247


72

  

  

  

  

Q

    

With Energy, Movement q=100 accel.

   



ppp

  tutti

mp



 

arco

mp



arco

  

mp

                  

                   

        mp

                   

        mp

248

249

250

251



 

mp


73

  



  



 



  



3



 

3

3





  



 



  

 

  





 



 

         

3

              mp

                   

252

253

254

255


74

     

    

      

           

      

           

3

3

    

    

3        

       3

3

mf

molto cresc.

3

mf

  

molto cresc.

3

          mf molto cresc.

             3

mf

molto cresc.

mf

molto cresc.

                       

              mf molto cresc. 

arco

    

mf

256

arco

    

mf

257

258

molto cresc.

molto cresc.

259


75





 

  

 





 

  

 





 

 

 





 

 

  

  

       





       





     





     





     





     





     





      261

  

 

260


76

 

                        3

3

3

3

fff

                        3

3

3

3

3

3

3

  

3

 

3

3

   

     



 

fff

                        3

fff

                   3

  

    

fff

  

  

fff

     

     

           

262

   

fff

    

   

fff

    

   

    

fff

263

 pizz.



fff

pizz.



fff

264


77

   

 

265

266


The Valley of Unrest