Page 1

Nombre: Katherin Chacón Curso: 6º Ciencias “C” Fecha: 02 de Enero del 2014


1. Ondas Concepto de onda Tipos de ondas Características de las ondas 2. Fenómenos ondulatorios Reflexión de las ondas Refracción de las ondas Difracción de las ondas Interferencia de las ondas 3. El sonido: Una onda longitudinal ¿Cómo se produce el sonido? Velocidad de propagación Cualidades del sonido Efecto Doppler Contaminación acústica Aplicaciones de ondas sonoras 4. La luz: Una onda transversal Naturaleza de la luz Propagación de la luz Reflexión de la luz Refracción de la luz Dispersión de la luz. Espectro El espectro electromagnético


1. ONDAS CONCEPTO DE ONDA En física, una onda consiste en la propagación de una perturbación de alguna propiedad de un medio, por ejemplo, densidad, presión, campo eléctrico o campo magnético, a través de dicho medio, implicando un transporte de energía sin transporte de materia. El medio perturbado puede ser de naturaleza diversa como aire, agua, un trozo de metal e, incluso, inmaterial como el vacío. TIPOS DE ONDAS SEGÚN EL MEDIO EN QUE SE PROPAGAN 1) Ondas electromagnéticas: estas ondas no necesitan de un medio para propagarse en el espacio, lo que les permite hacerlo en el vacío a velocidad constante, ya que son producto de oscilaciones de un campo eléctrico que se relaciona con uno magnético asociado. 2) Ondas mecánicas: a diferencia de las anteriores, necesitan un medio material, ya sea elástico o deformable para poder viajar. Este puede ser sólido, líquido o gaseoso y es perturbado de forma temporal aunque no se transporta a otro lugar. 3) Ondas gravitacionales: estas ondas son perturbaciones que afectan la geometría espacio-temporal que viaja a través del vacío. Su velocidad es equivalente a la de la luz. SEGÚN SU PROPAGACIÓN: 1) Ondas unidimensionales: estas ondas, como su nombre indica, viajan en una única dirección espacial. Es por esto que sus frentes son planos y paralelos. 2) Ondas bidimensionales: estas ondas, en cambio, viajan en dos direcciones cualquieras de una determinada superficie. 3) Ondas tridimensionales: estas ondas viajan en tres direcciones conformando un frente de esférico que emanan de la fuente de perturbación desplazándose en todas las direcciones. SEGÚN SU DIRECCIÓN: 1) Ondas transversales: las partículas por las que se transporta la onda se desplazan de manera perpendicular a la dirección en que la onda se propaga.


2) Ondas longitudinales: en este caso, las moléculas se desplazan paralelamente a la dirección en que la onda viaja. SEGÚN SU PERIODICIDAD: 1) Ondas no periódicas: estas ondas son causadas por una perturbación de manera aislada o, si las perturbaciones se dan de manera repetida, estas tendrán cualidades diferentes. CARACTERÍSTICAS DE LAS ONDAS Todas las ondas electromagnéticas se desplazan a la velocidad de la luz: a unos 300 000 km por segundo. Se les llama así porque consisten en campos magnéticos y eléctricos que interactúan en ángulos rectos. Estos campos se intercalan transversalmente y le imprimen movimiento a la onda. Las ondas se caracterizan por su amplitud (la mitad de la distancia entre la cresta y el seno), su longitud (la distancia entre dos crestas) y su frecuencia (el número de ondas que pasan por segundo por un punto determinado). Cuanto mayor es la longitud de onda, más baja es la frecuencia. 2. FENÓMENOS ONDULATORIOS

Los fenómenos ondulatorios son parte importante del mundo que nos rodea. A través de ondas nos llegan los sonidos, como ondas percibimos la luz; se puede decir que a través de ondas recibimos casi toda la información que poseemos.

A partir del análisis de fenómenos ondulatorios tan sencillos como las olas que se extienden por una charca o las sacudidas que se propagan por una cuerda tensa trataremos de estudiar las características generales de todos los movimientos ondulatorios. REFLEXIÓN DE LAS ONDAS


Se denomina reflexión de una onda al cambio de dirección que experimenta ésta cuando choca contra una superficie lisa y pulimentada sin cambiar de medio de propagación. Si la reflexión se produce sobre una superficie rugosa, la onda se refleja en todas direcciones y se llama difusión. En la reflexión hay tres elementos: rayo incidente, línea normal o perpendicular a la superficie y rayo reflejado. Se llama ángulo de incidencia al que forma la normal con el rayo incidente y ángulo de reflexión al formado por la normal y el rayo reflejado. Las leyes de la reflexión dicen que el ángulo de incidencia es igual al ángulo de reflexión y que el rayo incidente, reflejado y la normal están en el mismo plano. REFRACCIÓN DE LAS ONDAS Se denomina refracción de una onda al cambio de dirección y de velocidad que experimenta ésta cuando pasa de un medio a otro medio en el que puede propagarse. Cada medio se caracteriza por su índice de refracción. En la refracción hay tres elementos: rayo incidente, línea normal o perpendicular a la superficie y rayo refractado. Se llama ángulo de incidencia al que forma la normal con el rayo incidente y ángulo de refracción al formado por la normal y el rayo refractado. Cuando la onda pasa de un medio a otro en el que la onda viaja más rápido, el rayo refractado se acerca a la normal, mientras que si pasa de un medio a otro en el que la onda viaja a menos velocidad el rayo se aleja de la normal. DIFRACCIÓN DE LAS ONDAS Se denomina difracción de una onda a la propiedad que tienen las ondas de rodear los obstáculos en determinadas condiciones. Cuando una onda llega a un obstáculo (abertura o punto material) de dimensiones similares a su longitud de onda, ésta se convierte en un nuevo foco emisor de la onda. Esto quiere decir, que cuando una onda llega a un obstáculo de dimensión similar a la longitud de onda, dicho obstáculo se convierte en un nuevo foco emisor de la onda. Cuanto más parecida es la longitud de onda al obstáculo mayor es el fenómeno de difracción. INTERFERENCIA DE LAS ONDAS Se denomina interferencia a la superposición o suma de dos o más ondas. Dependiendo fundamentalmente de las longitudes de onda, amplitudes y de la distancia relativa entre las mismas se distinguen dos tipos de interferencias:


Constructiva: se produce cuando las ondas chocan o se superponen en fases, obteniendo una onda resultante de mayor amplitud que las ondas iniciales. Destructiva: es la superposición de ondas en antifaces, obteniendo una onda resultante de menor amplitud que las ondas iniciales. 3. EL SONIDO: UNA ONDA LONGITUDINAL Una onda longitudinal es una onda en la que el movimiento de oscilación de las partículas del medio es paralelo a la dirección de propagación de la onda. Las ondas longitudinales reciben también el nombre de ondas de presión u ondas de compresión. Algunos ejemplos de ondas longitudinales son el sonido y las ondas sísmicas de tipo P generadas en un terremoto. La figura ilustra el caso de una onda sonora. Si imaginamos un foco puntual generador del sonido, los frentes de onda se desplazan alejándose del foco, transmitiendo el sonido a través del medio de propagación, por ejemplo aire. Por otro lado, cada partícula de un frente de onda cualquiera oscila en dirección de la propagación, esto es, inicialmente empujada en la acción por efecto del incremento de presión provocado por el foco, retornando a su posición anterior por efecto de la disminución de presión provocada por su desplazamiento. De este modo, las consecutivas capas de aire (frentes) se van empujando unas a otras transmitiendo el sonido ¿CÓMO SE PRODUCE EL SONIDO? El sonido se produce como resultado de la vibración de un cuerpo, que genera unas ondas de compresión en el medio que lo rodea, que al llegar a nuestros oídos transmiten esa energía, modulada en forma de impulso nervioso, hasta el cerebro. Cuando la vibración de origen es regular, el sonido tiene características "musicales" mientras que una vibración irregular suele tener características de "ruido".


Un sonido es un fenómeno físico, la cual es una propagación en forma de ondas elásticas audibles o casi audibles que generalmente se propagan a través de un medio bien sea gaseoso, liquido o sólido (u otro medio elástico) que este generando movimiento vibratorio de un cuerpo. VELOCIDAD DE PROPAGACIÓN Todas las ondas tienen una velocidad de propagación finita., en cuyo valor influyen las fuerzas recuperadoras elásticas del medio y determinados factores de la masa del medio: la densidad lineal en las cuerdas; la profundidad del agua bajo la superficie, o el coeficiente adiabático, la masa molecular y la temperatura en el caso de la propagación del sonido en un gas. Cualidades del sonido Un aspecto importante que debemos conocer para sensibilizar nuestros oídos a la escucha activa es la identificación de las cualidades sonoras. Podemos distinguir cuatro cualidades: La altura o tono. Está determinado por la frecuencia de la onda. Medimos esta característica en ciclos por segundos o Hercios (Hz). Para que podamos percibir los humanos un sonido, éste debe estar comprendido en la franja de 20 y 20.000 Hz. Por debajo tenemos los infrasonidos y por encima los ultrasonidos. La intensidad. Nos permite distinguir si el sonido es fuerte o débil. Está determinado por la cantidad de energía de la onda. Los sonidos que percibimos deben superar el umbral auditivo (0 dB) y no llegar al umbral de dolor (140 dB). Esta cualidad la medimos con el sonómetro y los resultados se expresan en decibeles (dB). La duración. Esta cualidad está relacionada con el tiempo de vibración del objeto. Por ejemplo, podemos escuchar sonidos largos, cortos, muy cortos, etc... El timbre. Es la cualidad que permite distinguir la fuente sonora. Cada material vibra de una forma diferente provocando ondas sonoras complejas que lo identifican. Por ejemplo, no suena lo mismo un clarinete que un piano aunque interpreten la misma melodía. EFECTO DOPPLER El efecto Doppler, llamado así por el físico austríaco Christian Andreas Doppler, es el aparente cambio de frecuencia de una onda producida por el movimiento relativo de la fuente respecto a su observador. Doppler


propuso este efecto en 1842 en su tratado Über das farbige Licht der Doppelsterne and einige andere Gestirne des Himmels (Sobre el color de la luz en estrellas binarias y otros astros). El científico neerlandés Christoph Hendrik Diederik Buys Ballot investigó esta hipótesis en 1845 para el caso de ondas sonoras y confirmó que el tono de un sonido emitido por una fuente que se aproxima al observador es más agudo que si la fuente se aleja. Hippolyte Fizeau descubrió independientemente el mismo fenómeno en el caso de ondas electromagnéticas en 1848. En Francia este efecto se conoce como "efecto Doppler-Fizeau" y en los Países Bajos como el "efecto Doppler-Gestirne". Contaminación acústica Se llama contaminación acústica (o contaminación sonora) al exceso de sonido que altera las condiciones normales del ambiente en una determinada zona. Si bien el ruido no se acumula, traslada o mantiene en el tiempo como las otras contaminaciones, también puede causar grandes daños en la calidad de vida de las personas si no se controla bien o adecuadamente. APLICACIONES DE ONDAS SONORAS Las ondas sonoras tienen muchas y variadas aplicaciones en la actualidad. Música: producción de sonido en instrumentos musicales y sistemas de afinación de la escala. Electroacústica: tratamiento electrónico del sonido, incluyendo la captación (micrófonos y estudios de grabación), procesamiento (efectos, filtrado comprensión, etc.) amplificación, grabación, producción (altavoces) etc. Acústica fisiológica: estudia el funcionamiento del aparato auditivo, desde la oreja a la corteza cerebral. Acústica fonética: análisis de las características acústicas del habla y sus aplicaciones. Arquitectura: tiene que ver tanto con diseño de las propiedades acústicas de un local a efectos de fidelidad de la escucha, como de las formas efectivas de aislar del ruido los locales habitados. 4. LA LUZ: UNA ONDA TRANSVERSAL Una onda transversal es una onda en la que las vibraciones son perpendiculares a la dirección de propagación de la onda. Si una onda transversal se mueve en el plano xpositivo, sus oscilaciones van en dirección arriba y abajo que están en el plano y-z. Manteniendo una traza comparamos la magnitud del desplazamiento en instantes sucesivos y se aprecia el avance de la onda. Transcurrido un tiempo la persistencia de la traza muestra como todos los puntos pasan por todos los estados de vibración. Sin embargo para conocer cómo cambia el desplazamiento con el tiempo resulta más práctico observar otra gráfica que represente el movimiento de un punto. Los puntos en fase con el seleccionado vibran a la vez y están separados por una longitud de onda. La velocidad con que se propaga la fase es el cociente entre esa distancia y el tiempo que


tarda en llegar. Cualquier par de puntos del medio en distinto estado de vibración están desfasados y si la diferencia de fase es 90º diremos que están en oposición. En este caso los dos puntos tienen siempre valor opuesto del desplazamiento como podemos apreciar en el registro temporal. Este tipo de onda transversal igualmente podría corresponder a las vibraciones de los campos eléctrico y magnético en las ondas electromagnéticas. Una onda electromagnética que puede propagarse en el espacio vacío no produce desplazamientos puntuales de masa. Son ondas transversales cuando una onda por el nodo se junta con la cresta y crea una gran vibración. NATURALEZA DE LA LUZ La óptica es la parte de la física que estudia la luz y los fenómenos relacionados con ella, y su estudio comienza cuando el hombre intenta explicarse el fenómeno de la visión. Diferentes teorías se han ido desarrollando para interpretar la naturaleza de la luz hasta llegar al conocimiento actual. Las primeras aportaciones conocidas son las de Lepucio (450 a.C.) perteneciente a la escuela atomista, que consideraban que los cuerpos eran focos que desprendían imágenes, algo así como halos oscuros, que eran captados por los ojos y de éstos pasaban al alma, que los interpretaba PROPAGACIÓN DE LA LUZ La luz se puede propagar en el vacío o en otros medios. La velocidad a la que se propaga depende del medio. En el vacío (o en el aire) es de 3·108 m/s; en cualquier otro medio su valor es menor. Esta velocidad viene dada por una magnitud llamada índice de refracción, n, que es la relación entre la velocidad de la luz en el vacío y la velocidad en ese medio. No tiene unidades y su valor es siempre mayor que 1. REFLEXIÓN DE LA LUZ Al igual que las ondas sonoras, la luz se refleja cuando incide sobre un medio material. Se distingue dos tipos de reflexión: Reflexión especular: la luz se refleja sobre una superficie pulimentada, como un espejo. Reflexión difusa: la luz se refleja sobre una superficie rugosa y los rayos salen rebotados en todas direcciones. REFRACCIÓN DE LA LUZ Se denomina refracción luminosa al cambio que experimenta la dirección de propagación de la luz cuando atraviesa oblicuamente la superficie de separación de dos medios transparentes de distinta naturaleza. Las lentes, las máquinas fotográficas, el ojo humano y, en general, la mayor parte de los instrumentos ópticos basan su funcionamiento en este fenómeno óptico.


DISPERSIÓN DEL LA LUZ. ESPECTRO Conocemos como luz blanca a la que proviene del Sol. En algunas circunstancias, esa luz se descompone en varias franjas de colores llamadas arco iris. En realidad la luz blanca está formada por toda una gama de longitudes de onda, cada una correspondiente a un color, que van desde el rojo hasta el violeta. Como el índice de refracción de un material depende de la longitud de onda de la radiación incidente, si un rayo de luz blanca incide sobre un prisma óptico, cada radiación simple se refracta con un ángulo diferente. La dispersión de la luz consiste en la separación de la luz en sus colores componentes por efecto de la refracción.

EL ESPECTRO ELECTROMAGNÉTICO Se denomina espectro electromagnético a la distribución energética del conjunto de las ondas electromagnéticas. Referido a un objeto se denomina espectro electromagnético o simplemente espectro a la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia. Dicha radiación sirve para identificar la sustancia de manera análoga a una huella dactilar. Los espectros se pueden observar mediante espectroscopios que, además de permitir ver el espectro, permiten realizar medidas sobre el mismo, como son la longitud de onda, la frecuencia y la intensidad de la radiación.

Fisica trabajo en word  

formato de revista

Advertisement