Issuu on Google+

Interactive Playing Colours is an interactive installation which visualises music. The aim of the installation is to control  colours with music. The colour and note are matched on their frequency. The note A for example, with a frequency of 400 Hz, is visualised with the colour red, which has the same frequency, 400 Hz. A MAX msp patch controls colour, saturation and the scale of a graphic through sound. The project was presented with a clarinet performance. Therefore the patch settings are set up for the clarinet, but can be easily changed to suit any sounds. The used graphic is from Andrew Bensons book, Jitter Recipes Book 2 and is called the catch nurbs object.

Graphic Examples

Colour Swatch

The colour swatch is used to change the colours of he graphic. It contains the number range from 0 (orange) to 255 (dark red). The colour swatch respond to the notes. Low notes are set to the colour orange and the high notes to dark red. to control the colours and notes the scale object is used. For the project “playing pictures” the scale is programmed to the followed number range: 49. (lowest sound) 78 (highest sound) scaled to 1(orange) to 255 (dark red). Depending music data the scale can be changed to achieve different colour effects. For example for a very high music the range of the scale number could be: 60 to 100. This allows us to use the patch for any instrument or sounds and makes it flexible. Further we can set the scale to a number range so it changes in a certain colour area. The colour swatch number range by its origin: 1. = orange Scaled to the number 49. 20. = dark yellow Scaled to the number 52. 40. = yellow Scaled to the number 55. 60. = light green Scaled to the number 57. 80. = green Scaled to the number 59. 110. = turquoise Scaled to the number 62. 150. = blue Scaled to the number 66. 180. = violet Scaled to the number 74. 200. = pink Scaled to the number 77. 255. = dark red Scaled to the number 80. Data Input The data input is simply a microphone. The sound is catches by the microphone, which then, is transformed into a number data. (Float numbers).

Saturation To make the graphics respond even more interesting and changeable the saturation is added to the patch. The saturation is controlled by the volume data. As louder the sound is, as more intensive appears the colour of the graphic. A low sound affects a low saturated colour. The scale for the saturation is set to: 0. 0.3 0. 1.2 this data affects a quiet intensive colour by a medium sound played with a clarinet. The saturation can be easily changed with the scale object. The saturation swatch has the same amount of numbers as the swatch colour. (o. /255.)

The Colour Circle The colour sound circle shows all the possible colours of the colour swatch. Further the circle shows the notes colour. The note, played with the clarinet, will change the graphic into to the accordant colour. The colour sound circle contains over three octaves (21 notes, e, f, g, a, b, c, d.) The colour sound circle was made for this project to show and explain notes, colours and the patch data, in one picture. The small numbers inside the circle are the number range received from the pitch, as explained in the earlier article colour swatch.

Work in progress

Improved Colour Circle according to the colour frequency. Colours are made up of different frequency and wavelengths too. Every light travels with the same speed but each colour has a different wavelength and a particular frequency, which are responsible for different colours. A high­pitched frequency contains a higher amount of energy. High frequency colours are: blue (680 terahertz), violet (730 terahertz) and indigo (780 terahertz)
 Yellow (520 terahertz), orange (480 terahertz) and red (400 terahertz) count to the low frequency colours. Once I found out about colour frequency I recognise the interesting opportunity to combine the two frequencies: Sound waves and light waves. Already Sir Isaac Newton (1642­1726), split the colour spectrum into a seven­colour scale according to their hertz frequency and wavelength. 
 Note A 400 HzOrange Note b 491 HzYellow Note c 527 HzGreen Note d 588 HzBlue Note e 657 HzViolet Note f 705 HzPink Note g 788 HzRed Background A further essential subject in the project was material and texture. An important influence therefore was Brian O’Reilly. He is an artist and creator of many moving images, electronic music, mixes media and installations. Especially his work called Spectral Strands (Saariaho: Vent nocturne) inspired me a lot. The moving images are extreme clos up footage, which he shot of Garth performing on the viola. The background of the graphic is black (standard). I considered the black background as

boring and unsatisfying. To approach a more interesting and personal touch I decided to experiment with the material. I chose water as element, because of its fluent movements. Both, music and watcher has a smooth movement and can change from a calm and quiet situation to very wild, loud and “dangerous” condition. The water sequence was created in after effects and final cut. First I filmed seawater, which I then edited in after effects. I changed the colours, saturation, brightness and contrast. To achieve a more abstract result I used the bubble effect. The settings are changed to reflection type “liquid” and shading type “fade outwards”. Later on the speed was slowed down in final cut to 40% to get a slower and calmer background motion.

Volume The data input is simply a microphone. The sound is catches by the microphone, which then, is transformed into a number data. (Float numbers). This float numbers are changing accordingly to the sound volume. No sound is shown as the number 0.000 loud sound 0.300 and so on. The volume data controls the y, x and z axis of the graphic. that effects basically the scale. The graphic completely disappears by the scale number y =0 x =0 z=0. therefore the scale object is set on: 0. 1. 2 .0. 5 . To control the graphic not only with the volume of the music a pitch is add to the patch witch converts the volume into notes and amplitude.